Next Article in Journal
Role of Conservation Adoption Premiums on Participation in Water Quality Trading Programs
Previous Article in Journal
Performance Evaluation of a Floating Treatment Wetland in an Urban Catchment
Article Menu

Export Article

Open AccessArticle
Water 2016, 8(6), 246; doi:10.3390/w8060246

Assessment of Impacts of Climate Change on the Water Resources of the Transboundary Jhelum River Basin of Pakistan and India

Institute of Geographic Science and Natural Resources Research/Key Laboratory of Water Cycle and Related Land Surface Processes, Chinese Academy of Sciences, Beijing 100101, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Athanasios Loukas
Received: 24 February 2016 / Revised: 2 June 2016 / Accepted: 2 June 2016 / Published: 9 June 2016
View Full-Text   |   Download PDF [4135 KB, uploaded 9 June 2016]   |  

Abstract

Pakistan’s economy is significantly reliant on agriculture. However, Pakistan is included in the most water-stressed countries in the world, and its water resources are considerably vulnerable to climate variability and climate change. Therefore, in the present study, the water resources of the Jhelum River basin, which provides water to 6 million hectares of land of Pakistan and hydropower production, were assessed under the scenarios A2 and B2 of HadCM3. A hydrological model, Hydrologic Modeling System (HEC-HMS), was set up, calibrated, and validated for the Jhelum basin, and then streamflow was simulated for three future periods: 2011–2040, 2041–2070, and 2071–2099. The simulated streamflow of each period was compared with the simulated streamflow of the baseline period (1971–2000) to find the changes in the following indicators: mean flow, low flow, median flow, high flow, and center-of-volume dates (CVDs). The results of the study showed an increase of 10%–15% in the mean annual flow as compared to the baseline flow at the end of this century. Winter, spring, and autumn showed an increase in streamflow at most of the sites in all three periods. However, summer (the monsoon season in the basin) showed decreased streamflow at most of the sites. Maximum increase at Azad Pattan was projected in winter in the 2080s, with about 37%–39% increase in flow under both scenarios. Low and median flows were projected to increase, but a decline in high flow was detected in the future under both scenarios. It was also concluded that half of the annual flow in the basin will pass by the Azad Pattan site one week earlier than it does now. On the whole, the Jhelum basin would face more temporal and magnitudinal variations in high, low, and mean flows relative to present conditions. This shows that without a consideration of climate change impacts, proper utilization and management of water resources in the basin will be more difficult. View Full-Text
Keywords: climate change; downscaling; hydrological modeling; water resources; Jhelum River basin; Pakistan; India climate change; downscaling; hydrological modeling; water resources; Jhelum River basin; Pakistan; India
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Mahmood, R.; Jia, S. Assessment of Impacts of Climate Change on the Water Resources of the Transboundary Jhelum River Basin of Pakistan and India. Water 2016, 8, 246.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top