Next Article in Journal
The Influence of Hydrologic Parameters on the Hydraulic Efficiency of an Extensive Green Roof in Mediterranean Area
Next Article in Special Issue
Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 2: Matching Family-Level Indices to Geomorphological Response Units (GRUs)
Previous Article in Journal
A Deterministic Model for Predicting Hourly Dissolved Oxygen Change: Development and Application to a Shallow Eutrophic Lake
Previous Article in Special Issue
Modeling Typhoon‐Induced Alterations on River Sediment Transport and Turbidity Based on Dynamic Landslide Inventories: Gaoping River Basin, Taiwan
Article Menu

Export Article

Open AccessArticle
Water 2016, 8(2), 42; doi:10.3390/w8020042

Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 1: Genus-Level Relationships with Geomorphic Typologies

1
Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, SK S7N 3H5, Canada
2
Water Security Agency, Innovation Place, 101-108 Research Drive, Saskatoon, SK S7K 3R3, Canada
*
Author to whom correspondence should be addressed.
Academic Editor: Miklas Scholz
Received: 31 October 2015 / Revised: 20 January 2016 / Accepted: 27 January 2016 / Published: 29 January 2016
(This article belongs to the Special Issue Geospatial Modeling of River Systems)
View Full-Text   |   Download PDF [4306 KB, uploaded 29 January 2016]   |  

Abstract

Modern river ecosystems undergo constant stress from disturbances such as bank stabilization, channelization, dams, and municipal, agricultural, and industrial water use. As these anthropogenic water requirements persist, more efficient methods of characterizing river reaches are essential. Benthic macroinvertebrates are helpful when evaluating fluvial health, because they are often the first group to react to contaminants that can then be transferred through them to other trophic levels. Hence, the purpose of this research is to use a geospatial model to differentiate instream macroinvertebrate habitats, and determine if the model is a viable method for stream evaluation. Through the use of ArcGIS and digital elevation models, the fluvial geomorphology of the Qu’Appelle River in Saskatchewan (SK) was assessed. Four geomorphological characteristics of the river were isolated (sinuosity, slope, fractal dimension, and stream width) and clustered through Principle Component Analysis (PCA), yielding sets of river reaches with similar geomorphological characteristics, called typologies. These typologies were mapped to form a geospatial model of the river. Macroinvertebrate data were aligned to the locations of the typologies, revealing several relationships with the fluvial geomorphology. A Kruskal-Wallis analysis and post hoc pairwise multiple comparisons were completed with the macroinvertebrate data to pinpoint significant genera, as related to the geospatial model. View Full-Text
Keywords: macroinvertebrates; fluvial geomorphology; fractal dimension; geomorphic typologies; sinuosity; Saskatchewan macroinvertebrates; fluvial geomorphology; fractal dimension; geomorphic typologies; sinuosity; Saskatchewan
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Meissner, A.G.N.; Carr, M.K.; Phillips, I.D.; Lindenschmidt, K.-E. Using a Geospatial Model to Relate Fluvial Geomorphology to Macroinvertebrate Habitat in a Prairie River—Part 1: Genus-Level Relationships with Geomorphic Typologies. Water 2016, 8, 42.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top