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Abstract: Data mining technology is applied to extract the water supply operation rules in this
study. Five characteristic attributes—reservoir storage water, operation period number, water
demand, runoff, and hydrological year—are chosen as the dataset, and these characteristic attributes
are applied to build a mapping relation with the optimal operation mode calculated by dynamic
programming (DP). A Levenberg-Marquardt (LM) neural network and a classification and regression
tree (CART) are chosen as data mining algorithms to build the LM neural network classifier and
CART decision tree classifier, respectively. In order to verify the classification effect of the LM and
CART, the two classifiers are applied to the operation mode recognition for the Heiquan reservoir,
which is located in the Qinghai Province of China. The accuracies of the two classifiers are 73.6%
and 86.9% for the training sample, and their accuracies are 65.8% and 83.3%, respectively, for the
test sample, which indicates that the classification result of the CART classifier is better than that of
the LM neural network classifier. Thus, the CART classifier is chosen to guide the long-series water
supply operation. Compared to the operation result with the other operation scheme, the result
shows that the water deficit index of the CART is mostly closest to the DP scheme, which indicates
that the CART classifier can guide reservoir water supply operation effectively.

Keywords: data mining; LM neural network; CART decision tree; water supply operation

1. Introduction

In recent years, the increasing conflicts of water demand and supply have promoted a greater
need for reasonable water resource development and management [1–4]. Currently, the operation
target for a reservoir has shifted from single objective to multi-objective, including agricultural
irrigation, industry, urban supply, and even river ecology. The assurance rate and priority are different
between each water supply target [5]. Under uncertain stream flow and multi-objective demands,
water allocation processes have become more complex. Consequently, it is necessary to conduct the
decision analysis of multi-objective water supply for reservoirs and build a convenient water supply
decision-making model that is practical for administrative staff to use.

In order to reasonably distribute water resources, many water supply operation rules are put
forward, including the space rule [6], the New York rule [7], the pack rule [8], the hedging rule [9],
and so on. Water supply operation rules are generally expressed by different forms of water supply
operation charts (OC) or operation functions (OF). A reservoir operation chart is a control graph
to guide reservoir operations, which uses time (month, 10 days) as the X-axis and the reservoir
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water level or storage water as the Y-axis. The graph separates the reservoir storage capacity into
different water supply areas according to the indicating lines that control the reservoir storage and
supply, which is a main tool for guiding reservoir operations. Research about water supply operation
charts mainly starts around determining the method of the operation chart, the efficiency of the
algorithm, and the equilibrium relationship between the reservoir water supply and other beneficial
objectives. Chen et al. [10,11] applied a genetic algorithm in the making of an optimal operation chart
of a single-objective reservoir. Chang et al. [12] compared and analyzed the influence of real number
encoding and binary encoding on the optimal application of a multi-objective Genetic Algorithm (GA)
in a reservoir operation chart. They proposed that real number encoding had higher computational
efficiency and precision. Chen et al. [13] built a macroevolution multi-objective, and studied the
operation chart of a multipurpose reservoir in Taiwan. Application research of other optimization
algorithms includes that of Tu et al. [14], who studied the influence of the current storage water level on
operation rules of multi-objective reservoirs. Ai et al. [15] used a POA (progress optimality algorithm)
to optimize the number and location of scheduling lines and water supply amounts in different
partitions, and then determined reasonable and effective reservoir operation rules. Guo et al. [16]
combined parameter rules with operation rules, built simulation models by using particle swarm
optimization, applied it in reservoir group optimal operations under dry conditions, and then obtained
a group of scheduling lines.

The optimal operation function is usually determined by using an implicit stochastic method [17].
According to historical long-series data, the optimum operation process sample can be obtained by
using a deterministic optimization method, and then the optimum decision rules can be obtained
based on the statistical analysis for this sample, namely the operation function. This operation
function, obtained by fitting optimal samples, needs to be verified and adjusted through the simulation
operation, namely the “optimization-simulation-re-optimization” framework [18]. The simulation
is not only based on the measured hydrological series, but also based on runoff series produced by
hydrological stochastic simulation technology, in order to further test and evaluate the operation
function efficiency [19]. The operation function can guide reservoir operation by building the function
relationship between the reservoir water supply during the facing period (decision variable) and the
current storage water and reservoir inflow in the facing period (state variable). The operation function
research is mainly based on regression analysis, artificial intelligence algorithms, and a combination
of other operation rules. Wang et al. [20] used an artificial neural network to solve the reservoir
water supply operation function and found that its nonlinear mapping ability could better reflect the
complex relationship between independent variables and dependent variables in reservoir operation.
Karamouz et al. [21], aimed at the complexity and nonlinearity of the operation function, adopted
support vector machine technology to build the reservoir optimal operation function, and proved the
effectiveness of this method. The fuzzy system stored knowledge in the way of rules, adopted a group
of fuzzy rules to describe the object’s characteristics, and solved uncertain problems through fuzzy
logical deductions. Mehta and Jain [22] used fuzzy technology to derive abstract reservoir operation
rules and compared the effectiveness of three different kinds of fuzzy rules.

The operation decision of the operation chart is made based on the reservoir storage in the
facing period and the operation period number, while the runoff is added as the decision-making
basis in the operation function. The two operation rules cannot contain all of the factors that can
affect the decision-making of the reservoir water supply, and more influencing factors need to be
considered. Therefore, this study proposes a decision-making method for the multi-objective water
supply reservoir operation by using data mining technology. Firstly, the optimal operation mode
combination is determined by a dynamic programming (DP) model; then, the operation rules are
extracted from the mapping relationship between the characteristic attributes and the combination of
the optimal scheduling model, calculated by the Levenberg-Marquardt (LM) neural network and the
classification and regression tree (CART); finally, the long-term continuous water supply is carried out
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with the operation rules, and the results are compared with those of the operation chart scheme and
operation function scheme.

2. Methodology

The main process of knowledge discovery in databases (KDD) includes the data choice,
establishment of the mapping relations, the data mining algorithm choice and the data mining of the
extraction mode.

2.1. Data Choice of Operation Mode Mining

Data choice usually influences the operation mode mining effects. The influence factors of the
operation mode decision contain three aspects: the condition of the reservoir, the task of the reservoir
and the elements of the inflow. These three aspects reflect the relationship between supply and demand
in the reservoir operation [23]. The characteristic attributes are chosen from these aspects, as shown
below in Table 1.

Table 1. The classification of characteristic attributes.

Condition of the Reservoir Task of the Reservoir Elements of Inflow

Reservoir storage (RS)
Water demand (WD) Runoff (RO)

Operation period number (OPN) Hydrological year type (HYT)

(1) The condition of the reservoir

Reservoir storage (RS) is the most direct reaction of the conditions of the reservoir; it is the most
important factor that impacts operation decisions. The bigger the storage, the greater the probability
of normal water supply is; otherwise, the smaller the storage, the greater the probability of limiting
water supply is.

(2) The task of the reservoir

The distribution of Water demand (WD) is uneven over a year, especially regarding the agricultural
irrigation water. Limiting the water supply mostly occurred during periods in which the WD was
high, while the potential of limiting the water supply is limited when the WD is low.

Operation period number (OPN) contains information about the degree of conflict between the
runoff and water demand conditions. The operation horizon is one year of 12 periods, and each
operation period is a calendar month in this study (N = 1, 2, . . . , 12). According to historical statistical
data, runoff shows evident high- and low-flow changes during different periods within the year.
Additionally, the water demand is obviously related to the period number; for example, irrigation
water has strong seasonal characteristics.

(3) The elements of the inflow

Runoff (RO) is the key factor in the decision-making of the operation mode. The reservoir-available
water includes two parts, one is the RS, the other is the period RO, and RO is the main source from
which the reservoir supplies water.

Hydrological year type (HYT) can provide the information about the impact of the operation
in the current period on the operation in the future period. Runoff has large differences in different
hydrological years. Even if the other attributes are similar, operations in different hydrological years
are obviously different from each other. For example, in low-flow years, even the reservoir storage
water is high, so limiting the water supply ought to be established in advance. Conversely, it is not
necessary to limit the water supply in high-flow years.
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2.2. Establishment of the Mapping Relations

The establishment of the mapping relations between the characteristic attributes and the optimal
operation modes is the core of data mining techniques. Reservoir operation is a multi-stage decision
optimization problem, so the optimal operation modes can be solved by the dynamic programming
(DP) model [23].

2.2.1. The Solution of the Optimal Operation Modes

The DP model mainly includes the following parts:

(1) Calculation variable

Stage variable: the calculation periods are used as the stages of the DP mode, so the time variable
t is chosen as the stage variable.

State variable: the water storage capacity St at the beginning of the period t is chosen as the state
variable, which can reflect the evolution of the operation process.

Decision variable: the decision variable of the DP model is Rt, namely the reservoir water supply
during different periods. The pattern classification and rules of the water supply are shown in Table 2.

Table 2. The pattern classification and rules of the water supply.

Operation Mode Limit Target Water Supply

1 None Rt = WD1,t + WD2,t + . . . + WDN,t
2 D1,t Rt = (1− a1)WD1,t + WD2,t + . . . + WDN,t
3 D1,t,D2,t Rt = (1− a1)WD1,t + (1− a2)WD2,t + . . . + WDN,t

. . . . . . . . .
N + 1 D1,t, D2,t, . . . , DN,t Rt = (1− a1)WD1,t + (1− a2)WD2,t + . . . + (1− aN)WDN,t

a1, a2, . . . , aN are hedging factors for different water demands, which are decided by respective
demand elasticity ranges. N is the number of water supply targets. Currently, most reservoirs have
multiple water supply targets, including water supplies for irrigation, industry, domestic usage, and
the ecological environment. The priority and assurance rate of water supply targets are different.
For example, industrial water has a high utilization rate, and it is sensitive to water deficit, so the
demand elasticity range of the industrial water supply is small; however, irrigation water has low
efficiency and a large elastic range.

(2) State transition equation:
RSt+1 = RSt + ROt − Rt − Lt (1)

where RSt, RSt+1 are the reservoir storage at the beginning and end of period t, respectively; ROt is the
runoff flow; Lt is the reservoir leakage loss of evaporation.

(3) Main constraint
RSmin ≤ RSt ≤ RSmax (2)

where RSmin, RSmax are the reservoir dead storage and upper limit storage, respectively.

(4) Operation objective

The operation objective is used to minimize the water deficit loss during the reservoir operation
period. Actually, the convex function relation is found between the water deficit loss and the water
shortage amount, except in the elasticity range of demand. Thus, the objective is to minimize the total
water shortage during the operation period. The objective function is expressed as [24]:

minDI =
T

∑
t=1

(
Rt −

N

∑
i=1

WDi,t

)2

(3)



Water 2016, 8, 599 5 of 12

(5) Recursion equation: the DP mode is calculated by the inverse time sequence recursive method, and
the recursion equation is as follows:{

DIt = 0 t = 1
DIt = min{Ft(RSt, Rt) + DIt−1} t > 1

(4)

where Ft(RSt, Rt) is the calculated deficit index of the decision variable Rt under the reservoir storage
condition RSt in the period t. DIt+1 is the cumulative value of the deficit index in period 1 to t + 1.

2.2.2. Mapping Relations

Through the combination of the characteristic attributes and the optimal operation model which
is calculated by the deterministic optimal model (DP), the dataset for mining the operation pattern of
the water supply is presented. Table 3 shows parts of the dataset.

Table 3. The parts of the dataset for mining the operation pattern of the water supply.

No.

Characteristic Attributes
Optimal Operation

ModelCondition of the Reservoir Task of the Reservoir Elements of Inflow

RS WD OPN RO HYT

117 9263.74 9 685.67 3458 82 1©
118 8656.31 10 280.62 1673 82 2©
119 7320.568 11 270.51 2834 82 2©
120 6320.67 12 412.12 1631 82 1©
121 3429.60 1 1320.45 2616 43 3©
. . . . . . . . . . . . . . . . . . . . .

2.3. Data Mining

2.3.1. Principle of the LM Network

A neural network has the abilities of self-learning, self-organization, and self-adaptation, and can
obtain a network weight and structure through learning and training [25]. A multi-level feed-forward
neural network has the ability to approach any nonlinear continuous mapping in theory, which is
very appropriate for model building and the controlling of nonlinear systems, and is the kind of
neural network model that is usually applied. The common standard back propagation (BP) learning
algorithm is a gradient descent method, whose parameter moves in the opposite direction of the error
gradient, decreasing the error function until reaching the minimum value. The complexity of the
calculation is mainly caused by the partial derivative. However, the linear convergence speed of this
method, which is based on gradient descent, is very slow. The LM algorithm is the improved form of
the Gaussian-Newton method, which has both the characteristics of the Gaussian-Newton method
and the global characteristics of the gradient method. Due to using approximate second derivative
information, the LM algorithm is faster than the gradient method. The structure of the LM network,
which is shown in Figure 1, is designed as follows [26,27]:

(a) The number of input layer nodes is five based on the number of characteristic attributes.
(b) The number of output layer nodes is two, and the correspondence between the output and the

operation model is shown in Table 4.
(c) The number of hidden layer nodes is chosen based on the empirical formulas, which is shown

as follows:
n =
√

ni + n0 + a (5)

where n1 is the number of input layer nodes, n0 is the number of output layer nodes, a is a constant
between 1 and 10, and the number of hidden layer nodes is six after the trial calculation.

(d) The LM algorithm is chosen as the training algorithm.
(e) Transfer function: S-type functions are chosen as the transfer functions.
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Figure 1. The structure of the LM network.

Table 4. The corresponding relationship between the network output and the operation model.

Output (0,0) (0,1) (1,0)

Operation Model 1© 2© 3©

2.3.2. Principle of CART Classification

The recursive procedure is used to classify the observation set in the CART. The samples are
segmented to minimize the impurity of the subset (the new sample), eventually creating a two-fork
tree with a simple structure (Figure 2). The Gini coefficient is used as the index of the impurity
measurement in this study.
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(a) Definition of the index of impurity

The critical value is determined in the segmentation of the decision tree node, which is a basis
for generating the sub-nodes. The determination of the critical value takes the Gini coefficient as the
dividing index, which is defined as follows [28]:

Gini(t) = 1−
c

∑
i=1

p2(j|t ) (6)

where Gini(t) is the Gini coefficient of node t, c is the number of the classification, and p(j|t ) is the
proportion of the j class in node t. When i(t) = 0, then all the samples belong to one class.

(b) The establishment of the CART

The establishment of the CART is a recursive procedure of creating a two-fork tree. At first, all
of the observed values are located in the root node. Then a node is divided into the left and right
two nodes by using the segmentation point. The result of the segmentation point is measured by
the gain ∆i(s, t), which is defined as the difference of impurity between the parent node and the
sub-node [29]. It is calculated by the formula of goodness-of-split criteria as follows:

∆i(s, t) = Gini(t)− pL[i(tL)]− pR[i(tR)] (7)

where s represents a particular segmentation, pL, pR represent the proportion of the sample in the left
and right child nodes, and i(tL), i(tR) represent the impurity of the left and right child nodes.

The segmentation point with a maximum value of ∆i(s, t) is selected. The CART is built by
repeating the above process.

(c) CART pruning

In the segmentation training, the number of samples available for selection will be fewer and
fewer with the increase in the number of nodes. When the sample number is less than that of statistical
significance, the estimated results will become unreliable, and will result in the phenomenon of
over-fitting, reducing the generalizability of the CART. Thus, the CART needs to be pruned. In the study
of decision-tree pruning, there are four kinds of pruning methods commonly used: PEP (pessimistic
error pruning), MEP (minimum error pruning), CCP (cost-complexity pruning) and EBP (error-based
pruning). CCP is used in this study.

3. Case Study

The 35-year long-series data from 1956 to 1990 of the Heiquan reservoir is chosen as the
training dataset, and the 10-year long-series data from 1991 to 2000 is chosen as the test dataset.
The mapping relations between the characteristic attributes and the optimal operation modes is built.
The characteristic attributes include the reservoir storage, the operation period, the runoff, the storage
water, and the hydrological years with the long-series data. The structure and parameters of the CART
classifier and LM classifier are identified by learning the training dataset with class labels, namely the
operation mode. The definition of the operation mode is shown in Table 5.

Table 5. The definition of the operation mode.

Operation Mode Limit Target Water Supply

1© None Rt = D1,t + D2,t
2© D1,t Rt = (1− 0.2)D1,t + D2,t
3© D1,t,D2,t Rt = (1− 0.2)D1,t + (1− 0.1)D2,t

Notes: D1,t represents the water demand for agricultural irrigation in the period t; D2,t represents the water
demand of the urban supply in period t.
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3.1. Training Results Analysis

There are 420 operation periods in the training sample, so each operation scheme is composed
of 420 operation modes. The operation modes of the DP scheme are calculated by the inverse time
sequence recursive method; the operation modes of the LM scheme and the CART scheme are obtained
by the LM classifier and the CART classifier based on the characteristic attributes. In order to verify
the accuracy of the LM classifier and the CART classifier, the optimal operation modes of the DP
scheme need to be counted, and the statistical results are as follows: there are 168 operation mode 1©,
96 operation mode 2©, and 181 operation mode 3© instances during the 420 operation periods of
the training samples. The LM classifier and the CART classifier are applied to the operation model
classification of the training dataset. Statistical analysis is performed by the confusion matrix, as shown
in Figure 3. Figure 3 shows the confusion matrix of the LM neural network. The classification correction
rate of mode 1© is 82.6% that of mode 2© is 33.3%, and that of mode 3© is 85.5%, and the total correction
rate is only 73.6% by using the LM classifier. This indicates that the classification result of the LM
classifier is not reasonable, especially for the classification result of mode 2©. The confusion matrix of
the CART classifier shows that the classification correction rate of mode 1© is 87.4%, that of mode 2©
is 77.0%, and that of mode 3© is 91.6%, and the total correction rate is 86.9%. This shows that the
CART classifier has higher accuracy. The correction rate distribution of different operation modes in
the training dataset is mode 3© > mode 2© > mode 1©, which has a positive relation with the sample
number of the operation modes in the training samples.

Water 2016, 8, 599  8 of 12 

 

3.1. Training Results Analysis 

There are 420 operation periods in the training sample, so each operation scheme is composed 

of 420 operation modes. The operation modes of the DP scheme are calculated by the inverse time 

sequence  recursive method;  the  operation modes  of  the  LM  scheme  and  the CART  scheme  are 

obtained by the LM classifier and the CART classifier based on the characteristic attributes. In order 

to verify the accuracy of the LM classifier and the CART classifier, the optimal operation modes of 

the DP scheme need to be counted, and the statistical results are as follows: there are 168 operation 

mode ①, 96 operation mode ②, and 181 operation mode ③  instances during  the 420 operation 

periods of the training samples. The LM classifier and the CART classifier are applied to the operation 

model classification of the training dataset. Statistical analysis is performed by the confusion matrix, 

as  shown  in  Figure  3.  Figure  3  shows  the  confusion  matrix  of  the  LM  neural  network.  The 

classification correction rate of mode ①  is 82.6% that of mode ②  is 33.3%, and that of mode ③  is 

85.5%, and the total correction rate is only 73.6% by using the LM classifier. This indicates that the 

classification result of  the LM classifier  is not reasonable, especially  for  the classification result of 

mode ②. The confusion matrix of the CART classifier shows that the classification correction rate of 

mode ①  is 87.4%, that of mode ②  is 77.0%, and that of mode ③  is 91.6%, and the total correction 

rate is 86.9%. This shows that the CART classifier has higher accuracy. The correction rate distribution 

of different operation modes in the training dataset is mode ③  > mode ②  > mode ①, which has a 

positive relation with the sample number of the operation modes in the training samples. 

 
(a)  (b)

Figure 3. The confusion matrix of the LM classifier and the CART classifier for the training dataset. 

(a) The confusion matrix of the LM classifier; (b) The confusion matrix of the CART classifier. 

3.2. Test Sample Analysis 

Comparison and analysis of classifier results of the test dataset 

The LM classifier and the CART classifier are used for the classification of the test dataset. The 

confusion matrix of the CART classifier shows that the classification correction rate of mode ①  is 

90.9%, that of mode ②  is 68.8%, and that of mode ③  is 93.4%, and the total correction rate is 83.3%, 

as shown in Figure 4. Compared with the correction rate of the training dataset, the correction rates 

of  the  two  classifiers  for  the  test  dataset  both  decrease.  This  is  because  although  the  statistic 

characteristics of the characteristic attributes of the training sample correspond with that of the test 

sample,  there are  some differences between  the  two  samples. The  classification  correction  rate  is 

limited by the number of training samples, and the mutagenesis data of the test sample have an effect 

on the classification correction rate. Therefore, the correction rate of the training sample is higher than 

Figure 3. The confusion matrix of the LM classifier and the CART classifier for the training dataset.
(a) The confusion matrix of the LM classifier; (b) The confusion matrix of the CART classifier.

3.2. Test Sample Analysis

Comparison and Analysis of Classifier Results of the Test Dataset

The LM classifier and the CART classifier are used for the classification of the test dataset.
The confusion matrix of the CART classifier shows that the classification correction rate of mode 1©
is 90.9%, that of mode 2© is 68.8%, and that of mode 3© is 93.4%, and the total correction rate is
83.3%, as shown in Figure 4. Compared with the correction rate of the training dataset, the correction
rates of the two classifiers for the test dataset both decrease. This is because although the statistic
characteristics of the characteristic attributes of the training sample correspond with that of the test
sample, there are some differences between the two samples. The classification correction rate is
limited by the number of training samples, and the mutagenesis data of the test sample have an effect
on the classification correction rate. Therefore, the correction rate of the training sample is higher than
that of the test sample, and increasing the number of the test samples can improve the correction rate
of the classifiers effectively.
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The receiver operating characteristic (ROC) curve takes each value of the prediction results as the
possible judging threshold, and the corresponding sensitivity and specificity are obtained. The fake
positive rate (specificity) is taken as the X-axis, and the true positive rate (sensitivity) is taken as the
Y-axis. The area under the curve (AUC) is chosen as the measure index for model prediction accuracy,
whose range is [0, 1]. The higher the value of the AUC is, the stronger the judgment of the classifier
will be. As can be seen from Figure 5, the corresponding ROC curve of the CART classifier is near
the left corner, and the calculated AUC values of the three types of operation model of the CART
classifier are 0.901, 0.813, and 0.925, respectively. The classification AUC values of the CART classifier
for mode 1© and mode 3© both reach high levels (AUC > 0.9), and the classification AUC value for
mode 2© also reaches a middle level. Consequently, the CART classifier has greater accuracy for the
classification of the operation modes.
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Figure 4. The confusion matrix of the LM classifier and the CART classifier for the test dataset.
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Figure 5. The ROC and AUC results of the test dataset.

3.3. Long-Series Result Analysis

Through the analysis of training results and test samples, the classification results of the
CART classifier are better than those of the LM classifier. Thus, the CART classifier is chosen to
guide the reservoir long-series operation, and the operation result is used for comparison with the
results of other operation methods, including the DP, operation chart (OC), and operation function
(OF) [23]. The operation area is separated into three areas by the line of the operation chart, and
each area corresponds with one kind of operation mode. The operation function is obtained from the
multi-element linear regression method.
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The long-series regulation calculation for the Heiquan reservoir is carried out based on the
monthly inflow data from 1956 to 2000 by using the CART classifier, operation chart, operation
function, and DP model. During the calculation adjustment process of the long-series, the earlier
decisions will influence the later initial conditions, and it is difficult to judge the advantages and
disadvantages of the operation schemes through the classification correction rate. Thus, the water
deficit index, which is used as the objective function of the deterministic optimal model, is chosen as
the evaluation index, and the water deficit index results are shown in Table 6.

The DP model is one optimum model; it divides the reservoir storage process into several parts,
utilizes a step-by-step inducing principle to make decisions on every part, and then gets the optimal
operation performance of the total problem. So the water deficit index obtained from the DP model is
the smallest. The water deficit indexes of the operation chart scheme, the operation function scheme,
and the CART scheme are 6.33, 5.92, and 4.38, respectively. The index of the CART scheme is the
closest to the optimum scheme (DP scheme).

Table 6. Water deficit index of different operation rules.

Index Operation Chart Operation Function CART DP

Water deficit index 6.33 5.92 4.38 3.62

According to the analysis of the long-series operation results, at the beginning of the 313rd period
(January 1982), the initial reservoir storage obtained from different schemes was similar. The water
supply results of the dry year can be used to analyze the advantages and disadvantages of different
operation schemes better, so the 24 operation periods between 1982 and 1983 are chosen as the study
objectives. Since the water supply process of the DP scheme is optimal, the smaller the difference of
the water supply process between the DP scheme and the operation scheme, the better the operation
scheme is. The comparison analysis of the water supply results shows that the water supply of the
CART scheme is almost the same as that of the DP scheme. The difference of the water supply between
the DP scheme and the other operation schemes is shown in Figure 6, which shows that the water
supply process with the greatest difference is the OC scheme, and then the OF scheme. This is in
agreement with the results shown in Table 6.
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Figure 6. Comparison of water supply results.

The operation modes of different operation schemes during periods 321–332 are shown in Table 7.
There are three misclassifications in the CART scheme, which happened, respectively, in period 325,
period 327, and period 328; the difference value of the misclassification is only 1. Deep damages
occurred in the OF scheme and OC scheme. Especially in the OC scheme, deep damage happened
in May and June, which were both water usage high points. The year 1982 was a dry year, and the
inflow of the Heiquan reservoir was less than that of normal years after the flood season. However, the
reservoir storage at the beginning of the decision period is the only decision-making factor, there are
no water supply restricting measures after the flood season in the OF scheme and OC scheme. Instead,
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the influence of the later inflow is taken into account in the CART scheme, so the water is supplied in
mode 2© after the flood season from October to December. Impounding in advance avoids the later
deep damage. There is no deep damage in the CART scheme, which indicates that the CART scheme
can guide the reservoir water supply operation effectively.

Table 7. Operation modes of different operation schemes.

Period 321 322 323 324 325 326 327 328 329 330 331 332

Month September October November December January February March April May June July August

DP 2© 2© 2© 2© 2© 1© 2© 1© 3© 1© 1© 1©
CART 2© 2© 2© 2© 1© 1© 3© 2© 3© 1© 1© 1©

OF 2© 1© 1© 1© 1© 1© 2© - - 2© 3© 1©
OC 1© 2© 1© 1© 1© 1© 1© 2© - - 3© 2©

Notes: 1©, 2©, and 3© in the table represent three operation modes, respectively; - represents the deep damage.

4. Conclusions

This paper chose two data mining technologies—the CART decision tree and the LM artificial
neural network—to apply to water supply operation. The traditional extraction problem of the
reservoir operation rules is translated into a data mining problem. Firstly, the optimal model of
reservoir water supply operation is established by the DP model, so the optimal operation model
of long-series scheduling is obtained. Then, the reservoir storage, runoff, water demand, operation
period number, and hydrological year are chosen as the reservoir status dataset, and the mapping
relation between the status dataset and optimal operation mode is established. Finally, the CART
classifier and LM classifier are built based on the mapping relation. The results are summarized below:

(1) The classification results of the training dataset are better than those of the test dataset, and the
classification effect of the CART is better than that of the LM. The correction rate of the CART test
sample is 83.3%. The classification values of the CART classifier for mode 1© and mode 3© both
reach a high value (ACU > 0.9), and the classification result for mode 2©reaches the middle level.

(2) Through a comparison of the results of the long series of reservoir water supply operation, which
is guided by the DP, CART, OC, and OF, we see that the deficit index of the CART scheme is
closest to the optimal operation mode and the deep damage is efficiently avoided. This indicates
that the modes which are distinguished by the CART can guide the reservoir water supply
operation effectively.
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