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Abstract: This paper analyzes the potential of a nu-support vector regression (nu-SVR) model for the
reconstruction of missing data of hydrological time series from a sensor network. Sensor networks
are currently experiencing rapid growth of applications in experimental research and monitoring and
provide an opportunity to study the dynamics of hydrological processes in previously ungauged
or remote areas. Due to physical vulnerability or limited maintenance, networks are prone to data
outages, which can devaluate the unique data sources. This paper analyzes the potential of a nu-SVR
model to simulate water levels in a network of sensors in four nested experimental catchments in a
mid-latitude montane environment. The model was applied to a range of typical runoff situations,
including a single event storm, multi-peak flood event, snowmelt, rain on snow and a low flow period.
The simulations based on daily values proved the high efficiency of the nu-SVR modeling approach to
simulate the hydrological processes in a network of monitoring stations. The model proved its ability
to reliably reconstruct and simulate typical runoff situations, including complex events, such as rain
on snow or flooding from recurrent regional rain. The worst model performance was observed at low
flow periods and for single peak flows, especially in the high-altitude catchments.
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1. Introduction

Among the technologies for monitoring the dynamics of runoff processes, automated sensor
networks have played an increasingly important role in experimental research and water management
practices [1]. The automated monitoring of surface and groundwater runoff processes allows the
acquisition of data with high levels of frequency and accuracy [2,3]. This type of data enables research
into the highly dynamic processes in catchments with unprecedented level of detail and provides
deeper insight into the mechanisms of runoff generation. The coupling of monitoring devices with
communication modules using Global System for Mobile communications (GSM) or satellite telemetry
enables online access to the observed data in the near real-time regime [4].

The large amounts of data from automated monitoring network sensors represent new
opportunities for research and new challenges for data analysis and results in higher vulnerability of
monitoring systems to the occurrence of issues related to data quality [5,6].

Because modern automated sensors and stations are complicated sets of electronic devices that are
exposed to extreme environmental conditions, the monitoring systems are vulnerable to the occurrence
of data outages or quality problems. The data outages typically occur in consequence of damage to the
sensors or control stations related to extreme weather, e.g., periods of extreme cold, electrical shock
after lightning, physical damage after flooding, mud flows or freefall, and energy shortages.
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In stations without online access to data or with limited physical accessibility, e.g., due to climatic
conditions over winter season or restrictions of access for nature conservation reasons, outages in
data recording or breaks in energy supply are detected with delays, which can result in data gaps,
devaluing the time series of monitoring. For such cases, the ability to reconstruct the incomplete time
series is of vital importance.

Manifold approaches for the reconstruction of missing data in hydrological time series have been
developed, ranging from conventional statistical methods to physical-based modeling. The stochastic
nature of hydroclimatic processes, the complexity of relations among the meteorological drivers, the
state of the environment and the runoff response make the use of the conventional hydrological models
complicated for practical applications [7-9].

Because monitoring sensors are often organized into networks, where the stations observe
interdependent processes, there is a potential for the use of data-driven models, such as artificial
neural networks (ANN) and support vector machines (SVM), to simulate the observed processes [10].
These models can be used to complete missing data in the monitoring network. Progress in the
development of machine learning algorithms and data-driven models with the availability of
high-performance computing enabled the growing application of machine learning techniques, such
as ANN, SVM and fuzzy logic [11,12]. The application of machine learning approaches to fill the gaps
in time series hydrological data is beneficial, especially in areas with limited quality or availability of
supporting spatial and qualitative data, which are necessary for conventional hydrological models [8].

This study aims to test the ability of the SVM model to fill in the missing data in time series
hydrological data resulting from an automated sensor network, operating in a set of experimental
montane watersheds. The SVM approach was selected as a proven robust and reliable technique that
is suitable for modeling continuous data series. However, SVM is not frequently used in hydrological
research compared to other models, e.g., ANN.

The particular goals of the study are: (i) to design a self-learning network model based on SVM
and suitable configuration of the input variables to enable reconstruction of missing hydrological data
from an automated sensor network; (ii) to test the SVM model performance in conditions of variable
physiographic conditions; and (iii) to test the SVM model applicability and performance on select
runoff scenarios, including storm flows, flood events, snowmelt events and periods of drought.

The study is based on data from five years of continuous hydrological monitoring in a network
of experimental catchments in the Sumava Mountains, featuring automated water level and weather
stations operated by Charles University in Prague [3]. The Konstanz Information Miner (KNIME)
computing framework with the Library for Support Vector Machines (LIBSVM) module was used for
the modeling and statistical treatment of the data.

2. Materials and Methods

2.1. Study Area

The study area of the Roklansky Brook and the experimental subcatchments is located at the
headwaters of the Sumava Mountains, Central Europe (Figure 1), and features an elevated montane
plain with moderate hillslopes [13]. The area is homogeneous in terms of physiography. The upper
part of the montane range is developed on the crystalline core of the Bohemian Massif. The bedrock
is mostly composed of metamorphic gneiss and schists with intrusions of granite; Entic Podzols,
Histosols, and Gleysols are the common soil types [14]. The region features a typical mid-latitude
montane climate, with an average annual precipitation of 1370 mm and a mean air temperature of
3.6 °C [3].

The Roklansky Brook basin (RKM) has an area of 47.8 sq km, with the outlet at Modrava Village
at an altitude of 978 m a.s.l. The average discharge at the RKM monitoring station is 1.66 m3-s~1 [13].
For the purpose of this study, this station was supplemented by the data from the water level
monitoring stations at the basin headwaters: Roklansky Brook at Hajenka (HAJ), Rokytka (ROK)
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and Javofi Brook (JAV), plus the information from the weather station at Rokytka (ROK) and the
weather and snow monitoring station at Ptaci Brook (PTA).

LEGEND
7\~ Stream
-~ Divide

Gauging station

WV Meteo station

Figure 1. Study area. Upper Vydra basin with experimental catchments and automated sensor

network stations.

Although the three experimental catchments (HAJ, ROK, and JAV) representing the headwater
zone of the Roklansky Brook basin are in the same vicinity, their particular physiographic properties
and environmental status vary. The most elevated catchment (HA]) is the smallest, has the least dense
river network and the highest share of the forest, which has been damaged by bark beetle infestation
since the 1990s (Table 1). In contrast, the lowest altitude catchment (JAV) is the largest, with the longest
river network and the lowest share of damaged forest. Such differences in basic physiography and in
the land cover and vegetation cover quality create environments with different runoff responses.

Table 1. Physiographic properties of the experimental headwater catchments. Data: Czech
Hydrometeorological Institute (CHMI), Czech Geological Service (CGS), Forest Management Institute
(FMI) and Charles University (CUNI).

Catchment JAV ROK HAJ
Catchment area (sq km) 6.33 3.60 3.321
Mean altitude (m a.s.l) 1117 4+ 69 1125 + 48 1233 + 70
River network length (km) 16.55 12.36 7.53
Drainage density 2.61 3.43 2.27
Bedrock—share of granite % 64.9% 31.9% 55.8%
Bedrock—share of sedimentary material % 26.8% 45.6% 8.9%
Soils—share of peat land % 8.3% 22.5% 35.3%

Land cover—share of decayed forest % 37.0% 48.1% 68.2%
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2.2. Sensor Network

The sensor network employed for this study consists of high-frequency monitoring of water levels
and basic hydrochemistry parameters (water temperature, electric conductivity, pH) at the catchment
outlets performed by the weather stations (Figure 1). The monitoring network in the Upper Vydra
basin was established in 2006 by Charles University.

The water levels at the monitoring stations are observed using two major technologies—
determination of the water level based on changes in hydrostatic pressure (HA] station) and
measurement of the water level by ultrasonic beam (ROK, JAV, and RKM stations).

The measurement based on changes in hydrostatic pressure uses a sensor fixed at the river bottom
to detect changes in the water column height (Fiedler AMS TSH22, Figure 2a). This approach is
beneficial for small and unregulated streams with no structures, where a direct measurement sensor
can be attached. The pressure probes are beneficial due to the ability to capture a wide range of water
levels. They do not demand a large amount of energy and are reliable; however, they are vulnerable
during floods and elevated material transport. The ultrasonic gauge is based on direct measurement of
changes in water level from a given vertical distance using an ultrasonic beam (Fiedler AMS US3200,
Figure 2b). The sensor is fixed to a structure above the water level, typically a bridge. Ultrasonic beam
measurement offers the ultra-high precision, reaching even sub-millimeter values.

(a) (b)

Figure 2. Water level sensors: (a) Hydrostatic pressure gauge fixed to the bottom of a montane creek;
and (b) ultrasonic water level sensor fixed to the top of a dam culvert. Photo by Jakub Langhammer.

The monitoring frequency is set to 10-min intervals, with daily automated transmission of the
monitoring data to cloud-based storage (Fiedler M4016). The water level data are then converted to
streamflow using rating curves established by hydrometric measurements using an acoustic Doppler
velocimeter (Flow Tracer, SonTek Inc., San Diego, CA, USA) over the study period. For this study, data
were collected for the period covering 5 hydrological years from 1 November 2010 to 30 October 2015.

2.3. Data-Driven Models for the Simulation of Hydrological Processes

Machine learning is a rapidly evolving field of data-driven modeling techniques with the extensive
potential for application in hydrology. Among the various machine learning approaches, ANNSs,
Bayesian networks (BN) and support vector machines (SVMs) are the most frequently applied
techniques [15,16]. These approaches are algorithms with significant importance for processes where
the application of conventional models is complicated by the complexity and unknown conditions
affecting the process or by changing environmental conditions. In hydrological research, their ability
to learn from the patterns of the input data is beneficial, especially for predictions in ungauged basins,
for the development of hydrological models in complex physiographic conditions and as a tool for
reconstructing incomplete meteorological and hydrological data.
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Despite their similarities, the principles of the three approaches differ significantly in nature
and underlying mathematical principles. The design of ANN models was inspired by the
structures of biological neural networks. The computation networks are structured in terms of an
interconnected group of artificial neurons that process information using a connectionist approach
to computation [17-19]. In hydrological research, ANN models are typically used to simulate the
complex relationships between inputs and outputs, to find patterns in data or to find parameters for
conventional models in complicated environmental conditions [20].

BN models are based on different principles, stemming from a probabilistic graphical model
that represents a set of random variables and their conditional independencies via a directed acyclic
graph [21,22]. BN models have proven to be an efficient tool for different applications in hydrology,
e.g., for probabilistic hydrological forecasting as an approach to quantify model uncertainty [22] and
to support decision-making process in environmental applications [23].

SVMs, developed by Vapnik in the 1960s [24,25], are a set of related supervised learning methods
that are used for classification and regression. Given a set of training examples, each marked as
belonging to one of two categories, an SVM training algorithm builds a model that predicts which
category a new example falls into [26]. SVM classifiers became widely popular in recent decades in
scientific, industrial and real-world applications, including i.e., Optical Character Recognition, financial
modeling, medical imaging [27-29] due to its robustness and availability of computing environments
that could efficiently handle the demanding learning phase of classification [30].

A complex overview of recent hydrological applications of SVMs was given by Raghavendra
and Deka [31]. SVMs were applied in rainfall-runoff modeling studies across different environments,
temporal and spatial scales. Rainfall-runoff modeling at longer time scales using SVMs was
demonstrated, e.g., by Lin et al. [32], while Yu et al. [33] have applied SVM model in real-time
flood forecasting. Granata et al. [34] have tested the performance of support vector regression (SVR)
model for rainfall-runoff simulations in an urban environment. Shahraini et al. [15] have compared
the SVM runoff model in a large scale complex basin. There was found a lack of studies focused
on SVM applications in small montane catchments, comparable to the sites, examined by our study.
The robustness of SVM modeling approach, proven by the mentioned studies, however, indicates the
suitability of application of this modeling technique to such conditions [35].

2.4. Support Vector Machines

SVM models represent still a relatively new concept, although the mathematical foundations of
the method were set in the 1960s, similar to the concept of neural networks [28]. SVM is a supervised
learning method based on a set of training examples that builds a model that can assign classified
samples into separate categories. SVM is a non-probabilistic classifier based on the separation of
examples into distinct classes by defining a hyperplane that separates the categories.

The key principle of SVM classification is the conversion of the original input space to another,
with higher dimensionality [36]. Augmenting dimensionality of the data space enables to find a linear
solution for separating the data which does not exist in the original data space [37]. This mechanism
can be demonstrated in an example of two-dimensional space with binary data, containing e.g., positive
and negative training samples, whose distribution does not allow linear separation of the classes
(Figure 3a). The initial two-dimensional space, where each vector is defined by two attributes, can be
remapped into three-dimensional space, by adding the third attribute, based on the transformation
of the initial ones. Such transformation allows shifting the data points along the new axis so we can
find a plane, separating the data classes (Figure 3b). The transformation, here represented by simple
exponentiation, is in the SVM model performed by the kernel, based on different principles—linear,
polynomial, radial basis or sigmoid [38]. This example illustrates a general principle of the SVMs—it is
assumed that when the data are mapped into space with a sufficient number of dimensions, we should
be able to find a linear plane, separating the samples [36].
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Location of the separating hyperplane is based on the position of points, defining the bounds of the
plane—the support vectors (Figure 3c). Identification of these support vectors significantly simplifies
the classification. This is because for identification of the separating plane it is not necessary to take
into account all of the data points but just the support vectors (Figure 3c). This principle significantly
improves the performance of the classification, especially on large datasets (citation). Finding of the
optimal solution is then aimed at maximizing the margin around the separating hyperplane [25].

+ positive sample
> negative sample

support vectors

a)

X2

2
X4 margin width

hyperplane

support vectors

b) ' o R

Figure 3. Principle of finding the linear solution of classification by augmenting the dimensionality:
(a) sample of training data with positive and negative values, where linear separation is not
possible; (b) data space with augmented dimensionality, enabling to find a plane, separating the
data; and (c) separating hyperplane with margins, defined by the support vectors.

The generic Vapnik’s concept of support vector machines is applicable for classification purposes
as support vector classification (SVC) as well as for solving regression tasks as support vector regression
(SVR) [39,40]. SVR keeps the basic SVM idea to map the data into a high dimensional feature space
via a nonlinear mapping and to do linear regression in this space. The kernel functions transform the
data into a higher dimensional feature space that makes it possible to perform the linear separation.
Thus, the linear regression in a high dimensional space corresponds to nonlinear regression in the
low-dimensional input space [39].

The Support Vector Regression (SVR) uses the same principles as the SVM for classification,
with just some differences. The main idea remains the same: to minimize error, individualizing the
hyperplane which maximizes the margin, keeping in mind that part of the error is tolerated. Because the
output is a real number it becomes very difficult to predict the information. Hence, a margin of tolerance
epsilon is set in approximation to the SVM.

There are two basic versions of SVM regression, epsilon-SVR and nu-SVR, which differ in the way
the algorithm handles with margin control and penalty parameter. In epsilon-SVR, there is no control
on how many data vectors from the dataset become support vectors unlike in nu-SVR. The algorithm
has a control on how much error is allowed in the model by the regularization parameter C. The main
motivation for the nu versions of SVM is that it has a more meaningful interpretation. This is because
nu represents an upper bound on the fraction of training samples which are errors (badly predicted)
and a lower bound on the fraction of samples which are support vectors.

Scholkopf et al. [41] proposed an SVR algorithm, called nu-SVR, adjusting automatically the
parameter epsilon. The nu-SVR introduces a parameter nu, enabling to control the number of support
vectors, by setting the proportion of the number of support vectors kept in the solution with respect to
the total number of samples in the dataset. The epsilon parameter, defining the margin of tolerance is
here introduced into the optimization problem formulation and it is estimated automatically [42].
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The use of kernel functions make the SVR applicable to both linear and non-linear approximations,
while it features good generalization performance as a result of the use of only the support vectors
for prediction the absence of local minima because of the convexity property of the objective function
and its constraints, and the fact that the methodology is based on structural risk minimization that
seeks to minimize the generalization rather than the training error [42]. It makes SVR suitable for use
in time series analysis and forecasting with manifold applications, e.g., in geosciences or financial
forecasting [43].

2.5. Application of the SVM Model to the Study Area

2.5.1. Applied Computing Environment

LIBSVM [38] was used as the environment for model learning and forecasting. LIBSVM comprises
several types of SVM models, enabling classification of discrete as well as continuous data:
(i) algorithms for support vector classification (C-SVC and nu-SVC), which are applicable to the
classification of discrete datasets; (ii) algorithms for support vector regression (epsilon-SVR and
nu-SVR), enabling the construction of SVM models for continuous data; and (iii) distribution estimation
(one-class SVM) [38].

The nu-SVR model, which is applicable for modeling continuous time series and simulations,
was selected for this study. Based on experience from applications in different disciplines, the nu-SVR
model was found to be robust and reliable, even for simulations based on a small training sample or
data burdened by noise [44]. This ability is especially important for hydrological data originating from
sensor networks, where noise occurs for various reasons [4], and for simulations of highly dynamic
events of short duration, where the number of training samples is limited by the nature of the process.

The KNIME Analytics Platform 3.12 was applied as the framework for the experiment. KNIME is
a computing platform that integrates a set of data mining, statistical, machine learning and plotting
modules to design the model workflow [45,46]. The KNIME platform is based on the visual design
of the model structure, combining key parts of the model—the source data input and pretreatment,
the definition of datasets for training, validation and simulation scenarios, model learner, model
predictor and post-processing (Figure 4).

The model in the KNIME platform is composed of a set of nodes, performing different types
of operations—input/output, data transformation, calculation, statistics, plotting or data output.
Each node has its properties, defining the action performed, used data and parameters. The nodes
are interlinked into a functional workflow, which can be run in step-by-step basis from individual
nodes or as a batch. The workflow, defined for this study comprised the following key structures:
(i) data input node (Figure 4a), uploading the database with records from the sensor network, stored
as plain text; and (ii) block of nodes, performing selection and pretreatment of the data. In particular,
is performed a selection of data columns with parameters, used further in the model, exclusion of
the data rows with missing observations or incorrect values, setting of the bounds in time series
for analysis (Figure 4b). From these data, the cross-correlation analysis was performed (Figure 4c).
From the selected dataset, there were selected time periods, used for model training (Figure 4d) and
validation (Figure 4e). The node with training data is connected with the LIBSVM learner modules,
set for each of the four catchments (Figure 4f). The learner uses the whole input data matrix with the
target column, set to the water level values of the given station. The learner node parameters for all of
the four catchments were set identically.

The trained model network for each catchment is then applied for calculating predictions, using
the input data from the validation period (Figure 4e) or simulation scenarios SC1-SC6 (Figure 4g,
showing network configuration of the model for JAV catchment and SC3 scenario). The values,
simulated by the LIBSVM predictor (Figure 4h) are then post-processed by the nodes, performing
plotting of values, R? statistics and data output (Figure 4i).
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Figure 4. Structure and components of the model as defined in the KNIME workbench. The annotations
highlight the principal functional blocks of the model, based on nodes, linked into in the workflow:
(a) input data; (b) data selection and pre-treatment; (c) cross-correlation analysis; (d) selection
of data for model training period; (e) selection of data for model validation; (f) model learning
modules for individual catchments; (g) selection of data for simulation scenarios; (h) model predictor;
and (i) post-processing of simulation outputs.

2.5.2. Input Data

The data-driven model is based on the matrix of daily values of the meteorological and
hydrological parameters available from the measurements of the sensor network at four experimental
subcatchments (HAJ, ROK, JAV and RKM) in the Roklansky Brook basin (Figure 1). As the
subcatchments at the basin headwaters have different physiography and environmental status,
the model was developed and run for each catchment and all scenarios to identify the effects of
different conditions.

For the meteorological drivers, the model applied the daily precipitation total (P), precipitation
total for the preceding day (PD-1), the antecedent precipitation index calculated for time spans of 2.5
and 7 days (API2, API5, and API7), snow depth in a given day, (SNW), mean daily air temperature (T),
minimum and maximum daily temperature (Tmin and Tmax, respectively) and mean air temperature
on the two preceding days (TD-1 and TD-2).

For the runoff parameters, the model applied information on the daily mean water levels at
the observed stations (H_HAJ, H_ROK, H_JAV, and H_RKM). This combination of potential input
parameters that are relevant to explaining the hydrological variability was tested for cross-correlations
to identify the dependencies among the input data and to reduce the input data matrix by redundant
parameters, which significantly decreased the time for model learning. The linear correlation matrix
was calculated using Pearson correlation coefficient, while the missing observations were excluded
and only the complete records were taken into account. The KNIME cross-correlation node was used
for calculation.

The cross-correlation matrix (Figure 5) indicates strong positive correlations among the parameters
of air temperature and positive correlations among the API values calculated for different time spans.
Therefore, it was possible to reduce these data without the risk of a significant loss of information.
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From the correlation values for the water levels at the monitoring stations, there is a high level of
similarity for the two neighboring catchments TMA and JAV; however, due to different physiography,
the runoff process in these catchments cannot be considered identical. Both stations are therefore
included in the model input. Based on these assumptions, a final set of parameters was selected and
applied in the study: T, T-2, P, SNW, API2, API7, H HAJ, H ROK, H_JAV, and H_RKM.
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T-2 0.099 0.114 0.134 0.155 0.170 0.042 0.164 0.228 0.222
T RKL 0.116 0.091 0.113 0.158 0.178 0.034 0.177 0.201 0.151
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P-1PTA 0.071 0.098 0.114 0.091 0.081 0065  -0.073  0.245 0.576 -0.049  -0035  -0007  0.134
API2 PTA 0.092 0.107 0.134 0.113 0.102 0.085 -0.093 0.222 -0.060  -0.044  -0.009 0.169
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Figure 5. Cross-correlation of parameters.

2.5.3. Model Setup and Learning

The model was developed up in the KNIME computing environment using the LIBSVM library.

The key parts of the model network are represented by the following computing blocks: (i) source
data selection; (ii) definition of modeling scenarios; (iii) SVM network learner; (iv) SVM predictor for
selected scenarios; and (v) post-processing of simulated values (Figure 4).

The source data were pretreated in terms of database consistency and by removing the database
rows with missing observations. The model scenarios were defined according to the types of runoff
situations described above: long rain, storm on a saturated catchment, storm on a dry catchment,
snowmelt and dry periods.

The learner block of modules (Figure 3) consisted of two nodes: the selection of training data
and the core node with the SVM model learner. The learning period of the model consisted of the
first two hydrological years of the monitoring period (1 November 2010-31 October 2012), covering
approximately 40% of the dataset. The simulation events were selected from the rest of the time series
to not overlap with the model training data.

The model learner was consecutively set up for all four stations: HAJ, ROK, JAV and RKM.
The nu-SVM model with linear kernel was selected, enabling continuous simulation.

The choice of the kernel type in the LIBSVM (linear, polynomial, radial basis function and sigmoid)
was affected by the fact that the dataset, used for the study provided a large number of training
samples. In such there is no necessity to map the data to a higher dimensional space as the non-linear
mapping here does not improve the model performance, while significantly affects the requirements
for computing power and time [47]. This assumption was confirmed by Bray and Han who tested the
performance of different kernels in the LIBSVM toolkit for runoff modeling [48] and identified nu-SVR
with the linear kernel as an optimal configuration in terms of learning capabilities. Hence the linear
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kernel was used as a basic configuration in our study for model training. While the results of validation
indicated satisfactory fitness of the predicted data to the observations (see Section 3.1), the nu-SVR
with linear kernel was applied in model learner for the whole study. The default parameters of
the algorithm, suggested by the LIBSVM framework, were applied for the validation of the model:
degree parameter, 3; Cost, 1.0; Nu, 0.5; Loss-Epsilon, 0.1; and Epsilon, 0.001. These default values of
parameters were also kept for the simulation of the selected scenarios.

The predictor module (Figure 4) was consecutively run for all of six scenarios at all five catchments.
Hence, the modeling framework comprised 24 models.

The post-processing of results in the KNIME modeling framework consisted of line plots,
scatterplots and robust statistical calculations of the observed and simulated values.

2.5.4. Model Validation, Simulation Scenarios

The model validation was performed on a complex hydrological year comprising all basic types
of runoff events that typically occur in the study area. The hydrological year in the study area
is considered from November to October to cover the period of the closed hydrological balance.
The hydrological year of 2013, comprising the period of 1 November 2012-31 October 2013, was selected
for model validation. The validation model was developed for all the analyzed catchments.

The model learner, calculated for the validation period, was further directly applied for
simulations of the selected model scenarios and no further calibrations or parameter tweaking of the
model learner was applied.

For the simulation scenarios, five basic types of the runoff situations occurring in the area were
selected. The aim was to test the performance of the SVM model under varying runoff situations
with different complexity and in variable physiographic conditions. The simulation scenarios were
based on the events in the selected periods when all the monitoring stations had available reliable data
covering the whole extent of the event in the assessed periods. The tested situations were following:

(i) Flooding from long-term and recurrent rain (SC1): This scenario was based on flooding in
June 2013 resulting from recurrent, intense regional-scale precipitation. The flood magnitude
reached the level of a 20-year flood in the study area and a 50-100 year flood in the consequent
lowland streams. The simulation period for this event was 23 May-2 July 2013 to cover the whole
span of the pre- and post-flood conditions.

(ii) Single peak storm (SC2): To analyze the model performance to simulate highly dynamic events,
a typical summer storm with short duration, which frequently occur in the area, was considered.
A single peak summer storm in June 2012, covering the period of 27 June-8 July 2012 was selected
as the simulation event.

(iii) Snowmelt (SC3): The runoff response to the snowmelt processes was tested on the typical
late spring snowmelt situation, driven primarily by the rise of air temperatures with no or
unimportant precipitation. The runoff response to such snowmelt episode was tested for the
period of 9 April-9 May 2013.

(iv) Rain on snow (SC4): The effect of snowmelt, driven and accelerated by intense precipitation,
represents an event that is often difficult to simulate by conventional hydrological models due to
its complexity. The performance of the SVM model for a rain on snow event was tested in the
case of a 20-year flood in the late fall of 2015, resulting from the heavy precipitation on the newly
formed snow cover in the period of 24 November-12 December 2015.

(v) Low flows (SC5): The runoff response to an extended period of drought was tested on a model
situation from the early summer of 2014. The low flows resulted from a period of no precipitation
for more than 20 consecutive days with above-average temperatures. The simulation period was
1 June-27 June 2014.
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3. Results

For all four catchments, an SVR network was developed and trained based on the set of parameters
described above. The simulation scenarios comprised the simulation of a regional flood from recurrent

rain (SC1), single summer storm (SC2), spring snowmelt (SC3), rain on snow (SC4) and low flow
period (SC5).

3.1. Model Validation

The hydrological year of 2013, consisting of the time period between 1 November 2012 and
31 October 2013, was used as the validation dataset to verify the model performance in the long-term
time span representing complex conditions occurring during a typical year.

The model validation results indicate fairly good overall performance for a complex hydrological
year for all catchments, with R? values ranging from 0.89 to 0.91 (Figure 6). Despite the overall good
model performance, the performance is different in the individual catchments with underestimation
or overestimation of different types of events. In case of the topmost catchment of HA]J, the model
underestimated the spring peak flow and (Figure 6d).
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Figure 6. Model validation in a complex hydrological year, 1 November 2012-31 October 2013 at
stations: (a) RKM; (b) JAV; (¢) ROK; and (d) HA]J.
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The validation for the basin outlet at Modrava (RKM) indicates a good fit to the observed values
(R? = 0.913). During the snowmelt period, there is an apparent slight overestimation of the minor peak
flows, however, the general trend is fitted well. The consequent waves of the spring and early summer
flood events are simulated with very high reliability, including the low flow period during the fall
season. The best fitness is achieved for the ROK catchment (R? = 0.918, Figure 6¢) located at the middle
range of altitudes of the basin. There is slight overestimation in the low flow period of the year, with a
fairly good fit of the trend and all peak flows captured. The worst results (R? = 0.804) were achieved in
the HAJ catchment located in the top part of the basin (Figure 6d). In all key periods, there is apparent
underestimation of the values compared to the observed time series.

3.2. Simulation of the Typical Runoff Event Scenarios

3.2.1. Regional Flooding from Recurrent Precipitation

The regional flood in June 2013, resulting from heavy precipitation events with a 50-year flood
magnitude, was selected as the case study to simulate a complex flood event.

The simulated period was 23 May-2 July 2013, when the precipitation-driven flood occurred
in the period after late spring snowmelt. The flood was initiated by recurring precipitation, which
resulted in three discharge peaks, hitting the area during a period of two weeks at the turn of June 2013.

The best fit of the simulation to the observed values was achieved at the outlet of the basin, at
the Roklansky Brook at Modrava (RKM, R? = 0.96). Despite the slight overestimation of the values,
the trend and timing of the events by the model fits the observed values (Figure 7a).

A very solid fit is observed at the Javori Brook (JAV) station, located in the lower part of the
basin (R? = 0.92, Figure 7b). Except for the third peak flow, where the simulation underestimated the
real values and did not fit the shape of the wave, there is a very good fit of the trend and the timing.
Similar performance was achieved at the ROK catchment (R? = 0.91, Figure 7c). The worst results are
apparent at the HAJ catchment, located in the top part of the basin, where a time shift of the peak flow
during the first event occurred. The major peak flow is simulated well; however, the third event was
partially overestimated (Figure 7d).
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Figure 7. Simulation scenario SC1—Regional flood from recurrent heavy precipitation, 16 May-21 July
2013 at stations: (a) RKM; (b) JAV; (¢) ROK; and (d) HAJ.

3.2.2. Summer Storm

This scenario represented a typical summer storm resulting from a single event occurring on an
unsaturated basin. A storm at the beginning of July 2012 was selected as the model situation.

Despite the uncomplicated initial conditions triggering the runoff event, the simulation was
reliable only in the lower part of the basin, while it was poor at the headwater catchment.

The outlet station of the Roklansky Brook basin at Modrava (RKM, R? = 0.96) displays a very
good fit of the values, trend, peak flow and timing (Figure 8a). A good fit of the simulated to the
observed values is reached in Javoii Brook (JAV) at the lower part of the basin (R? = 0.92), with only a
slight overestimation of the values at the recession limb of the wave (Figure 8c).

However, the simulation in the mid-altitude catchment of Rokytka (ROK, R? = 0.85) and especially
at the high-altitude catchment at Hajenka (HAJ), results in poor value distributions and misestimation
of the simulated values (R? = 0.66). At ROK station, which drains a catchment with a large share of
peat land, there were overestimated initial values and the initial stage of the rising limb. However, the
peak flow is underestimated, with a reliable simulation of the recession limb (Figure 8c). At HA]J
station, the model simulation resulted in greater differences in the values compared to the observations.
The initial period and the recession limb are underestimated, while the peak flow is substantially
overestimated, however, with proper timing (Figure 8d).
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Figure 8. Simulation scenario SC2—single summer storm during 27 June-8 July 2012 at stations:
(a) RKM; (b) JAV; (c) ROK; and (d) HA]J.

3.2.3. Spring Snowmelt

This scenario describes a high flow period after snowmelt in late spring during 9 April 2013-9
May 2013. In this period, there was only insignificant precipitation at the beginning and at the end of
the observed period, which did not accelerate the snowmelt. The snowmelt event resulted in relatively
flat peak flow curve, while the water levels remained elevated for more than two weeks.

The model performance for the snowmelt situation was very good, especially in the lower part of
the basin. The fit of simulated to the observed values was good in both the basin outlet (RKM) and
JAV station (R? = 0.96) (Figure 9). The trends, timing, and fit of the values were satisfactory in both
cases, with a slight underestimation of values at JAV station in the second half of the period.

In the mid-altitude ROK catchment, the model performance was still very good (R? = 0.89)
(Figure 9c). Compared to JAV station, the model slightly overestimated the peak values in the second
half of the snowmelt period. However, the general fits of the trend, values, and timing of the events
were reliable.

The least successful simulation was obtained in the topmost part of the basin at HA]J station
(Figure 9d); however, the results were better than the rain storm events (R? = 0.84). Despite the accurate
fit of the trend and timing of the events, the peak values in the decisive period of the event were
significantly underestimated.
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Figure 9. Simulation scenario SC3—snowmelt in late spring during 9 April-9 May 2013 at stations:
(a) RKM; (b) JAV; (¢) ROK; and (d) HA]J.

3.2.4. Rain on Snow

To simulate a rain on snow event, a 20-year flood period was selected that affected the study area
in the beginning of December 2015. The flood event was driven by snowmelt, which was accelerated by
intense precipitation that completely washed out the snowpack that had accumulated prior the event.
The first compact snow cover of the upcoming winter season, reaching 20-30 cm of the snow depth,
has melted in one day from 30 November-1 December 2015 and resulted in an intense contribution to
the magnitude of the flood event.

The simulation of the rain on snow event by an SVM model showed surprisingly good reliability
(Figure 10). In three of the four catchments, the R? values reached or exceeded 0.94. The only exception
was the highest HAJ station, where the simulation performance was weak (R? = 0.62).

At the outlet of the basin (RKM, Figure 10a), the simulated values fit the observations in terms of
the trend, timing and values (R? = 0.975) with only a slight overestimation of values in the recession
limb of the flood hydrograph. The success rate of the simulation was even higher for the JAV catchment
(R? = 0.986), where there were no substantial differences in the simulated values and the observations.
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The fit of the simulation of the rain on snow event to the observations in the ROK catchment was
also very good (R? = 0.948). The SVM model slightly overestimated the response of the catchment to
recurrent precipitation in the recession phase of the runoff but with no substantial difference (Figure 9c).

The simulation in the HAJ catchment (Figure 10d) was, as in the previous scenarios, the least
successful in terms of the goodness of fit of the simulated values to the observations (R? = 0.621).
The key peak flow resulting from snowmelt was captured successfully in terms of values, trend,
and timing. However, the response of the basin to the following recurrent precipitation, which was
almost neglected by the modeling network, was heavily underestimated.
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Figure 10. Simulation scenario SC4—rain on snow, 24 November-16 December 2015 at stations:
(a) RKM; (b) JAV; (c) ROK; and (d) HAJ.
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3.2.5. Low Flows

Unlike flood events, where the model can respond to the initial pulses from precipitation or
snowmelt, the simulation of the low flow period is more complex because the hydrological regime in
dry periods depends on a range of physiographic and environmental factors. The period selected for
testing the SVM model performance (1 June-27 June 2014) represents a typical summer situation with
an extensive period of almost no precipitation and above-average temperatures.

As in the preceding scenarios, the reliability of the model was very good for the stations located in
the lower part of the basin: the outlet station RKM and JAV station. Surprisingly, the worst performance
was observed for the model at ROK station (Figure 11c), which had the lowest R? values of the entire
series of models.
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Figure 11. Simulation scenario SC5—low flow period of 1 June-27 June 2014 at stations: (a) RKM;

(b) JAV; (c) ROK; and (d) HAJ.
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At the basin outlet at RKM, the goodness of fit was fairly good (R? = 0.94) with a well-fitted
general trend and slightly overestimated water level values in the second half of the simulation period
(Figure 11a). AtJAV station (R? = 0.94), the fits of the values and the trend were close to the observations
(Figure 11b).

In the ROK catchment (R? = 0.54), the model significantly overestimated the values compared to
the observations over the whole period (Figure 11c). In contrast, in the HAJ catchment (R? = 0.71) the
simulated values were underestimated, and the model missed a minor peak flow.

3.3. Model Performance

The application of the support regression model to simulate the runoff for five different scenarios,
reflecting typical types of events, showed relatively high goodness of fit of the simulated to the
observed values, with significant differences among the catchments and simulation scenarios (Table 2).

Table 2. Model performance for simulation scenarios in the study catchments.

R? RKM JAV ROK HAJ Mean

Validation (hydrological year)  0.9127 0.8912 0.9177 0.8040 0.8814
Regional flood 0.9616 0.9237 0.9059 0.8686 0.9150
Summer storm 0.9599 0.9231 0.8573 0.6607 0.8503

Spring snowmelt 0.9602 0.961 0.8989 0.8377 0.9145

Rain on snow 0.9750 0.9864 0.9479 0.6211 0.8826
Drought 0.9419 0.9396 0.5427 0.7116 0.7840

Mean 0.9519 0.9375 0.8451 0.7506 0.8713

The best performance was achieved at stations located in lower part of the basin, and the
performance decreased with increasing mean altitude of the catchments. At the outlet of the Roklansky
Brook basin at Modrava (RKM station), the SVM model performed very well in all simulation scenarios;
the R? values for every scenario exceeded 0.91 with a RZ%ean = 0.95. Similar success was achieved for
Javoii Brook (JAV station, RZmean = 0.94), located in lower part of the basin, where only one simulation
(hydrological year) had an R%nean value less than 0.9.

In the Rokytka catchment (ROK station), located in the middle of the basin altitude, the simulations
were very reliable for all scenarios but the low flow (R? pean = 0.84).

The most elevated catchment of Roklansky Brook at Hajenka (HAJ, R2ean = 0.75), located at the
ridge of the Sumava Mts., showed the worst performance across the assessed catchments. For almost
all of the simulation scenarios, the simulations in this catchment were least reliable. However, in three
scenarios, the Rzmean values exceeded 0.8 and were never less than 0.62.

For the simulation scenarios, the best average performance was achieved for the events
resulting from regional flooding (SC2, R?mean = 0.915) and for events related to the spring snowmelt
(SC3, R? nean = 0.915). The third best scenario was rain on snow (SC4, R%mean = 0.883). The weakest
performance of the SVM model network was achieved for the simulation of the low flow period
(SC5, R?mean = 0.784).

4. Discussion

Recent studies comparing SVMs with other types of models—physically based, conceptual or
machine learning, indicate the solid performance of SVMs, especially on nonlinear data series [26].
The examples can be taken from different environments and spatial scales. Dibike et al. have compared
the SVMs to ANNs and conceptual runoff models across three distinctly different scales and climate
conditions and demonstrated that the SVMs perform well under varying conditions and provide a
good alternative to the conventional models [37]. Runoff simulations in long-term time scale, provided
by Lin et al. [32] indicated that SVM model gave more accurate results than ARMA and ANN models
in a complex basin at the regional scale. The study comparing SVMs to the EPA’s Storm Water
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Management Model (SWMM) at a micro-scale in two different urban catchments confirmed that
SVMs reach similar performance than a conventional model, even in uneasy conditions of the urban
environment with significant share sewage drainage [31].

The good performance of SVMs in simulations on hydrological time series was confirmed
also in our study, focused on small homogeneous catchments in the mid-mountain environment.
The cross-comparison of the model performance in the model catchments for different scenarios
indicated that the data-driven SVM model generally performed relatively very well.

The SVM network was able to reliably simulate most of the typical runoff situations in the
montane catchments with varying physiographic conditions without substantial errors in the fits of
the trend, timing of the events and peak values.

The efficiency of the SVM algorithm suggests its wide usability. The typical SVM applications
are in binary classification, non-linear classification, and SVM clustering. A specific branch of SVM,
support vector regression (SVR), can apply a continuous function to data. This feature is particularly
useful when the predicted variable is continuous, as in the case of hydroclimatic time series [49].

The model performance in our study was generally better in the complex catchments with stations
located in the lower part of the catchment. In contrast, the simulations in the topmost catchment
were the least reliable for most scenarios; however, the simulations still had satisfactory fits without
substantial errors.

The SVM model proved the ability to reliably simulate complex situations, such as rain on snow
events, which are complicated for conventional hydrological models. However, the simulations of
some of the simple events, such as a single peak summer storm and the dry period, were less accurate.

The varying model performance in different catchments might be affected by the differences
in physiography and environmental status. Although located in close vicinity, the catchments have
variable distributions of bedrock, soil, and vegetation cover, as well as different topography and
floodplain characteristics. This variation might result in a complex hydrological response that is
difficult simulate using data-driven models. Among the factors that can affect the predictability of the
runoff response in the simulated catchments, the following should be considered.

The whole area experiences the effect of climate change, which is modifying the rainfall-runoff
properties in a larger scale, with an apparent effect on the frequency and magnitude of the peak flows
and dry periods [13].

The upper part of the basin has undergone massive forest decay since the 1990s due to a bark
beetle outbreak [50,51], which hit the catchments to different extents and with different timing. In the
HA]J catchment, deforestation occurred prior to the monitoring period, and the forest has recently
undergone restoration of the bottom layer vegetation. The ROK catchment has been heavily affected by
forest decay since 2010, and the share of the healthy, damaged and decayed forest is rapidly changing.
The JAV catchment remains relatively undisturbed.

Another source of difference among the catchments is the soil properties. Two catchments at high
altitude, HAJ and ROK, have significant shares of peatland (see Table 1), which affects the speed of the
runoff response under rainfall situations, the retention and transformation potential of the catchments,
and the response to dry periods [52].

Moreover, there are remnants of the historical stream regulations and abandoned ponds that were
built in the 18th century for timber floating (Figure 12c). The hydrological regime at the outlets of
catchments of ROK and HA] is affected by the abandoned reservoirs that act as polders during the
flood events, with a substantial effect on the transformation of the flood wave [53].

Such factors affect the hydrological response and predictability of the processes and values in the
catchments, especially as some of them undergo rapid changes.

These factors might be apparent, especially in the catchments that are undergoing the most intense
transition of environmental conditions and are affected by the presence of the former large reservoirs,
the HAJ and the ROK catchment. Here, the cumulative effect of the transient environmental conditions,
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extensive peatland and the presence of reservoirs acting as polders might be the cause of the weaker
performance of the SMV network learning and the fit of simulations to the observed values.

However, despite the weaker performance of the model in these two catchments, the overall
performance of the SVM model for reconstruction of the hydrological time series can be
considered reliable.

a)

<)

Figure 12. The course of the rain on snow flood on 1 December 2015, in different parts of the study
area: (a) regulated channel at the basin outlet at Modrava (RKM); (b) flood spill in the large floodplain
of JAV catchment; (c) flood filling the polder at ROK; and (d) ice jam at a road culvert at the headwaters
(BRE) (Photo by Lukas VI¢ek).

The solid performance, together with the ease of model setup, is highly beneficial when building
models in areas that lack appropriate data for the setup of conventional hydrological models, especially
experimental catchments, where the level of detail necessary for the model is often beyond the
resolution of the available data. In this study area, this applies to the high level of generalization of the
geological and soil maps or outdated land cover maps, which are typical data inputs for hydrological
modeling [54,55].

Hence, although the data-driven models can be burdened by uncertainty, their application may be
beneficial for different applications, ranging from the reconstruction of past events and reconstruction
of missing data in time series to hydrological forecasting. The superior performance of SVMs indicated
in several studies [32,37] is seen in avoiding the typical weaknesses of ANNs. First, ANNs often
converge on local minima rather than global minima, meaning that they are essentially “missing the
big picture” (or missing the forest for the trees). Second, the ANNs often overfit if training goes on too
long, so for a given pattern, an ANN might start to consider the noise as part of the pattern [56,57].
SVMs do not suffer from either of these problems [16].

The rising number of applications of machine learning models in different aspects of hydrological
indicated their suitability for reliable reconstruction or prediction of hydrological processes [31].
In particular, machine learning techniques seem to be coping well with one of the key problems
with noise hydrological data, which represent one of the principal sources of limited performance of
conventional modeling techniques [11].

Despite the proven performance of machine learning models including SVMs, their application
in hydrological forecasting is still limited. Unlike in conventional conceptual or physically based
models, where the uncertainty in forecasts can be explained in relation to the processes and their
schematization, the unexpected results of data-driven models can be hard to interpret which prevents
their wider use in forecasting [34].
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A promising field of application for machine learning models in hydrology is the reconstruction
of missing data in observations. Filling the gaps in time series of observations is a long-term problem,
e.g., in developing countries, where the good applicability of SVMs has already been proven [11].
With the rapid development of sensor networks, seeking efficient approaches for completion of missing
data is of growing importance with applications in research as well as in water management or flood
warning systems [1,5]. The sensor networks, although reliable, are burdened by a number of potential
technical issues. Ten years of operation of our monitoring network in the montane environment [3]
showed that issues related to data loss might be the result of physical damage by natural processes,
technical defects or failures in operation. Physical damage to sensors or control stations can result from
extreme weather that can damage the sensor itself or the electronics of the control station. Typically,
it is related to periods of extreme cold, electrical shocks after lightning, physical damage after flooding,
mud flows or freefall, and in rare cases, vandalism. A frequent source of data loss is power outages.
Depending on the type of the monitoring devices installed at the station, the sampling frequency and
data transfer interval, the energy demand of the station varies significantly. If not properly balanced,
battery drain could result in monitoring interruptions and data losses. As the monitoring stations are
often placed in remote areas with limited accessibility, e.g., in the winter season, power outages can
affect complex time periods.

The presented approach for time series modeling using an SVM data-driven model demonstrated
potential benefits but also limitations for applications. The positive aspects of the application of the
SVM model to hydrological simulations include the following;:

(i) Universal applicability: Data-driven models are independent of the given physical environment
or conditions. While the only driver of the algorithm is data, the simulation network can be
developed and trained for any type of environment, scale or temporal resolution. In addition to
the observed variables used to train the model for a given process, the algorithm does not require
additional or specialized data sources required by conventional hydrological models, such as
detailed geologic or soil maps, soil parameters, and vegetation maps, which might be unavailable
for experimental catchments.

(ii) Transparent model setup and control: The environment of data mining frameworks, such as
KNIME and RapidMiner, enables the visual development of the model and transparent control
of the workflow. The workflow can be easily modified for different scenarios or reused with
different datasets.

(iii) Rapid model setup and learning: The building of the data-driven model in the visual environment
of the data mining workflow is rapid. The SVM model learner performs relatively fast; a model
with 12 input variables based on daily values over five years can be trained on the scale of hours
or less, depending on computer performance.

(iv) Reliability and robustness: Testing of the SVM model proved that the model can learn and
predict complex runoff situations that are difficult to handle using conventional hydrological
models, such as snowmelt or rain on snow events. The goodness of fit in varying environmental
conditions is satisfactory for most of the simulated scenarios. Although the model overestimates
or underestimates the values in specific conditions and scenarios, the general fit of the trends,
peak values and timing of events is reliable.

The data-driven modeling approach is also burdened by several limitations:

(i) Specificity of the model: The learning of the network is always specific to the given configuration
of the selected set of variables and parameters for a given basin. A network trained for given
conditions is specific and cannot be applied to different catchments. The model must be re-trained
for each configuration of applied variables.

(ii) The risk of selection of inappropriate variables: The quality of the machine learning model relies
on the quality and structure of the applied data inputs. The selection of inappropriate variables
for model training can deteriorate the model performance and reproducibility of the results.



Water 2016, 8, 560 22 of 25

(iii) The risk of insufficient model training: Reliable model training requires a complex set of events,
including samples of the typical events or situations that might occur in simulation scenarios.
The use of a limited sample of training data, even for appropriate variables, might result in false
signals in the predictor phase and poor quality of the forecasts.

5. Conclusions

This paper analyzed the potential of SVR models for the completion of missing data in
hydrological time series observed in a sensor network.

Automated sensor networks are currently experiencing rapid growth of applications in
experimental research and monitoring and provide an opportunity to study the dynamics of
hydrological processes in previously ungauged or remote areas. Due to physical vulnerability or
limited maintenance, networks are prone to data outages, which can devaluate the unique data sources.

Monitoring sensors are often organized into networks in basins, where the processes at individual
stations are at least partially interrelated. Hence, there is potential for application of data-driven
models, such as SVM, to simulate the observed processes. These models can be used to complete
missing data in the monitoring network.

The SVR model was applied to test the applicability in a network of nested experimental
catchments in the mid-latitude montane environment of the Sumava Mountains, Central Europe,
which are characterized by different physiography and environmental status. The model was applied
to a range of typical runoff situations, including a single event storm, multi-peak flood event, snowmelt,
rain on snow, low flow period and a complex hydrological year.

The simulations based on daily values proved the high efficiency of the SVM modeling approach
to simulate hydrological processes in a network of monitoring stations. The SVM model was developed
and run for all stations to analyze the performance under different environmental conditions.

Application of the model to a mid-mountain environment proved the robustness and good
performance of the data-driven SVM model to simulate hydrological time series. The SVM network
reliably simulated most of the typical runoff situations in montane catchments characterized by
variable physiographic conditions without substantial errors in the fit of the trend, timing of the events
and peak values. The model reliably reconstructed and simulated even the complex events, such as
rain on snow episodes and flooding from recurrent precipitation. The model had weaker performance
in simulations of rapid summer storms and low flow periods.

The model performance was generally better in the complex catchments with stations located in
the lower part of the catchment. The simulations in the topmost catchment were the least reliable for
most scenarios, but the fits were good and without substantial errors.

The study indicated that the data-driven SVM model can be used for reliable reconstruction
of missing data from hydrological sensor networks, and this technique has the potential for wider
applications in hydrological research and water management.
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