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Abstract: Soil erosion and deposition mechanisms play a crucial role in the sustainability of both
existing reservoirs and newly planned projects. Soil erosion is one of the most important factors
influencing sediment transport yields, and, in the context of existing reservoirs, the surrounding
watersheds supply both runoff and sediment yield to the receiving water body. Therefore, appropriate
land management strategies are needed to minimize the influence of sediment yields on reservoir
volume and, hence, the capacity of power generation. In this context, soil erosion control measures
such as buffer strips may provide a practical and low-cost option for large reservoirs, but need to
be tested at the catchment scale. This paper represents a study case for the Itumbiara hydroelectric
power plant (HPP) in Brazil. Four different scenarios considering radially planted buffer strips
of Vetivergrass with widths of 20 m, 40 m, 100 m and 200 m are analyzed. A semi-distributed
hydrological model, SWAT, was used to perform the simulations. Results indicate a reduction of
sediments transported to the reservoir of between 0.2% and 1.0% per year is possible with buffer
strip provision, and that this reduction, over the life of Itumbiara HPP, may prove important for
lengthening the productivity of the plant.
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1. Introduction

Soil erosion and subsequent land degradation is recognized as an internationally important
issue that has significant environmental and socio-economic impacts. There are direct links
between land management techniques and the rate of sediment erosion, driven by wind and water
processes. Focusing on water related processes at the watershed scale, eroded sediment is transported
across the land and into receiving water bodies from where it is conveyed through river systems,
eventually depositing within the linked fluvial-estuarine-coastal system. In fluvial systems with large
anthropogenic interventions (e.g., hydropower dams and reservoirs), sediment deposition can be
exacerbated by large impoundments that act as sediment sinks within the watershed. With limited
potential for large-scale sediment flushing, this sedimentation can build up over time, reducing
available storage and decreasing the efficiency of the reservoir system (e.g., through lower attenuation
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of flood flows, reduced potential for hydropower production, less water for irrigation supply, or any
combination of these) [1].

In agricultural watersheds, inappropriate cultivation practices often accelerate erosion rates and
thereby increase sediment movement from the land surface and subsequent transport in streams
and rivers. Similarly, the occurrence of large areas of exposed soils between cultivation seasons
influences ground infiltration rates and overland surface flows, thus potentially increasing soil
erosion rates observed during this period significantly [2,3]. When accelerated sediment erosion
occurs in upstream river basins, it can result in detrimental impacts to downstream engineering
infrastructure—in particular, reservoirs impoundments and associated hydropower operations [4].
Implementation of best management practices is therefore required in these critical erosion prone areas
to control such losses and to protect receiving impoundments from high sediment loads [5-8]. Thus,
improved insight and understanding of the interplay between soil erosion/sedimentation mechanisms
within the surrounding watershed and potential land management strategies, such as buffer strip
implementation, designed to mitigate these processes (and, hence, reduce sediment transport yields
from the watershed), will have a crucial role in formulating “best-practice” design and management to
ensure the sustainability of planned or existing reservoirs [9,10].

The government of Brazil is currently investing heavily in large hydropower plants to meet the
increasing energy demands of the country. However, the loss of water storage volume within these
impoundments due to sedimentation from the surrounding watersheds is recognized as a significant
problem for some of these newly constructed reservoirs, impacting upon their useful operating life.
In an attempt to address this issue, engineers are involved in developing better management strategies
to identify critical regions within the watersheds that contribute most to these land erosion (and
subsequent reservoir sedimentation) problems and to propose possible intervention measures to
manage water and sediment resources more effectively.

A number of different hydro-mechanical properties can be identified to explain the protective
role that vegetation has in promoting slope stabilization, reducing soil erosion risk, and filtering
sediment movement through overland flow (i.e., runoff). In this context, a tight, dense cover of grass or
herbaceous vegetation can provide superior protection against the impact of water (e.g., arising from
precipitation) and wind erosion, whilst filtering and trapping the sediment load carried in overland
flow. The deep-rooted, woody vegetation is effective in mitigating or preventing shallow mass stability
slope failures. Therefore, the loss or removal of slope vegetation can result in either increased rates of
erosion or a higher incidence of mass slope failure.

The use of Vetiver grass (Indian grass) as a vegetation type for delivering such potential sediment
or soil erosion mitigation can provide both environmental and financial benefits. It has a root
system that is resistant to changes in the water level within the reservoir and does not require
frequent maintenance. Furthermore, it will grow virtually anywhere (i.e., not constrained by site
conditions), which makes it unique for erosion mitigation and slope stabilization. When planted closely
(approximately 10 cm apart) across the slope to form a hedge, its biological growth characteristics
provide an effective dense vegetation barrier that filters out run-off sediment, dissipates hydraulic
forces, and spreads out excess water evenly across the length of the hedge barrier. These properties
make it an ideal vegetation type for buffer strip implementation and can stabilize slopes and filter
sediment from overland flow. Figure 1 shows the schematized role of Vetiver grass in interrupting
overland flow and trapping/filtering out sediments.
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Figure 1. Schematic of the role of Vetiver grass in filtering sediment carried in overland flow.

Table 1. Existing literature overview of experimental studies applying Indian grass.

Study Application Scale Results
Desho with the highest tiller
Experimental investigation of runoff reduction and Zeli:?:srhigﬁecslf?r?z,o ?Tjng}ci
[11] sediment removal by vegetated flltgr str1p§ nto Use of 1.5 m wide strips revealed better STE than the other
cropland. Study with grass species including grass species, Vetiver (59%)
Vetiver grass. (Debre Mewi Basin Ethiopia) Senbelet (49%), Akirma (36%) and
Sebez (20%).
Experimental investigation of runoff reduction and Under natural rainfall, more than
sediment removal by vegetated filter strips into 70% of sediment was trapped in
[12] cropland. Effectiveness of tropical grass species At filter lengths of 2.5,5  the first 5 m, and lengthening the
(Elephant grass, Lemon grass, paspalum and and 10 m. strip to 10 m only resulted in a
sugarcane) as sediment filters in the riparian zone marginal increase in sediment
of Lake Victoria, Uganda. trapping effectiveness.
Measured runoffs during natural
Experimental investigation in Three Gorges Dam zafmf:rlllti\l/:cr;tzrsng;/l;ga;oatl;gges
Area, China. Contour hedgerows have been used in ffP " E X £ and soil
[13] this area to control soil erosion and to improve Use of 10 m wide strips. etiects on reducing runotl and sol
hillslope stability in the catchment of this loss. The reduction in soil losses
river section ranged from 18.4% to 70.0% and
) runoffs were reduced by 17.2%
to 70.8%.
Experimental investigation. Reduction of runoff 2 m in width . Ehg study fouéld that Vef’tflVEIi
and soil loss over steep slopes by using Vetiver. m in width, 3 m in ecgerows recuce rumott volume
[14] Field experiments were conducted at Kasetsart vertical height, 10.44, 8.08, by 31%-69% and soil loss by
Univers? Thailand and 6.71 m in length. 62%-86% on steep slopes of
R4 : 30%-50%.
The three selected vegetation
Experimental investigation of runoff reduction and z}f]gs;i)ilelgf?ﬂtt}ef;lrfe}zrimen t
sediment removal by vegetated filter strips into The hed der th . % 1
cropland. Two types of hedgerow widths (two-row ¢ hedgerows were under the experumenta .
[15] 10 m long with a spacing  conditions. Generally, the soil loss
and three-row) were planted for each of three
. ) . . of 5 m between the rows.  from the grass hedges was
species of vegetation Bahia grass, Vetiver and .
Daylily. (Red soil region of China) controlled by the characteristics of
vy the grass stems, regardless of the
hedge widths.
Experimental investigation of runoff reduction and
sediment removal by vegetated filter strips into . . .
cropland. Six different treatments: control (without Each of the treatments g(l)ell l;:;g? C;Z;b}l:;gdﬂ:\; ligwest
[16] any treatment), soil bund alone, and soil bund was tested on an area of p 8

combined with tephrosia, Vetiver grass, Elephant
grass and a local grass called Sembelet.
(northwestern of Ethiopia)

180 m2.

runoff (40%) and soil loss (63%) as
compared to the other treatments.
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International research and applications of the Vetiver eco-engineering technique have grown since
the 1980s in terms of both theory and practice (detailed in Table 1). Standard sites for the application
of Indian grass include river banks, reservoirs edges, slopes, and critical erosion areas, such as end
zones of flow, where it can form effective buffer strip vegetation. Brazil’s hydropower reservoirs have
significant perimeters that make them susceptible to erosion and stabilization issues. Hence, erosion
treatments that focus on reducing sediment delivery to the reservoir and do not use significant areas
of land must be a priority. In the existing literature on Vetiver grass, while there are variations in the
scales of experimental studies conducted to date (see Table 1 for details), the majority of studies have
focused on plots between 1 m and 30 m wide. As such, there is no clear consensus in the literature
about the large-scale application of Vetiver grass in erosion control and sediment trapping/filtering.

There is therefore a need to upscale these field findings to larger watershed scales in order to
understand their effectiveness in reducing sediment delivery to the river basin, hence their ability
to control sediment deposition within receiving reservoirs. Consequently, the objective of this
study was to identify specific erosion prone areas within a case study watershed—the Itumbiara
hydroelectric power plant (HPP) in Brazil—and to investigate the efficiency of the identified potential
biostabilization/sediment filtering methods on sediment yields. The paper aims to upscale in situ
findings to understand the efficiency of geotechnical interventions at the watershed scale using the
Soil and Water Assessment Tool (SWAT), a basin scale modeling approach. Results are presented from
the preliminary assessment of the role of edge vegetation in the form of a buffer strips composed of
Vetiver (Indian) grasses and in mitigating sediment delivery to the Itumbiara HPP reservoir.

2. Materials and Methods

For the purposes of the study, a semi-distributed, basin-scale hydrological model, capable of
simulating surface water and sediment movement was required to analyze sediment delivery (yield)
to the reservoir and the potential efficiency of any proposed biostabilization and sediment filtering
methods. Over the years, a number of hydrological models (e.g., MIKE SHE, AGNPS, and the Soil and
Water Assessment Tool (SWAT)) have been developed [4,17-19] to simulate water flow and sediment
transport at the river-basin scale. The current study uses SWAT, a process-based hydrological model,
developed by the USDA, Agricultural Research Service (ARS), which can be applied to large ungauged
basins [20-22]. Previous studies using SWAT have addressed a variety of watershed issues (e.g.,
van Griensven et al. [23]; Gassman et al. [24]; Mishra et al. [5]; Cao et al. [25]; Tuppad et al. [26];
Mukhtar et al. [27]). A detailed description of the SWAT model, and its capabilities for watershed
hydrological and sediment modeling can be found in van Griensven et al. [23].

2.1. Study Site: Itumbiara HPP, Brazil

The Itumbiara Dam is an earth-fill embankment dam on the Paranaiba River near Itumbiara city
in Goids, Brazil (Figure 2), incorporating a HPP with an installed capacity of 2082 MW. The impounded
reservoir has a plan area of 778 km? and can store 12.5 km? of useful water volume for power generation.
The upstream watershed of the Itumbiara HPP is approximately 5685 km?. A weather station is located
adjacent to the northwest sub-basin (i.e., sub basin 82, Figure 2), which records average annual rainfall
of 1638 mm. The sediment erosion characteristics in the reservoir watershed are regarded as being
representative of those found around many other Brazilian reservoirs.
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Figure 2. Itumbiara hydroelectric power plant (HPP)—Brazil: left hand figures (top to bottom): Brazil,
Goias State in Brazil, location of Itumbiara HPP in Goias Sate; right hand figures (top to bottom): Map
of Itumbiara HPP showing sub-basins; zoomed detail of the study area divided into 7 sub-basins (23,
30, 46, 64, 67, 71, and 82), showing laminar erosion susceptibility.

A team of researchers from the Institute of Socio-Environmental Studies at the Federal University
of Goias (IESA-UFG) developed an erosion potential map (see Figure 2) for the watershed, as part of
a R&D project funded by the HPP operating company (Eletrobras Furnas). This map was created by
estimating the density of erosion at the reservoir edge and associated interfluves, using a statistical tool
(Kernel, ArcMap software), and combining this with other environmental factors for the watershed
sub-basins such as soil classification, coverage and landuse, surface geomorphic character, slope and
hypsometry. From the erosion susceptibility map (Figure 2), it is clear that, of the total reservoir
watershed (approximately 5685 km?), only about 167 km? reports significantly high erosion potential.
The study used the erosion potential map to focus on this smaller critical area to investigate in
detail the potential of Vetiver grass to reduce sediment yield to the reservoir. This detailed analysis
(Figure 2) therefore focused on 7 adjacent sub-catchments with significant erosion potential that all
drained directly to the reservoir. This sub-area is referred to herein as the study watersheds. Finally,
Figure 3a—d show the landuse, soil classification, slope, and digital elevation model for the Itumbiara
HPP study watersheds.
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Figure 3. Study area detailed data maps (a) Landuse; (b); soils (c) topography; (d) DEM.
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2.2. SWAT Model Input Data

The required input data for the SWAT model setup in the current [tumbiara HPP case study is
described below:

e Landuse: The landuse map (Figure 3a) used images from INPE via Landsat-5 satellite TM sensor
(Thematic Mapper) with a spatial resolution of 30 m. Complementary images from Japanese
satellite ALOS were used, with 2.5 m spatial resolution. Field visits were undertaken to validate
the images where necessary. The catchment is dominated by pasture—PAST (42.2%), generic
agricultural land—AGRL (27.4%), forest-evergreen—FRST (21.4%), forest-mixed—FRST (6.7%),
forest-deciduous—FRSD (0.8%), and barren or sparsely vegetated—BSVG (2.3%).

e Digital elevation model (DEM): A 30 m by 30 m resolution DEM was obtained from the
TOPODATA project [28]. The DEM was used to delineate the upstream watershed of the
Itumbiara HPP. Sub-watershed parameters such as slope gradient, length, and the stream network
characteristics such as channel slope, width, and length were derived from the DEM (Figure 3d).

e Soil data: The soil data of Itumbiara HPP watershed was added to the SWAT soil database
manually (at a resolution of 30 m by 30 m). The soil groups were classified using RADAM
BRASIL [29] and the FAO'’s (Food and Agricultural Organization of United Nations) texture
classification for tropical soils. The average altitude of the survey was 12 km at 690 km/h.
The imaging system used GEMS (Goodyear Mapping System 1000), which operates at X-band
(wavelengths close to 3 cm and often between 8 and 12.5 GHz). In addition, other methodologies
were used to provide information on soil type including infrared and multispectral radar images,
low altitude overflights, on-site field visits, and petrographic analysis. The soil map of the study
watershed is shown in Figure 3b. For the whole catchment, the following soils are present (with
percentage abundance in brackets): hapliccambisol—CX (33%), leptsol-regosol—RL + RR (16.5%),
red oxisol—LV (13.6%), ultisol—PV (12.7%), gleysol—GX (10.1%), red yellow oxisol—LVA (8.2%),
red yellow oxisol-haplic—LVA + CX (5.7%), leptsol—RL (0.2%).

e  Hydrometeorological data: The data required for the model included rainfall, river discharge, and
climate data (temperatures, solar radiation, humidity, and wind speed). Daily rainfall and climate
data was available for one station inside the Itumbiara HPP (shown in Figure 2). The analyzed
rain gauge provided data over the period from 1987 to 2013.

3. Results

3.1. SWAT Model Calibration

As part of the model calibration, a sensitivity analysis of the SWAT model parameters was
performed, using the Latin hypercube one-factor-at-a-time (LH-OAT SWAT option) sampling
procedure, to determine the most influential parameters for runoff and sediment yield [23]. The first
three years were used as a warm-up period to minimize uncertain initial conditions, as the SWAT
manual recommends.

Table 2 presents the results of this sensitivity analysis, showing the ranking and sensitivity level
of each parameter tested. The sensitivity index (SI) was defined using the manual mode based on
Equation (1) [30]. The higher the obtained sensitivity index value is, the higher the model sensitivity is
compared to the parameter, where (a) values larger than 1 indicate high sensibility; (b) values between
1 and 0.8 indicate intermediate sensibility; and (c) values smaller than 0.8 indicate low sensibility.
It is valuable to notice that values close to zero indicate that the model does not present sensibility to

the parameter.
R1-R2

SI =2 1)

where SI is the index in relation to the entry parameters; R1 is the obtained result with the model
related to the smaller entry data; R2 is the obtained result with the model related to the largest entry
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data; R12 is the average of the obtained results with smaller and largest entry data; I1 is the smaller
entry data; I2 is the largest entry data; I12 is the average of the entry data.

Table 2. Result of sensitivity analyses.

Parameter Description Rank Sensitivity Level  Sensitivity Index (SI)
Cn2 Initial SCS runoff curve number 1 High 425
USLE_P USLE equation support 2 High 2.90
Sol Z Soil Depth 3 High 1.31
Esco Soil evaporation compensation 4 Intermediate 0.98
Slope Average slope steepness 5 Intermediate 0.96
Sol_Awc Available water capacity 6 Intermediate 0.85
Canmx Max canopy storage 7 Intermediate 0.83
Blai Max potential lead area index 8 Intermediate 0.82
Biomix Biological efficiency 9 Weak 0.63
Surlag Surface runoff lag time 10 Weak 0.55
Slsubbsn Average slope length 11 Weak 0.28

The results indicate that the most important (Rank 1, “excessively sensitive”, Table 2) parameter
was Cn2 (initial SCS runoff curve number), suggesting that this parameter directly affects the soil
permeability, the landuse, and the antecedent soil water conditions.

Within the study, watershed sub-basin 71, flow (velocity), and sediment (turbidity) data was
measured from a sampling campaign at the main basin outlet to the reservoir, which was used for
calibration of the SWAT model. The data was in the form of daily spot samples, taken at a depth of
1 m from the surface.

Next, the model was calibrated, using the top three ranked sensitive parameters in the SWAT
model (Table 2), against observed field data collected in 2013 (See Figure 4). Manual calibration was
undertaken, focusing on the most sensitive parameters. These were varied until reasonable agreement
was achieved (Figure 4). The SWAT model performance for the calibration period (April 2013) was
evaluated using Nash—Sutcliffe efficiency (NSE), and the results were 0.889 for the flow data and 0.751
for the sediment data. Figure 4 presents the results of the calibration process for both sediment yields
and flow over the calibration period, while Table 3 shows the calibrated parameters—Cn2, USLE_P,
and SOL_Z—and multiplying factors used. Due to the length of the measured record, validation is not
possible in this case.
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Figure 4. Calibrated (simulated) and observed sediment delivery and flow from sub-basin 71.
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Table 3. Calibration parameters.

Variable Ranking  Original Multiplying Factor Final Values
Cn2 1 42.50 1.19 50.58
USLE_P 2 0.29 3.07 0.89
Sol_Z (mm) 3 131 0.66 0.86

In cases where validation is not possible, it is standard to undertake an uncertainty or sensitivity
assessment of the calibrated model. This was undertaken, and the results indicated that changing the
calibrated parameters £20% reduced the NSE value for sediment to 0.50.

3.2. Land Management Scenario: Buffer Strip Implementation

Once calibrated, the model could be used to implement different Vetiver/Indian grass buffer strip
configurations to test their effectiveness in reducing sediment yields. Within the SWAT model, the
hydro-mechanical processes (Figure 1) of the Vetiver grass were modeled by implementing a new
landuse layer consisting of the Vetiver/Indian grass vegetation type along the perimeter of the reservoir.
This captured the interruption of the overland flow process and represented appropriately the sediment
filtering /trapping properties of the grass buffer strips (Figure 1). Specifically hydrological parameters
were modified in order to do this. Manning’s n (roughness) alongside the SCS runoff curve numbers
was modified to represent the buffer strip implementation. The Vetiver/Indian grass was adopted as
the treatment method along the perimeter of the reservoir as shown in Figure 5.

Land Use
I FRsE
FRSD

FRST
AGRL ] 4om M Monitoring Point

PAST [ T1oom O outfows
B ssve " TJ20om  [_] subbasin

Figure 5. Indication of buffer strip implementation at the sub-basin outflows into the reservoir.

In order to upscale the In Situ findings of the influence of Vetiver/Indian grass buffer strips on
the reservoir sediment yield, a number of different scenarios were considered and modeled with the
SWAT model. Four different scenarios were devised to understand the potential benefits for erosion
mitigation and sediment filtering/trapping by implementing this grass biostabilization measure as
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watershed-scale buffer strips at the [tumbiara HPP site (note: this buffer strip comprises Vetiver/Indian
grass at the outflows from critical watersheds, thus avoiding existing forested areas):

e  DBaseline Scenario: Existing model with no additional vegetation;

e  Scenario 1: incorporate a 20 m wide bulffer strip around the sub-basin outflows into the reservoir;
e  Scenario 2: incorporate a 40 m wide buffer strip around the sub-basin outflows into the reservoir;
e  Scenario 3: incorporate a 100 m wide buffer strip around the sub-basin outflows into the reservoir.
e  Scenario 4: incorporate a 200 m wide buffer strip around the sub-basin outflows into the reservoir.

These scenarios were modeled by changing the landuse adjacent to the reservoir shoreline to
implement the buffer strip (Figure 5).

3.3. SWAT Model Simulations with Buffer Strips Implemented

The potential benefits to be gained from varying widths of buffer strips planted with Vetiver
(Indian) grass were determined in comparison to the baseline scenario. Table 4 details the sediment
production for each sub-basin in the study watershed (Figure 2) and shows the potential reduction in
sediment yield obtained for each of the four scenarios (i.e., for increasing buffer radius). It is clear that
this is non-linear in some instances (e.g., basins 46 and 71). In order to determine the effectiveness of
the buffer strips, Figure 5 shows the actual landuse in the sub-basins in the study watershed. Each
sub basin has a different landuse categorization, which is plotted alongside the reduction in sediment
delivery for each sub-basin in Figure 6.

Table 4. Sediment yield results.

Indian Grass Buffer

Baseline
Sub-Basin ‘l(\]:z)a Sed. 20m 40 m 100 m 200 m
(ton/Year) Sed. Reduction Sed. Reduction Sed. Reduction Sed. Reduction
(ton/Year) (%) (ton/Year) (%) (ton/Year) (%) (ton/Year) (%)
23 1766 3693 3683 0.27 3679 0.38 3663 0.81 3643 1.35
30 1154 2272 2265 0.31 2262 0.44 2251 0.92 2237 1.54
46 1719 3619 3593 0.72 3589 0.83 3541 2.16 3489 3.59
64 5167 10,004 9998 0.06 9996 0.08 9986 0.18 9974 0.30
67 3318 2386 2382 0.17 2381 0.21 2374 0.50 2366 0.84
71 1960 2468 2445 0.93 2436 1.30 2425 1.74 2385 3.36
82 1628 3682 3669 0.35 3663 0.52 3643 1.06 3605 2.09
Sum. 16,712 28,124 28,035 0.32 28,006 0.42 27,883 0.86 27,699 1.51
100% - 140
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Figure 6. Decrease of sediment delivery per sub-basin (and landuse designation breakdown),
demonstrating the implementation of varying buffer strip widths.
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From the results, it is possible to understand the influence of replacing the current landuse by
a Vetiver (Indian) grass buffer strip in each sub basin. Quantitative variations of the response of each
sub basin are complicated by the heterogeneity of landuse, the soil properties, and the slope in each.
There is no direct relationship between the area of the sub-basin and Vetiver (Indian) grass efficiency
potential (Table 4).

4. Discussion

Each sub-basin has particular characteristics that influence its sediment transport capacity and
subsequent delivery, including the distribution of landuse, the slope, the percentage of shoreline
to the reservoir, and the soil type. This makes the analysis complex. Results indicate that planting
Vetiver/Indian grass at the reservoir sub-basin outflows can contribute to a reduction of carried
sediments. Therefore, providing buffer strips of Indian grass on the margins of the Itumbiara HPP
reservoir generates a reduction in sediment transportation into the reservoir. In a conservative scenario,
considering a typical tropical soil density value (2.65 ton/m?), it is possible to obtain a decrease of
around 160.4 m?®/annum of soil sediments using Vetiver; taking into consideration that the study
area represents around 3% of upstream watershed of the Itumbiara HPP. This indicates that the
methodology would be beneficial for the Itumbiara HPP system.

This finding demonstrates the usefulness of buffer strip implementation for reservoir management
in erosion susceptible areas. Ignoring the problem of sediment erosion and subsequent sediment
delivery to the reservoir could cost up to 30% of the generation capacity of a hydroelectric plant,
as evidenced in China, Africa, and the United States [31]. Studies such as the one reported here
can provide a useful insight into the role of land management and erosion control practices (in this
case, buffer strips) in reducing sediment yield. However, any management techniques identified
as successful through a modeling strategy must be accompanied with sufficient and appropriate
institutional support to coordinate the correct implementation and maintenance of measures.

In the current study, relatively low percentages of sediment transport reduction at the outflow
of each studied sub-basin were observed due to the introduction of the Vetiver/Indian grass in
comparison to other studies. This shows some degree of contribution by the introduced methodology
but also demonstrates the need for further investigation of potential alternatives of soil use and
adoption of larger areas of permanent preservation.

The model has a number of limitations. For example, (i) the paucity of calibration data requires the
upscaling in parameterization for the model, and (ii) the buffer strips are currently only implemented on
the reservoir outflows from the 7 studied sub-basins out of the 275 hydrological sub-basins comprising
the total reservoir watershed. Thus, if there were more widespread sediment management strategies
imposed in the form of buffer strips along the full perimeter of each sub-basin that could result
in significant reductions to the total sediment reservoir yield. Another constraint to be taken in
consideration is that changes to reservoir water level are currently not considered. Added benefits
could be realized with the extension of these buffers adjacent to all watercourses through the catchment.
In fact, this type of intervention may be more beneficial than increasing the width of the buffer strips
at the reservoir outflows. Additionally, the current study only considers the hydrological response
to landuse change, but ignores the impact of climate change and human factors on hydrological
factors. However, vegetation and land surface hydrology are intrinsically linked with long-term
climate change [32], and water abstractions and climate change have resulted in variations in annual
runoff [33]. Therefore, in future studies, forcing factors related to climate and human impacts should
be introduced into the input layer of the model structure so that future landuse/cover types will be
more realistically reflected.

5. Conclusions

To adequately and effectively target and implement erosion control measures to reduce reservoir
sedimentation, distributed erosion modeling can be used to support decision making. However, the
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availability of sufficient data to calibrate and validate streamflow and sediment dynamics is crucial
for the successful application of such models. The presented methodology and results indicate that
distributed erosion and sediment yield modeling with SWAT, supported by sufficient data on discharge
and sediment yields of different points in time and space, can provide quantitative insight into scaling
up the effectiveness of site-specific erosion control measures and the subsequent benefit to downstream
reservoir sedimentation. Thus, this paper presents a first step towards evaluating the role of buffer
strips on sediment yield, demonstrating the benefit of scaling up alternative techniques to treat erosion
in reservoirs of hydroelectric plants. However, this is an indicative, exploratory study; further, more
detailed studies are required.
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