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Abstract: The diurnal variation of the suspended sediment concentration (SSC) in Hangzhou Bay,
China has been investigated using remotely-sensed SSC derived from the Geostationary Ocean Color
Imager (GOCI) in combination with a coupled hydrodynamic-ecological model for regional and shelf
seas (COHERENS). The SSC maps were inferred through a UV-AC atmospheric correction algorithm
and an empirical inversion algorithm from the GOCI Level-1B data. The sediment transport model
was initialized from maps of the GOCI-derived SSC and the model results were validated through a
comparison with remotely-sensed data. The comparison demonstrated that the model results agreed
well with the observations. The relationship between SSC distribution and hydrodynamic conditions
was analyzed to investigate the sediment transport dynamics. The model’s results indicate that the
action of tidal currents dominate the sediment deposition and re-suspension in the coastal waters of
the East China Sea. This is especially the case in Hangzhou Bay where the tidal currents are strongest.
The satellite-derived sediment data product can not only dramatically improve the specification of
the initial conditions for the sediment model, but can also provide valuable information for the model
validation, thereby improving the model’s overall performance.

Keywords: suspended sediment; remote sensing; numerical modeling; GOCI; COHERENS;
Hangzhou Bay

1. Introduction

Coastal waters, especially in estuarine regions, are often characterized by high suspended
sediment concentrations derived from both coastal runoff and local sediment re-suspension.
In addition, suspended sediments are closely related to construction activity in the marine environment
in coastal areas [1]. Because they are one of the major parameters that regulate the optical properties
of seawater (e.g., transparence and water color), which impacts on total primary production [2],
suspended sediments are also of primary importance to water quality management. Further, because
suspended sediment transport accounts for nearly half of the terrigenous organic carbon exported by
rivers, it is also a significant factor in the global carbon cycle [3] and biogeochemical cycles [4]. From
an management perspective, the transport of suspended sediment is also a prime consideration for the
maintenance of the navigation channel, offshore engineering of structures, and the evolution of coastal
topography [5]. Therefore, monitoring and observing the distribution and transport of suspended
sediments is of significant research and practical value.

In practice, field investigations can obtain an accurate SSC distribution over the entire water
column at relatively high temporal frequency. However, they are limited to relatively low spatial
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resolution, and there are some data inconsistencies caused by different sampling times between
observation stations [6]. Compared to field investigations, satellite remote sensing combined with
numerical modeling can acquire considerably more detailed information about the distribution and
transport of suspended sediments. For example, with the remote sensing of ocean color, satellite sensors
can provide a near instantaneous view of the large-scale field of suspended sediments with high spatial
resolution. However, satellites are limited in that they only acquire data from the ocean surface layer,
and can be restricted by excessive cloud cover and/or bad weather conditions [7]. Numerical modeling
has the advantage that one can obtain continuous estimates of the three dimensional SSC field, and
investigate the SSC responses in environments with different ocean dynamics. But the usefulness
of the numerical approach is strongly dependent on the knowledge of oceanic dynamic processes,
the correct determination of key parameters in formulations and the quality of initial fields, etc. [8,9].
Therefore, one can combine satellite remote sensing with numerical models to improve the utility of
the research for suspended sediment transport and outcomes in coastal waters.

The approach of combining satellite remote sensing with numerical modeling has been widely
discussed by many researchers. A number of satellite and airborne remote sensing instruments, such
as the Landsat Thematic Mapper (TM) [10,11], the Coastal Zone Color Scanner (CZCS) [6,12], the
Advanced Very High Resolution Radiometer (AVHRR) [13,14], the Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) [15,16], the Moderate Resolution Imaging Spectroradiometer (MODIS) [17,18],
Ocean Colour Monitor (OCM) onboard the Indian Remote Sensing Satellite (IRS-P4) [19] and the
Medium-resolution imaging spectrometer (MERIS) [20,21] have been widely used to infer suspended
sediment concentration in inland rivers and coastal waters. In most cases, these satellite-derived
SSC fields are subsequently integrated into a numerical model for modeling the suspended sediment
transport and outcomes. However, due to the limitation on the temporal resolution of the satellite
sensors mentioned above, there has been less research on the diurnal variation of SSC using the
combined approach.

In the present study, a coupled hydrodynamic-ecological numerical model COHERENS [22] is
configured to study the diurnal variation of the SSC in the East China Sea, with a particular focus on
the Hangzhou Bay. Firstly, we utilize a snapshot of the GOCI derived SSC to initialize the sediment
transport model, and then subsequent modeling results are validated against the temporally evolving
satellite SSC data. Finally, a particular phenomenon in the daily change of SSC within Hangzhou Bay
is captured by GOCI, and the sediment transport model is used to give an explanation.

2. Data and Methods

2.1. Study Area

The East China Sea (ECS) is located between the Chinese mainland to the west, Taiwan Strait to
the south, the Yellow Sea to the northwest and Japan Sea to the northeast. The ECS is a marginal sea
between the West Pacific Ocean and mainland China and covers an area of about 7.7 ˆ 105 km2. The
bathymetry of the study area is shown in Figure 1. The average depth of ECS is about 370 m, with
the deepest spot, just to the west side of Okinawa, of about 2700 m. The currents in the East China
Sea include the Kuroshio Current, Taiwan Warm Current, Tsushima Warm Current [23], Subei Coastal
current, Changjiang Diluted Water and the Yellow Sea Warm Current. Of these, the Kuroshio Current
and the Taiwan Warm Current are the main streams flowing into the ECS and the Yellow Sea Warm
Current is the primary stream flowing out. While these warm streams flow to the north all year,
the magnitude of their transport changes with the seasons. The coastal current is a stream of cold,
low salinity water flowing into the ECS. The velocity and direction of the coastal current changes
markedly with the seasons. The currents in Hangzhou Bay are tidally-dominated and possesses one of
the world’s strongest tides. The tidal amplitude typically varies from 3–4 m at the mouth to 4–6 m
at the head, but a maximum of 9 m at the head was recorded [24,25]. The average annual water
and sediment discharge from the Changjiang River into the ECS are approximately 925 ˆ 109 m3
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and 500 ˆ 106 tons, respectively [26]. The primary river discharging water and sediment into the
Hangzhou Bay is the Qiantang River, which has an average runoff of 42 ˆ 109 m3 and an average
sediment load of 7.9 ˆ 106 tons annually. These physical features and processes make the ECS one of
the more dynamic marginal seas in the world.
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2.2. Retrieval of SSC from GOCI

The Geostationary Ocean Color Imager (GOCI) is the world’s first ocean color observational
satellite placed in geostationary orbit [27]. The monitored region spans from 116.08˝E to 143.92˝E
and from 24.75˝N to 47.25˝N, and full coverage of this area is composed of 16 slot images. The GOCI
obtains spectral information in 8 wavelength bands, 6 in the visible range and 2 in the near-infrared [28].
Compared with other ocean color satellite imagers, the GOCI has a distinct advantage in time resolution.
Because it is geosynchronous, it can obtain satellite data at one hour intervals, which is well suited for
monitoring the suspended sediment distribution and transport, and has an especially good resolution
of diurnal variations [29,30].

While the UV band can be used to estimate the aerosol scattering reflectance from extremely
turbid waters, such as those in Hangzhou Bay, the water-leaving radiance in the UV band is small
compared with that in the VIS and NIR bands and can be neglected [31]. In the present study, because
GOCI has no UV band, a UV-AC algorithm is used on the GOCI Level-1B data, with the 412 nm
wavelength band used as the reference band for deriving the remote sensing reflectance (Rrs) [31].
Maps of SSC are generated from Rrs images using an empirical algorithm based on the observed
relationship between in-situ measurements of Rrs and SSC. The following algorithm was developed
by He et al. [32], and was derived from observations taken by the ‘908 Project’ [32]. It was shown to
apply to the SSC range of 8 mg/L to 5275 mg/L seen in Hangzhou Bay. For more detailed information
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about the UV-AC algorithm and SSC retrieval algorithm, a full description is presented in He et al. [32].
The resulting algorithm is expressed by the following:

SSC “ 10
1.0758`1.1230ˆ

Rrsp745q
Rrsp490q , (1)

where SSC is the suspended sediment concentration in mg/L and Rrs are the remotely sensed
reflectances at the wavelengths given in the parentheses.

Cloud free GOCI Level-1B data from 29 December 2013 to 1 January 2014 were selected from
the Korea Ocean Satellite Center (KOSC) to study the diurnal variation of the suspended sediment
concentration in the coastal waters of the East China Sea in general, and in the Hangzhou Bay in
particular. Because of the frequency of cloud coverage in this region, this was the longest continuous
cloud-free time period in the GOCI data set for the study area. The SSC maps were derived from the
GOCI Level-1B data using the same algorithms mentioned above. Seven GOCI images are used to
map the SSC distribution in the study area: 3 simultaneous images were acquired at 4:28 p.m. local
time on 29, 30 and 31 December 2013, and 4 images were acquired between 02:28 p.m. and 05:28 p.m.
local time on 1 January 2014. These GOCI images were taken during the dry season and their timing
coincides with the spring tide in Hangzhou Bay.

2.3. Sediment Transport Modeling

COHERENS is a three-dimensional, multi-purpose, hydrodynamic numerical model for coastal
and shelf seas that is coupled with biological, sediment and contaminant models, and resolves
mesoscale and seasonal scale processes [22]. COHERENS was developed by a multinational European
group funded by the European Union within the framework of the EU-MAST projects PROFILE,
NOMADS, and COHERENS. The model has been used by many researchers in studies including
Europe’s North Sea, Sacca di Goro in the Adriatic Sea, the Bohai Sea and the Dover strait [33–36].

2.3.1. Hydrodynamic Module Configuration

The model domain spans from 29.8˝N to 32.3˝N and from 120.5˝E to 123.2˝E and is shown
in Figure 1. The bathymetry data is a slightly smoothed version of that obtained from the NOAA
National Geophysical Data Center (ETOPO1) database. The model’s horizontal gird resolution is
500 m, and the water column is divided into 10 vertical sigma levels. The model domain possesses
three open sea boundaries located at 32.3˝N in the north, 29.8˝N in the south and 123.2˝E in the east
and two river boundaries, including Changjiang River and Qiantang River, that are situated within the
coastal boundary in the west.

The meteorological forcing data are extracted from the National Center for Environmental
Prediction (NCEP) reanalysis data, which are interpolated to match the model’s horizontal grid
resolution. These data include the two horizontal wind components at 10 m, air temperature, air
pressure, relative humidity, precipitation rate and cloud cover. The time step of meteorological data is
set to 6 h.The tides are forced along the three open sea boundaries using eight major tidal constituents,
including 4 diurnal tidal constituents (K1, O1, P1 and Q1) and 4 semidiurnal tidal constituents (M2, S2,
N2 and K2), which are derived from the regional ocean tidal model NAO.99Jb. In order to prevent
spurious vertical velocities at the open sea boundaries, a zero normal gradient condition is applied at
the boundaries to compute the three-dimensional currents.

The boundary conditions for the Changjiang River and Qiantang River are determined through a
two-layered stratification construct. The zero normal gradient conditions are applied in the bottom
layer and the inputs of fresh water are assigned to the upper layer. The input of the Changjiang River
is specified by using monthly averaged runoff at the Datong gauging station. A no-slip condition is
applied at the coastal boundaries and there are no advective or diffusive fluxes.
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A spherical coordinate system is selected for the model simulation, with the governing equations
discretized on the Arakawa-C grid in the horizontal and a σ coordinate in the vertical direction.
The more general equation of the state of seawater released by the Joint Panel on Oceanographic Tables
and Standards is selected to compute density and buoyancy. The total variation diminishing (TVD)
scheme is selected to compute the advection of momentum and scalars with the weight factor given
by the specification of the superbee limiting function. All vertical eddy viscosity coefficients in the
momentum and scalar equations are evaluated by the ‘k-l’-level 2.5-order turbulence closure scheme
developed by Mellor and Yamada(1982) [37]. The formulation of Smagorinsky (1963) [38] is used to
parameterize the horizontal diffusion coefficients. The bottom stress is evaluated using the quadratic
friction law.

We compute the surface stress as a function of the wind components at a reference height of
10 m to acquire the surface boundary condition for the horizontal current. A quadratic friction law
is applied to the slip boundary conditions to calculate the horizontal currents at the bottom using a
roughness length of 0.001 m.

The surface flux of temperature is given by

ρ0cp

J
λT

BT
Bx3

“ Qs, (2)

where cp is the specific heat of seawater at constant pressure, Qs is the total downward directed heat
flux at the surface. The total flux Qs is composed of the radiative flux Qrad plus a term for all non-solar
contributions ´Qnsol .

The non-solar heat flux Qnsol is composed of three parts:

Qnsol “ Qla `Qse `Qlw, (3)

where Qlw is the net long-wave radiation emitted at the sea surface, Qse is the sensible heat flux due
to the turbulent transport of temperature across the air-sea interface and Qla is the latent heat flux
released by evaporation.

The surface salinity flux can be calculated by the formula from Steinhorn (1991) [39]:

ρ0
λT
J
BS
Bx3

“
Ss

`

Evap ´ Rpr
˘

1´ 0.001Ss
, (4)

where Ss is the surface salinity in PSU, Rpr is the precipitation rates in kg¨m´2¨ s´1 and Evap “ Qla{Lv

is the evaporation rate in kg¨m´2¨ s´1.
The open sea boundaries are constrained monthly by vertical profiles of temperature and salinity

provided by World Ocean Atlas (WOA) 2013. Zero flux conditions are applied at the bottom boundary
for both temperature and salinity. The model initialization time is in winter, and the strong tide-induced
mixing makes the salinity and temperature uniform over the whole water column in the entire
simulated domain [40]. Therefore the salinity and temperature field are uniformly set at 30 PSU and
5 ˝C respectively, which are reasonable values for the wintertime coastal waters of ECS.

The model is run with an external model time step of 6s and an internal model time step of 60 s,
which satisfies the Courant-Friedrichs-Lewy (CFL) criterion. The model starts in a state of rest and
the spin-up run takes one year (1 January 2013 to 28 December 2013) ensuring that the model reaches
a quasi-steady state. At the end of the hydrodynamic model spin-up time, the sediment model is
coupled with the hydrodynamic model to simulate the suspended sediment transport in coastal waters
of the ECS in general and in Hangzhou Bay in particular.
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2.3.2. Sediment Module Configuration

The sediment transport model is configured to run fully coupled to the hydrodynamic model.
The governing equation for the suspended sediment transport model is:

BC
Bt
`
B

Bx
pCuq `

B

By
pCvq `

B

Bz
pCpw´wsqq “

B

Bx

ˆ

λH
BC
Bx

˙

`
B

By

ˆ

λH
BC
By

˙

`
B

Bz

ˆ

λH
BC
Bz

˙

, (5)

where pu, v, wq is the 3 components of the current, ws is the sinking rate of suspended sediment, t is
the time, C is the suspended sediment concentration and λT and λH are the vertical and horizontal
diffusion coefficients for suspended sediments, respectively.

Suspended sediments are advected and diffused throughout the water column by the currents
from the hydrodynamic model. In addition, suspended sediments may also be transported vertically
by sinking and/or re-suspension from the seabed. The SSC is not only related to the bed shear stress
driven by the near bed currents but also to the local water depth and the sediment type [41]. The main
bottom sediment types and their distribution patterns are shown in Figure 2 [42]. The ocean bottom
of the ECS is dominated by a submarine delta occupying most of the inner shelf. The inner shelf is
covered with silty clay to the south of the Changjiang River [26,43] and silty, clay-like fine sands to
the north. The silty clay results from the accumulation of Changjiang River sediments, while the silty,
clay-like sands are mostly derived from the old Yellow River. Sediments in the Hangzhou Bay are
predominantly composed of fine and medium silt, with an averaged grain size less than 0.038 mm and
are vertically well-mixed [44–46].
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The sinking rate of suspended sediments varies with particle size, shape and relative density.
In the study area, the suspended sediments consist mainly of fine particulate material and very fine
suspended sediments released by the Changjiang River and Qiantang River [25,42–46]. Beginning with
the reference settling velocity of 0.0002 m/s given by Ramakrishnan and Rajawat [8], a uniform
particle sinking rate 0.0006 m/s for suspended sediments is arrived at after model calibration.
This settling velocity is passed to the hydrodynamic model and particle sinking is implemented in the
advection-diffusion equation through an additional advection term in the vertical transport equation.

Resuspension transfers previously deposited sediments from the seabed into the water column.
These resuspended sediments are reintegrated with the existing sediment population in the water
column and are then subject to advection, diffusion and sinking. The flux of suspended sediments
being eroded from the sea bed and re-suspended in the water column is given by the erosion rate E(C)
(amount mg¨m´2¨ s´1):

E pCq “ αs

ˇ

ˇ

ˇ

ˇ

ˇ

τ100

τb,re f

ˇ

ˇ

ˇ

ˇ

ˇ

ns

, (6)

where C is the suspended sediment concentration, τ100 is the shear stress at a reference height of 1 m,
αs and ns are adjustable fitting parameters with values of 0.0025 g¨m´2¨ s´1 and 3.0, respectively and
were taken from Jones et al., (1996) [47] and τb,re f is the bottom critical shear stress whose value is set
to 0.1 N¨m´2. The shear stress τ100 is obtained by:

τ100 “ ρ0C100

´

u2
100 ` v2

100

¯

, (7)

where
`

u2
100 ` v2

100
˘

are the linearly interpolated values of the horizontal components of current at
1 m above the seabed. The bottom friction coefficient at the reference height C100, which includes the
effects of wave-current interactions, is determined by:

C100 “

ˆ

k
ln p30{kbcq

˙2
, (8)

where k is von Karman’s constant (=0.4), kbc is the apparent bottom roughness, which is a local variable
used to evaluate the bottom drag coefficient.

Because sediment cannot escape through the free surface, there is a no flux surface boundary
condition in the sediment transport model. In addition, zero sediment gradient conditions are imposed
at all open sea boundaries and a scalar condition is applied to the river boundaries. The input of the
Changjiang River is specified by using the monthly averaged discharge at the Datong gauging station,
which were extracted from the Changjiang Sediment Bulletins from 2013 and 2014. The discharge data
of the Qiantang River were obtained from the River Regime Bulletion of the Tai Lake Basin from 2013
and 2014. The total sediment transport data for the Changjiang and Qiantang Rivers were computed
from the GOCI derived SSC at one hour intervals multiplied by the river discharge.

3. Results and Discussion

3.1. Sediment Model Initialization and Validation

The quality of any sediment transport simulation is related to many factors, of which the accurate
specification of the initial distribution of SSC is extremely important [48]. Due to a lack of sufficient
observational data, previous researchers have had to either assume that the initial field of SSC is
uniformly distributed over the entire model domain, or use sparse measurements of SSC to specify
the distribution throughout the model domain, by employing various interpolation methods. In the
present study, we used a GOCI derived SSC field as the initial condition for the sediment model in
the simulation of the diurnal variation in SSC in Hangzhou Bay. Specifying the initial field of SSC
by using GOCI data provides a general distribution over the entire domain that is closer to the real
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distribution than any of the methods above [49]. Figure 3 shows the surface SSC distribution retrieved
from cloud free GOCI data acquired at 4:28 p.m. on 29, 30 and 31 December 2013 that were used
to initialize and validate the sediment transport model. The specification of an appropriate vertical
distributon for the initial SSC in the numerical model, is considered a difficult problem. Because the
model simulation is initialized in winter, at a time of strong vertical tidal mixing, adopting a uniform
sediment concentration throughout the water column is a reasonable assumption. Therefore, the initial
SSC field in the model is specified by the GOCI-derived surface SSC from 4:28 p.m., 29 December 2013,
interpolated to the model’s horizontal grid and projected downward over the water column.Water 2016, 8, 108 8 of 18 
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Figure 3. Surface SSC (mg/L) in the study area derived from GOCI satellite data at 4:28 p.m.,
29 December 2013 for model initialization and at 4:28 p.m., 30 and 31 December 2013 for
model validation.

After initializing the sediment concentration for the numerical simulation, the spun-up model is
run for 2 days to calculate the SSC distribution and transports at 4:28 p.m. on 30 and 31 December of
2013, when the other two cloud free GOCI derived SSC images (in Figure 3) were taken. The temporal
and spatial variation of the SSC is not only an important manifestation of the sediment transport, but
also a consequence of the hydrodynamic and meteorological conditions and the regional characteristics
of the study area. Aiming to validate the performance of the sediment transport model, we consider
the GOCI derived SSC to be the truth, and then computed the difference between the modeled and the
GOCI derived SSC. Maps of modeled SSC at 4:28 p.m., 30 and 31 December 2013 are extracted from
the sediment transport model and are shown in Figure 4. Compared with the corresponding GOCI
derived SSC images in Figure 3, the simulation results show that the concentration and distribution
of suspended sediments in Hangzhou Bay appear to be consistent with that of the satellite data.
We subtract the values of the GOCI derived SSC from the corresponding values of modeled SSC to
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quantitatively evaluate the model performance and the results are presented in Figure 5. The blue areas
in this figure are where the simulation results nearly match the observed GOCI field. The maximum
difference between modeled SSC and satellite data is less than 1000 mg/L. These results show that the
absolute relative errors between modeled SSC and GOCI derived SSC do not exceed 20%. Figure 5
shows that the SSC are overestimated in Hangzhou Bay by the sediment transport model. A possible
reason for this might be that flocculation effects, not included in the model, play an important role
in affecting the settling velocity of suspended sediment, and thus affects the suspended sediment
distribution in Hangzhou Bay. Given this limitation, the modeled SSC agrees well with the satellite
derived SSC, which indicates that the sediment transport model is capable of monitoring the diurnal
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3.2. The Diurnal Variation of Suspended Sediment

After validating the sediment model’s performance, the model was run to simulate the evolution
of the SSC distribution and transport. Maps of SSC obtained from the sediment transport model at
2:28 p.m., 3:28 p.m., 4:28 p.m. and 5:28 p.m. on 1 January 2014 are compared with the corresponding



Water 2016, 8, 108 10 of 18

GOCI derived SSC images and shown in Figure 6. Through the comparison between the simulation
results and satellite derived images, it is clear that the surface SSC values in the study area are
universally high in coastal zone, even reaching around 5000 mg/L in the middle of Hangzhou Bay,
and are lower offshore to the east of 122.5˝E. This is consistent with the overall features of suspended
sediment distribution in the ECS. The comparison between the observed and modeled SSC fields
indicates that the sediment transport model can reproduce the basic distribution of suspended sediment
in the coastal waters of the ECS.Water 2016, 8, 108 10 of 18 
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In order to further validate the reliability of sediment transport model, a statistical analysis is
performed and summarized in the scatter plots shown in Figure 7. The root mean square errors (RMSE)
are 1682, 1482, 1473 and 1831 mg/L for 2:28 p.m., 3:28 p.m., 4:28 p.m. and 5:28 p.m., respectively.
As can be seen by the clustering about the 1:1 line in these results, the modeled SSC results are in basic
agreement with the satellite derived SSC. A possible reason for the relatively large RMSE differences
(1682 and 1831 mg/L) might be that shallow water and flocculation effects have impacts on the
sediment distribution in the extremely turbid Hangzhou Bay. The statistical results further indicate
that the sediment transport model can effectively reproduce the spatial and temporal variation of the
SSC in the coastal waters of the ECS.
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Figure 7. Scatter plots showing the comparison of individual simulated surface SSC with
GOCI-derived SSC.

In Figure 6, a gradual decrease in the SSC values in time are observed from both the GOCI-derived
and simulation results, especially in Hangzhou Bay. Temporal and spatial variations of SSC are
a consequence of the hydrodynamic conditions, model forcing, sediment inputs and the regional
characteristics of the study area. The monthly averaged runoff of Qiantang River (856 m3/s) and
daily averaged wind velocity (6 m/s from the northeast) are imposed on the model on 1 January 2014.
Therefore, it is assumed that the influence of river runoff and wind field on the SSC distribution and
transport will be the same as on 1 January 2014. The temporal and spatial variations of the SSC in
Hangzhou Bay are primarily associated with the variations in tidal currents. In Figure 8, the time
series of tidal elevation at the Tanhu tide gauge station (30˝37’N, 121˝37’E) located in the northern side
of Hangzhou Bay, shows that the tidal level drops from about 3.5 m to about 1.1 m from 2:28 p.m. to
5:28 p.m. on 1 January 2014. The surface flow field from the numerical simulation corresponding to
the times that the GOCI derived SSC images are taken, shown in Figure 9. It’s clear that the current
direction in Hangzhou Bay is from west to the east, typical of an ebbing tide.
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Figure 8. Comparison of modeled and predicted tidal elevation at Tanhu gauge station (30˝371N,
121˝371E) from 29 December 2013 through 1 January 2014.
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Figure 9 shows that the current velocity gradually decreases with simulation time as the tide
approaches slack water, which is especially pronounced on the southern side of Hangzhou Bay.
A current velocity measuring station at (30˝7.4’N, 121˝49.5’E) located on the southern side of the
Hangzhou Bay also shows that the flow reduced from about 1.6 m/s to about 0.8 m/s from 2:28 p.m.
to 5:28 p.m. on 1 January 2014. Comparing the variation of flow field with the variation of the SSC in
Figure 6, it’s apparent that suspended sediment concentration is higher when current velocity is higher.
As the current velocity reduces, the suspended sediment concentrations also reduce. High velocity
tidal currents trigger re-suspension of previously deposited sediments, resulting in high values of
SSC at the times of high tidal velocity in Hangzhou Bay. Likewise, the reduction of current velocity
towards the end of the ebb tide allows for the deposition of suspended sediments in Hangzhou Bay.
The simulation results reflect that the SSC variations are mainly induced by tidal current, and these
results agree well with GOCI derived images and observed data.

Patches of lower SSC on the southern side of Hangzhou Bay and higher SSC in the channels
between the Zhoushan Islands are also observed in both the GOCI images and simulation results
on 1 January 2014. It appears from the simulation results presented in Figure 9, that this may be
due to the blocking effect of Zhoushan Islands that restricts the current velocity on the southern side
of Hangzhou Bay. However, the current velocity is still higher between and along the Zhoushan
Islands. Due to the large current velocity at 2:28 p.m., the bottom sediments are resuspended under
the action of bottom shear stress. Furthermore, because of the strong tidal mixing, the resuspended
sediment is mixed rapidly from the bottom to the surface, so that the distribution of suspended
sediments is relatively uniform in the vertical direction. When the tidal current velocity decreases as
the tide slackens, the bottom shear stress is insufficient to resuspend sediments. It is very hard for the
re-suspended sediments to rise to the sea surface in such lower current velocity conditions during the
ebb tide. The surface SSC decreases gradually due to sediment deposition as the currents weaken.
As can be seen from Figure 9, the current velocity on the southern side of Hangzhou Bay decrease
faster than those on the northern side, and the weaker currents on the southern side lead to weaker
turbulence. This in turn leads to vertical water motions that would normally oppose sediment settling,
making the surface SSC lower on the southern side than those on the northern side. However, the
higher velocity between and along the Zhoushan Islands, triggers the resuspension of sediments from
the bottom leading to the higher SSC that occurs in this region.
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3.3. Improvements of Model/Satellite Comparisons

Although the overall match is good, there are still some differences between model results and
satellite images. The derivation of SSC from satellite observations still has some difficulties so that
the measurement of sediment concentration isn’t perfect. The remote sensing retrieval of suspended
sediment concentration is based on the relationship between remote sensing reflectance and suspended
sediment concentration. This relationship still needs to be improved to increase the accuracy of
atmospheric correction and empirical inversion algorithms. The average relative bias in the empirical
inversion algorithm are 13.3% and 14.2% and the absolute relative errors are 25.2% and 56.0% for SSC
ď 300 mg/L and SSC > 300 mg/L, respectively [32]. The results showed a relatively small prediction
error in the GOCI derived SSC when its concentration was smaller than 300 mg/L, but had a relatively
large error when its concentration exceeded 300 mg/L. A reasonable explanation for this relatively
large difference is that the sediment types in Hangzhou Bay are naturally complicated. Due to lack of
in-situ data from this region, it is hard to determine the sediment’s composition, size and shape [32].
In addition, measurement errors, including time differences between reflectance measurement and SSC
sampling, water volume measurement, weighting and sedimentation in the sampling bottles might
be another reason for some of the discrepancies [32]. Suspended sediment modeling is based on the
variations of dynamic marine environments in both the hydrodynamic and sediment transport models
as described by the governing equations. However, both the hydrodynamic and sediment transport
models are simplified representations of the real coastal water environments, but this simplification
makes it easier to analyze and better understand the suspended sediment transport.

Since the operational running of a real-time monitoring and accurate forecast system are the
ultimate goal for the suspended sediment research, further work is needed to improve the accuracy of
the coupled numerical model. The simulation accuracy is limited by many factors, such as the degree
of model sophistication itself, the quality of model inputs, the selection of appropriate parameters for a
particular sea area, etc. In the present study, we have tried to optimize the initial conditions for the SSC
and validate the model results by comparing the coincident GOCI derived SSC, and have achieved
reasonably good results. This is likely because the comparison was established in tidally dominated
conditions. A follow-up study will test the model performance under wind dominated conditions and
during storm events.

The final issue to consider is that fluid density is an important parameter for calculating settling
velocities and resuspension rates in sediment transport. In general, the state equation is used to
calculate the fluid density as function of the water temperature and salinity. However, when sediment
is present, an additional effect of the particle density of the sediment fraction on the mixed net fluid
density, should be considered. In this study, the surface SSC in Hangzhou Bay was extremely high
(up to 5000 mg/L). It is likey that due to the higher density of sediment relative to water and that near
the bed, the SSC are higher. More importantly, the settling velocity of fine grained cohesive sediments
is significantly affected by flocculation effects [50], which are not included in the present sediment
model. Furthermore, the vertical sediment structure likely leads to a damping of turbulence, which
increases the critical bottom shear stress and affects the settling velocity of the sediment, which in turn
affects the suspended sediment distribution and net sediment transport. However, this influence has
not been taken into account in the existing sediment transport model, and it may be one of the main
causes for the differences between the model results and satellite images.

4. Conclusions

The present study has demonstrated how two technologies—satellite remote sensing and
numerical simulation—can come together to provide an effective tool for investigating the distribution
and dynamic changes of ocean water quality parameters, such as the diurnal variation of suspended
sediment concentration. Maps of suspended sediment concentration derived from the GOCI imager
are used to define the initial field and to validate simulated results from a sediment transport model,
which is configured to study the diurnal variation of SSC in the coastal waters of the ECS. The
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statistical analysis comparing the simulated and GOCI derived SSC results shows that, as configured,
the sediment transport model provides a reasonably powerful tool for sediment transport modeling.
In this study, obvious deposition and re-suspension processes controlled by the strength of the varying
tidal currents in Hangzhou Bay are observed both in the modeled and remote sensing results.

The accuracy of initial field is one of the major constraining factors in the development of
numerical simulation. Integrating satellite derived products into a numerical model to address this
problem was found to be effective. However, the accurate determination of key model processes,
especially the key parameters in the physical formulations, is another constraining factor to model
performance, and it is necessary to do more in-depth research into these formulations to improve the
performance of the sediment transport model coupled with satellite data in the future.
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