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Abstract: The hydrodynamic characteristics of a delta or estuary are mainly governed by discharges of
rivers and water level at the sea (or lake) boundaries. A joint probability approach is widely applied to
quantify the high water level frequency in deltas. In the approach the relevant hydrodynamic loading
variables, namely the astronomical tides, the wind induced storm surge and the river flows, are
jointly investigated. The joint probability distribution is used to generate a large number of scenarios
of boundary conditions which can drive a deterministic model to derive the water levels at locations
of interest. The resulting water levels as well as their associated joint probabilities can be inverted to
the high water level frequency curve. However, in the joint probability distribution, marginal
distributions may contain large statistical uncertainties due to their relevant parameters being
estimated from a limited length of data. In the case of the Rhine Delta, a nonparametric bootstrap
method is applied to quantify the statistical uncertainties in three critical marginal distributions:
wind induced storm surge peak level, wind induced storm surge duration and River Rhine discharge.
The uncertainties are incorporated into the marginal distributions with a Monte Carlo integration
method. Further the uncertainty-incorporated marginal distributions are used for the high water
level frequency assessment. Compared to previous studies, water levels for given return periods are
much higher. The uncertainty differs in each marginal distribution and its impact on the high water
level frequency curve also varies.

Keywords: statistical uncertainty; the bootstrap method; high water level frequency; Lower
Rhine Delta

1. Introduction

The hydrodynamic characteristics of a delta or estuary are mainly governed by discharges of
rivers and water levels at sea (or lake) boundaries. The joint probability approach is widely used to
quantify the high water level frequency in deltas [1–7]. In the Rhine Delta, the relevant hydrodynamic
loading variables at boundaries, namely the astronomical tides, the wind induced storm surges and
the river flows, are jointly investigated and their joint probability distribution is estimated from the
historical flood events [7]).
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The high water level frequency assessment consists of two steps: first, a large number of stochastic
scenarios of extreme boundary conditions are generated from the joint probability distribution; second,
these generated scenarios are used as inputs to drive a deterministic hydrodynamic model to result
in the peak water levels at locations of interest in the delta. The resulting peak water levels can be
converted to the high water level frequency curve. The probabilistically computed high water level
frequency is critically influenced by the joint probability distribution, time evolution of the relevant
loading variables and accuracy of the hydrodynamic model.

In the joint probability approach, to get the marginal distributions (Rhine flood, wind induced
storm surges), the annual maximal value during the observed year is determined and then a
distribution to this series of annual maxima is fitted. From the obtained distribution, a flood event
with a certain return period can be estimated. In general two different sources of uncertainty exist
in this process [8]. Natural uncertainty refers to the variability of the flood events, mostly due to the
limited number of flood events. For example, to estimate a 1000-year flood event based on a few dozen
years flood records. Epistemic uncertainty consists of two parts: the uncertainty in distribution type
chosen and in the parameter estimation. In this article, we focus on this natural uncertainty.

Statistical uncertainty exists in the marginal distributions of the joint probability distribution,
which refers to the uncertainty in the parameters of the marginal distributions caused by estimating
them from a limited number of flood events.And this is what we have to work with. Hence, better
assessment of the statistical uncertainty due to insufficient data would be helpful.

The nonparametric bootstrap method is that from the given sample, new samples are generated
by using resampling with replacement [9–11]. It relies on re-sampling with replacements from the
given observations and providing estimates of uncertainty of distribution variables and quantiles. It is
employed to quantify the natural uncertainty in the distributions as it is simple to present and easy to
implement [12–14]

The statistical uncertainty can be incorporated in the marginal distributions to form new marginal
distributions by a Monte Carlo integration method. It is expected that the new distributions will
increase the probability of extreme load values because of the uncertainty in the low quantiles of the
marginal distributions. In the joint probability distribution, the marginal distributions with/without
incorporating the statistical uncertainty are applied to probabilistically compute the high water level
frequency curve. Then the impact of the statistical uncertainty of the marginal distributions on the
high water level frequency curve can be investigated and quantified.

This study briefly introduces the joint probability approach to assess the high water level frequency
in the Lower Rhine Delta, and aims to quantify the statistical uncertainty in the marginal distributions,
and further evaluate the impact on the high water level frequency. This article will specifically focus
on the case of the Lower Rhine Delta. It is organized as follows: Section 2 presents the method; the
case is shown in Section 3; followed by the conclusion in Section 4.

2. Methods

The outline of the method is illustrated in Figure 1. First, the bootstrap method is applied to
estimate statistical uncertainty in the marginal distributions. Second, the statistical uncertainty is
incorporated into the marginal distributions to form into new marginal distributions. Third, the new
marginal distributions are applied to compute the high water level frequency in the Lower Rhine Delta,
and to assess the impact of statistical uncertainty on the high water level frequency.

2.1. Statistical Uncertainty in a Distribution

The statistical uncertainty in a distribution can be estimated using the nonparametric bootstrap
method, and subsequently parameterized as a probability distribution function of the exceedance
probability of the variable.

The nonparametric bootstrap method generates a predetermined N samples of the variable by
randomly re-sampling with replacement from the original sample. Each generated sample has the
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same size of the original sample. Each sample fits to a same probability distribution, and then there are
N distributions. For a given exceedance probability of the variable, around the original estimate there
are N values derived from the N distributions. These N values can fit to a distribution. For example,
the log-normal distribution, a simple skewed distribution can be chosen.
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The probability density function of a log-normal distribution is:

fxpx; u, σq “
1

xσ
?

2π
e´
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2σ2 (1)

u and σ are the location parameter and the scale parameter on a logarithmic scale respectively.
The log-normal parameters can be made continuous functions of the exceedance probability of

the variable. The parameter σ can be modeled as a function of the exceedance probability P by fitting
a polynomial.

The mode of the log-normal distribution is the value with maximum probability density. The
original estimate of the variable x is assumed to serve as the mode of the log-normal distribution, see
Equation (2), and therefore the other log-normal parameter u can be estimated from Equation (3):

x “ modepxq “ exppu´ σ2q (2)

upPq “ lnpxpPqq ` σpPq2 (3)

here P is the exceedance probability of the marginal variable.
The statistical uncertainty in the distribution can be estimated by the Log-normal distribution:

given a value of x, the corresponding Log-normal distribution, in terms of the parameters u and σ,
around that x is known.

2.2. Uncertainty-Incorporated Distribution

The statistical uncertainty can be incorporated into the distribution according to Equation (4) by
the Monte Carlo Integration method. In Equation (4), x is the original variable, ε is the uncertainty
value and xun is the uncertainty incorporated variable, where xun “ x` ε.

Funpxunq “

ż

x

Flognppxunq; upxq, σpxqq fxpxqdx (4)

here Fun (xun) is the uncertainty incorporated distribution of the variable; fx is the original distribution
of the variable; Flogn is the Log-normal (statistical uncertainty) distribution conditioned on x.
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2.3. Impact of the Uncertainty on the High Water Level Frequency in the Rhine Delta

The hydrodynamic characteristics of the Rhine Delta are mainly governed by discharges of the
Rhine and Meuse and the water level at the North Sea boundaries, as can be seen in Figures 2 and 3.
A joint probability approach using a 1-D hydrodynamic model was applied to assess the high water
level frequency in the Lower Rhine Delta [7]. The operational control of the existing flexible hydraulic
structures (red points in Figure 4) was taken into account.
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Figure 3. The conceptual model of the closable delta.

To reduce the computation burden, A conceptual model, the “Equal Level Curves” [15,16]
is preferred to be applied to examine the interaction of sea level, fluvial flows and infrastructure
operations to produce water levels at locations of interest in the Rhine Delta. Equal Level Curves are a
simple steady state function, which can simulate the highest water level at Rotterdam by boundary
conditions during one tidal period.

Two states of Equal Level Curves are introduced, see Figures 2 and 3: one for the open delta
where all dams and barriers are open, and the other for the closable delta where all dams and barriers
along the coast are closed. This model has advantages: first, less information needed and a strong
reduction in computation time; second, convenient to combine with the present operation control of
the Maeslant storm surge barrier at the mouth of the delta. More information is in Appendix A.

According to previous studies [7,16,17], particular attention is paid to the simultaneous occurrence
of storm surges and Rhine floods. Facing this kind of flood event, the Haringvliet dam gates and the
Maeslant Storm Surge Barrier with the Hartel Storm Surge Barrier should be closed to protect high
sea levels from propagating into the delta [18–20], but unfortunately the simultaneous high Rhine
flow accumulating in a long closure duration can result in extreme high water level behind the dams
and barriers.

In the joint probability of this kind of flood events, it is commonly assumed that the magnitude
of the Rhine flow is independent of the magnitude of the storm surge [7,21–23] found no significant
dependence of simultaneous occurrence of storm surges and Rhine floods. The marginal distributions
were estimated from the selected flood events (Peak over Threshold values) with the parametric
distributions (for example, generalized Pareto distribution). All parameters in the marginal
distributions were estimated by the Maximum likelihood method. The joint probability distribution
of this kind of event and its marginal distributions are shown in the Appendix B. The statistical
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uncertainty of three critical marginal distributions in terms of the wind induced storm surge peak level
hsmax, the wind induced storm surge duration Ts and the high Rhine flow Qr, are discussed.

The flood risk map of the Netherlands indicated the urbanized areas Rotterdam and Dordrecht
are more hazardous and vulnerable than other places in the Netherlands, and with the higher
fatalities [24]. As a result, Rotterdam is taken as the study areas of interest for the high water level
frequency estimation.

In the joint probability distribution, three marginal distributions with/without incorporating
the statistical uncertainties are applied to compute the high water level frequency in Rotterdam.
Thus, the impact of the statistical uncertainty on the high water level frequency can be investigated
and quantified.
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3. Results

3.1. Statistical Uncertainty

For each marginal variable, 1000 bootstrap samples are generated and fitted to 1000 bootstrap
curves. Of which 41 curves (by order 25th, 50th ..., 475th, 525th ..., 950th, 975th, as well as 5th and
995th) are selected, shown as blue lines in Figure 5. The exceedance probability curve estimated by the
original samples is shown in the red line in Figure 5. For a given exceedance probability of a marginal
variable, 41 bootstrap estimates around the original estimate are fitted to a Log-normal distribution,
as can be seen in Figure 6. Here only the figures with regard to the wind induce surge peak (hsmax)
are given.

The Log-normal parameters can be made continuous functions of the exceedance probability
of the marginal variables. The estimated log-normal parameter σ for the exceedance probability is
shown in Figure 7. The parameter σ can be modeled as a third-degree polynomial of the exceedance
probability in Equation (5) in the region shown.

σpPq “ a1log10pPq
3
` a2log10pPq

2
` a3log10pPq ` a4 (5)

here P is the exceedance probability of the marginal variable, a1, a2, a3, a4 are the parameters estimated
by fitting a polynomial with the method of least squares. The estimates of a1, a2, a3 and a4 for each
marginal variable are shown in Table 1.
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Figure 7. The Log-normal distribution’s parameter σ is modeled as a function of the exceedance
probability of the wind induced surge hsmax.

Table 1. The estimates of a1, a2, a3 and a4 for the exceedance probabilities of each marginal variable.

σ a1 a2 a3 a4

σ(P(hsmax)) 0.0010 0.011 ´0.0078 0.0065
σ(P(Ts)) ´0.0001 ´0.0021 ´0.0141 0.0189
σ(P(Qr)) 0.0017 0.0247 0.0069 0.0189

The other Log-normal parameter u can be estimated based on Equation (3).

3.2. Uncertainty-Incorporated Marginal Distributions

Through application of Equation (4), the statistical uncertainties can be incorporated into the
marginal distributions. The results are shown in Figures 8–10.
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Figure 8. The uncertainty-incorporated marginal distribution of the wind induced surge hsmax.

For higher exceedance probabilities (lower return periods), the uncertainty has a negligible effect
on the uncertainty-incorporated distribution, mainly due to the small variance of the uncertainty
for higher exceedance probabilities (see Figure 7). For lower exceedance probabilities (higher return
periods), the variance increases, and the effect on the distributions becomes more substantial.

The results indicate that uncertainty incorporated marginal distributions result in more extreme
values of the marginal variables at low exceedance probabilities.
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However, considering the physical conditions the statistical uncertainty in the marginal
distributions needs to be constrained at extreme return periods in order to avoid unreal situations.
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Figure 10. The uncertainty-incorporated marginal distribution of the high Rhine flow Qr.

3.3. Impact on the High Water Level Frequency

The impact of the statistical uncertainty on the high water level frequency can be addressed by
the differences between the high water level frequency curves derived from two types of marginal
distributions, as indicated in Section 2.3. The results are shown in Figures 11–13 respectively.

In Figure 11, the high water level frequency curves in Rotterdam are estimated from two different
marginal distributions of hsmax respectively. Incorporating the statistical uncertainty in the marginal
distribution of hsmax significantly increases the high water level frequency in Rotterdam for the
exceedance probabilities lower than 10´3.

In Figure 12, incorporating the statistical uncertainty in the marginal distribution of Ts does not
affect the high water level frequency in Rotterdam.

In conclusion, the statistical uncertainty in each marginal distribution differs and its impact on
the high water level frequency also varies.
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Figure 11. The high water level frequency curve considering the statistical uncertainty in the marginal
distribution of the wind induced surge hsmax.Water 2016, 8, 147 9 of 16 

 

 

Figure 12. The high water level frequency curve considering the statistical uncertainty in the marginal 

distribution of the wind induced storm surge duration Ts. 

 

Figure 13. The high water level frequency considering the statistical uncertainty in the above two 

marginal distributions. 

In Figure 11, the high water level frequency curves in Rotterdam are estimated from two 

different marginal distributions of hsmax respectively. Incorporating the statistical uncertainty in the 

marginal distribution of hsmax significantly increases the high water level frequency in Rotterdam for 

the exceedance probabilities lower than 10-3.  

In Figure 12, incorporating the statistical uncertainty in the marginal distribution of Ts does not 

affect the high water level frequency in Rotterdam.  

In conclusion, the statistical uncertainty in each marginal distribution differs and its impact on 

the high water level frequency also varies. 

In Figure 13, incorporating the statistical uncertainty in two marginal distributions significantly 

increases the high water level frequency in Rotterdam. Generally for higher exceedance probabilities 

(lower return periods), the statistical uncertainty has a negligible effect on the high water level 

frequency, while for lower exceedance probabilities (higher return periods), the effect on the high 

water level frequency becomes more substantial.  

The design water level in Rotterdam is regarded as the water level with an exceedance frequency 

of 1/10,000; and its present value is 3.60 m above mean sea level (in brief MSL) [25]. As can be seen in 

10
-4

10
-3

10
-2

10
-1

3

3.5

4

4.5

5

5.5

Exceedance probability

W
at

er
 l

ev
el

 i
n

 R
o

tt
er

d
am

 (
m

 M
S

L
)

 

 

No uncertainty, the open delta

No uncertainty, the closable delta

Uncertainty incorporated, the open delta

Uncertainty incorporated, the closable delta

10
-4

10
-3

10
-2

10
-1

3

3.5

4

4.5

5

5.5

Exceedance probability

W
at

er
 l

ev
el

 i
n

 R
o

tt
er

d
am

 (
m

 M
S

L
)

 

 

No uncertainty, the open delta

No uncertainty, the closable delta

Uncertainty incorporated, the open delta

Uncertainty incorporated, the closable delta

Figure 12. The high water level frequency curve considering the statistical uncertainty in the marginal
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Figure 13. The high water level frequency considering the statistical uncertainty in the above two
marginal distributions.

In Figure 13, incorporating the statistical uncertainty in two marginal distributions significantly
increases the high water level frequency in Rotterdam. Generally for higher exceedance probabilities
(lower return periods), the statistical uncertainty has a negligible effect on the high water level
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frequency, while for lower exceedance probabilities (higher return periods), the effect on the high
water level frequency becomes more substantial.

The design water level in Rotterdam is regarded as the water level with an exceedance frequency
of 1/10,000; and its present value is 3.60 m above mean sea level (in brief MSL) [25]. As can be seen in
Figure 12, the design water level of Rotterdam corresponds to 3.60 m MSL without considering the
statistical uncertainty in three marginal distributions, while it corresponds to 3.75 m with considering
the statistical uncertainty in three marginal distributions.

4. Conclusions and Recommendations

Quantifying high water level frequency is critical but complex in deltas or estuaries. In this
article, the joint probability approach using a deterministic hydrodynamic model is applied to estimate
the high water level frequency. This study aims at investigating statistical uncertainty of marginal
distributions of the joint probability distribution and its impact on the high water level frequency.
In the Rhine Delta, the results show that incorporating the statistical uncertainty in the marginal
distributions will increase the high water level frequency because the probability of extreme hydraulic
boundary conditions increases. The statistical uncertainty in each marginal distribution differs and its
impact on the high water level frequency also varies.

Generally only a limited amount of data available when calculating the high water level frequency
or flood frequency, however, this is what we have to work with. Hence, better assessment of the
statistical uncertainty due to insufficient data would be helpful. In condition, considering real physical
conditions, this statistical uncertainty should be constrained. For example, Rhine discharges in Lobith
and sea levels in Hook of Holland have an physical upper limit. This constrain should be elaborated in
future research.
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Appendix A

The Conceptual Model of the Rhine Delta

Considering the characteristics of the Rhine Delta, the conceptual model is illustrated. Two states
of Equal Level Curves are introduced: one for the open delta where all dams and barriers are open,
and the other for the closable delta where all dams and barriers along the coast are closed, as can
be seen in Figures A1 and A2. The closable delta can be open to the sea except that the delta can be
closed with the help of hydraulic structures during the extreme weather conditions (storm surges).
The conceptual model of the Lower Rhine Delta was introduced in Zhong et al. [16].
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Figure A2. The conceptual model of the closable delta.

Equal Level Curves are a simple steady state function, which can simulate the highest water level
at Rotterdam by boundary conditions during one tidal period. For the open delta, Rotterdam water
levels can be modeled by the Equal Level Curves with the boundary conditions of the Rhine flow at
Lobith and the sea level at Hook of Holland, see Equation (A1):

hR “ hhvh ` p
Qr `Qm

µA
q2 ¨

1
2 ¨ g

(A1)

here hR is the water level at Rotterdam; while hhvh stands for the sea water level at Hook of Holland.
Qr is the Rhine flow at Lobith, and Qr is the Meuse flow at Borgharen. µ is the discharge coefficient, A
stands for the surface area of the cross section in Hook of Holland and g is the gravitational acceleration.
The parameters of µ and A can be estimated by the linear regression method with the selected historical
flood event, and µ ¨ A is estimated to be 3620 m2.

hhvh “ hs ` ha ` h0 (A2)

here h0 is the mean sea level, ha is the astronomical tide level, hs is the wind induced surge level. From
a statistical point of view, the occurrence of the astronomical tide component is independent of the
occurrence of the wind induced storm surge component at the mouth of the Rhine Delta. However,
these two components can interact with each other when they propagate into the delta. Their nonlinear
interaction generally increases the surge height at a rising astronomical tide and decreases the surge
height at a high astronomical tide. Quantifying the nonlinear effect is beyond the scope of this study.
For the sake of convenience, it can be assumed that the wind induced storm surge is independent of
the astronomical tide.

Equal Level Curves with the open delta are shown in Figure A3.
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At present, the Rhine delta can be kept open always via the New Waterway and be closed by
closing the Maeslant Barrier and the Haringvliet dams when facing storm surges.

Being a closable delta, there are two states for the Equal Level Curves: the state of open can be
described by Equation (A1), the state of closure can be described by Equation (A3). After the closure of
the delta, the water level behind the barrier rises because the Rhine flow cannot be discharged into the
North Sea and will accumulate. In this process the heights of the surrounding dikes are assumed to be
infinite high and no dike breaches occur.

hR “ hR,c `
pQr `Qmq ¨ ∆T

B
(A3)

where hR is Rotterdam water level after the closure duration ∆T; hR,c is the average water level behind
the Maeslant barrier at the closure time; Qr is the Rhine flow at Lobith; Qm is the Meuse flow at
Borgharen; B is the surface area of the delta where water can be stored.

hr,c can be estimated from the average water level of four locations (Rotterdam, Goidschalxoord,
Dordrecht, and Moerdijk) at the moment of the Maeslant barrier closing.

The water levels at these four locations at time t depend on the sea water level of a few hours ago
at Hook of Holland and on the Rhine and Meuse discharges of 24 hours ago at Lobith and Borgharen.
The functions are shown in Equations (A4)–(A7). The parameters of the below equations are estimated
from system identification of historical measurements. The time unit of t is an hour.

ht
R “ 0.9735 ¨ ht´1

hvh ` 7.781 ¨ 10´9 ¨ pQt´24
r `Qt´24

m q
2

(A4)

ht
G “ 0.7335 ¨ ht´1

hvh ` 1.013 ¨ 10´8 ¨ pQt´24
r `Qt´24

m q
2

(A5)

ht
D “ 0.6065 ¨ ht´2

hvh ` 1.737 ¨ 10´8 ¨ pQt´24
r `Qt´24

m q
2

(A6)

ht
M “ 0.3753 ¨ ht´3

hvh ` 1.458 ¨ 10´8 ¨ pQt´24
r `Qt´24

m q
2

(A7)

The parameter B can be estimated by inverting Equation (A3) into:

B “
p 8

9 Qr `Qmq ¨ ∆T
hR ´ hR,c

“
p 8

9 Qr `Qmq ¨ ∆T
∆h

(A8)

The factor 8/9 comes from the distribution of the Rhine River inflow of which 1/9 flows north
towards the IJsselmeer. The water level can rise by ∆h after the closure time ∆T. In the closure event of
2007, the Rhine discharge Qr was 1171 m3/s, the Meuse discharge Qm was 148 m3/s and the water
level at Rotterdam rose from 0.70 to 1.12 m after 15 hours closure. In Figure A4, the derivative is
constant and the value of B is estimated to be 152 km2.
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Figure A4. Rotterdam water level during the first closure event of 9 November 2007.
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The closure duration ∆T depends on the operational control of closing and opening of the delta.
Two hydraulic structures: the Maeslant storm surge barrier and the Haringvliet dams are mainly
responsible for closing the Rhine delta. When a high Rhine flow coincides with a storm surge, the
present operational control of the Haringvliet dams keep the Rhine delta partly open, depending on
the quantity of the Rhine flow in Lobith. However, to keep the analysis simple, it is assumed that
when the Maeslant Barrier closes, the Haringvliet dams fully close. This assumption will overestimate
the water level when a storm surge coinciding with a high Rhine flow occurs. Therefore, the closure
duration ∆T depends on the operational control of the Maeslant Barrier responding to the hydraulic
boundary conditions.

The control system of the Maeslant Barrier (named BOS, in Dutch: Beslissing & Ondersteunend
Systeem; in English, Decision and Support System) has the responsibility to close the barrier completely
autonomously [18]. To keep the analysis simple, it is assumed that only one control parameter is
considered: the closing decision level Hd, in the operational control of the barrier. When Rotterdam
water level is predicted to exceed the closing decision level Hd (3.0 m MSL in Rotterdam), the barrier
is assumed to close at two hour before. In reality, the barrier closes at the moment the current starts
to change from seaward direction to landward direction, however, to calculate this moment needs
extra information which is not the main concern in this article. The water level in Hook of Holland
drops after the storm surge, and when the water level in Rotterdam is higher than the water level
in Hook of Holland, the barrier re-opens. Considering the time the procedure of close and re-open
takes, the minimum closure duration is 6 hours. The closure decision making of the Maeslant Barrier
is illustrated in Figure A5.
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Equal Level Curves for the closable delta are shown in Figure A6 in which Equal Level Curves in
the shaded area are presented in Figure A7.Water 2016, 8, 147 14 of 16 
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In this equation, u is the mean value, 6.8667;  is the stand deviation value, 0.3752.  
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Appendix B

Probability Distributions

The wind induced storm surge peak level hsmax fits the generalized Pareto distribution (GPD):

f phsmaxq “
1
σ
p1` ξ

hsmax ´ µ

σ
q

´p 1
ξ`1q

(B1)

In this equation the shape parameter ξ is ´0.0677; the scale parameter σ is 0.3140 m; the location
parameter u is 1.0 m.

The wind induced storm surge duration Ts fits the Weibull distribution

f pTsq “
k
λ
p

Ts

λ
q

k´1
e´p

Ts
λ q

k
(B2)

In this equation, Ts > 0, k is the shape parameter, 2.5237; λ is the scale parameter, 38.0887 hours.
The high Rhine discharge Qr fits the generalized Pareto distribution:

f pQrq “
1
σ
p1` ξ

Qr ´ µ

σ
q

p´ 1
ξ q´1

(B3)

In this equation, ξ is the shape parameter; σ is the scale parameter; u is the location parameter;
and the parameters’ values are -0.0667, 1629.7 m3/s and 6000 m3/s respectively.

The high Meuse discharge Qm fits the Log-normal distribution:

f pQmq “
1

σ ¨Qm ¨
?

2π
e´

plnQm´µq

2¨σ2 (B4)

In this equation, u is the mean value, 6.8667; σ is the stand deviation value, 0.3752.
The joint cumulative probability distribution of high Rhine flow and high Meuse flow fits a

Gumbel Copula function:
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FQr,QmpQr,Qmq “ Cαpu, vq “ exp
 

´rp´lnuqαs ` p´lnvqαs
1
α u (B5)

where α is estimated as 1.7158; Fr is the marginal distribution of high Rhine flow; Fm is the marginal
distribution of the associated Meuse flow.

The joint probability distribution of storm surges and high Rhine flows

Pph˚Rq “
9
70 ¨

t t
Ip˚qpphsmaxqpphHWqppTsqppuqppQr, QmqdhsmaxdhHWdTsdudQrdQm

I “ 1 : h˚R ă“ hRphsmax, hHW , Ts, u, Qr, Qmq

I “ 0 : h˚R ą hRphsmax, hHW , Ts, u, Qr, Qmq

(B6)

here I is an indicator function and hR is the highest Rotterdam water level calculated from the specific
input variables using the 1-D model; 9/70 is the occurrence probability per year for the combination
event of storm surges and high Rhine flows; hsmax stands for the wind induced storm surge peak,
and its unit is m; Ts is the wind induced storm surge duration, and its unit is hours; hHW is the high
tide level and hLW is the low tide level, their unit is m MSL; u is the time shift between peaks of tide
and surge residual; Qr is Rhine discharge and Qm is Meuse discharge, their unit is m3/s; ppQr,Qmq

is the joint probability density distribution of Rhine discharge and Meuse discharge. More detailed
information is in Zhong et al. [7].
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