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Abstract: Meander dynamics has been the focus of river engineering for decades; however, it remains
a challenge for researchers to precisely replicate natural evolution processes of meandering channels
with numerical models due to the high nonlinearity of the governing equations. The present
study puts forward a nonlinear model to simulate the flow pattern and evolution of meandering
channels. The proposed meander model adopts the nonlinear hydrodynamic submodel developed by
Blanckaert and de Vriend, which accounts for the nonlinear interactions between secondary flow and
main flow and therefore has no curvature restriction. With the computational flow field, the evolution
process of the channel centerline is simulated using the Bank Erosion and Retreat Model (BERM)
developed by Chen and Duan. Verification against two laboratory flume experiments indicates the
proposed meander model yields satisfactory agreement with the measured data. For comparison, the
same experimental cases are also simulated with the linear version of the hydrodynamic submodel.
Calculated results show that the flow pattern and meander evolution process predicted by the
nonlinear and the linear models are similar for mildly curved channels, whereas they exhibit different
characteristics when channel sinuosity becomes relatively high. It is indicated that the nonlinear
interactions between main flow and secondary flow prevent the growth of the secondary flow and
induce a more uniform transverse velocity profile in high-sinuosity channels, which slows down the
evolution process of meandering channels.

Keywords: numerical simulation; nonlinear model; meander evolution; bank erosion

1. Introduction

The evolution of meandering channels is a complex geomorphological process driven by the
interactions between fluid flow and alluvial channel beds and banks. The frequent occurrences of bank
erosion and failure events accompanied with meander evolution have brought serious concerns to
river managers since they are potential threats to habitation in riparian zones. Although great efforts
have been devoted to meander studies in the past few decades, the dynamics of meander evolution
has not yet been fully understood.
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Observations in recent flume experiments [1–3] have revealed that the flow pattern in a meander
bend is closely related to its bed topography including the shallow point bars and deep pools
developed near the inner and outer banks, respectively. The topographic steering effect redistributes
the downstream velocity and affects the evolution process of the meander bend. However, due to
the difficulty in concurrently monitoring the flow pattern and channel migration in the field and
laboratories, it remains unclear how fluid flow responds to the deformation of channel beds and
in turn affects the evolution process of meandering channels. As the computational power rapidly
grows in recent decades, numerical models emerge as economical and useful tools in meander studies,
exhibiting its unique advantage in unraveling the complex interactions between fluid flow and alluvial
beds. Since the pioneering work of Ikeda et al. [4], considerable efforts have been devoted to the
development of reliable numerical models for meander simulations ([5–12], among others). However,
it remains a challenge to numerically replicate the natural evolution processes of the meandering
channels especially for high-sinuosity channels due to possible strong nonlinear interactions in their
evolution processes.

In general, a meander evolution model consists of two major components: (1) a hydrodynamic
submodel; and (2) a bank erosion submodel. The hydrodynamic submodel is used to simulate
the flow field in the meander bend, given the controlling flow discharge and channel geometry.
Although a three-dimensional (3D) hydrodynamic model is feasible in present day, reduced-order
models, i.e., one-dimensional (1D) or two-dimensional (2D) models are computationally less expensive
and theoretically more insightful by revealing the physical processes such as flow redistribution in
meander bends [12]. Johannesson and Parker [8] proposed a widely used quasi-2D hydrodynamic
model for sine-generated channels, which was based on the perturbative analysis of their model
equations. With a few simplifying assumptions, their model has a simple analytical solution, which
was successfully applied in several meander evolution studies [6,13]. Similar models were also
proposed by Odgaard [14], Imran et al. [15], Zolezzi and Seminara [9], and many others. These models,
usually termed “linear models” due to the omission of high-order nonlinear terms in their model
equations, mainly differ from the model of Johannesson and Parker [8] in the choice of eddy viscosity
profiles. Blanckaert and de Vriend [11] pointed out that the magnitudes of these high-order nonlinear
terms increased sharply with channel curvature, and should not be neglected in the simulation of
high-sinuosity meanders. Recently, nonlinear theory and numerical models have been applied by
different researchers in the context of meander studies. For example, Camporeale et al. [16] developed
a general solution method for the coupling system of the nonlinear flow equations and the Exner
equation by extending the formulation of Imran et al. [15], which considered the feedback between
the main flow and the secondary currents. Abad et al. [17] proposed the STREMR HySeD model,
which was established by coupling the two-dimensional hydrodynamic, sediment transport and bed
morphology equations, and simulated the flow and bed evolution in fixed-bank meandering channels.
Bolla Pittaluga et al. [18] developed a nonlinear bend instability model for meandering channels, which
was able to describe the nonlinear response of the meandering processes to initial small perturbations.
Other nonlinear models were also developed by Parker et al. [19], Xu et al. [20] and, undoubtedly,
others as well. These models were applied in the modeling study of meander dynamics, which
improved our understanding of the nature of meandering evolutions. Blanckaert and de Vriend [5]
proposed a nonlinear model for meander flow, which retained the essential terms in order to model
the nonlinear behavior of meander flow. Their model was tested against the measured data of several
flume experiments, and successfully captured the saturation effect of secondary flow in high-sinuosity
meanders. However, these experiments were conducted in laboratory flumes with fixed sidewalls, and
the nonlinear model has not been fully justified in channels with erodible bank lines.

The bank erosion module defines the constitutive relationship between flow and stream banks.
The classical HIPS model [4] empirically correlates the bank migration rate to the near-bank
“excess” flow velocity (difference between the near-bank and cross-sectional average velocity).
More sophisticated bank erosion models have also been proposed, which take the influences of
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other channel factors such as the bank height, bank material, mass failure and vegetation into
consideration [20–25]. Nonetheless, these models assumed that the channel width held constant
during meander evolution, and cannot be applied in simulating the width adjustment. Parker et al. [19]
developed a new bank erosion model to replace the HIPS model, which discarded the constant-width
assumption and built separate equations to evaluate the migration of the eroding bank and depositing
banks. A similar model was employed by Eke et al. [26,27] in modeling the coevolution of the
planform and channel with in freely meandering rivers. Duan [28] proposed a new bank erosion
model which relates the bank migration rate to the near-bank sediment transport rate, which was in
turn determined by the longitudinal gradient of streamwise velocity. Considering most bank erosion
processes include both bank-toe erosion and bank failure, this model was later coupled with the
parallel retreat assumption of stream banks and named as the Bank Erosion and Retreat Model (BERM)
by Chen and Duan [6]. BERM has been successfully integrated into the quasi-two-dimensional linear
hydrodynamic model of Johannesson and Parker and applied in several numerical studies including
meander bend evolution [6,13] and channel width adjustment [10]. However, it has not been tested in
the nonlinear context. Therefore, it is interesting to examine how the nonlinear hydrodynamic model,
when coupled with BERM, affects the simulations of the meander evolution process.

The objective of this study is to establish a nonlinear meander evolution model by coupling the
nonlinear hydrodynamic model of Blanckaert and de Vriend [5] and BERM of Chen and Duan [6],
and to assess its performance in meander evolution simulations. The main focus is to investigate
the relative importance of the nonlinear hydrodynamic effect and its morphological implication in
meander evolution. A series of classical meander flume experiments will be utilized to test the model.
The nonlinear effect of the additional processes considered in the nonlinear model on the flow pattern
and evolution process will also be analyzed. The manuscript is organized as follows: Sections 2
and 3 briefly introduce the mathematical formulations used in the nonlinear meander evolution
model and its solution algorithm, respectively. Section 4 reports the simulation results of two classical
flume experiments reported in da Silva [29] and Friedkin [30] with the proposed model. A sensitivity
analysis of the additional processes considered in the nonlinear model on the representative geometry
parameters is given in Section 5. The impact of these nonlinear processes on the simulation of flow
pattern and meander evolution processes is also discussed in this section. A summary of major findings
in this study is presented in Section 6.

2. Mathematical Model

The governing equations of the proposed model include a transport equation for normalized
transverse gradient of flow velocity, and a continuity equation for sediment transport in the s-n
curvilinear coordinates. The s-axis (longitudinal) lies along the channel centerline, and the n-axis
(transverse) is perpendicular to the centerline and pointing at the left bank. The mathematical
formulations are briefly described below.

2.1. Hydrodynamic Submodel

The hydrodynamic submodel computes the two-dimensional distributions of velocity and flow
depth [11]. For the sake of simplicity, the present study assumes: (1) the flow discharge is constant;
(2) the bed slope is uniform; and (3) the flow is uniform. Under these assumptions, the average
velocities and flow depths at all cross sections are equivalent. The two-dimensional depth-averaged
conservation equations of mass and momentum in curvilinear coordinate system are expressed as [5]:

1
1 + n/R

∂Ush
∂s

+
∂Unh

∂n
+

Unh
(1 + n/R) R

= 0 (1)

1
1+n/R Ush ∂Us

∂s + Unh ∂Us
∂n + UsUnh

(1+n/R)R

= − 1
1+n/R gh ∂zs

∂s −
τb
ρ −

1
1+n/R

∂〈v∗s v∗s 〉h
∂s − ∂〈v∗s v∗n〉h

∂n + 2〈v∗s v∗n〉h
(1+n/R)R

(2)
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where s, n = longitudinal and transverse coordinates; Us, Un = depth-averaged longitudinal and
transverse flow velocity, respectively; h = flow depth; R = radius of curvature of the channel centerline;
g = gravitational acceleration; zs = water surface elevation; τb = bed shear stress; ρ = fluid density; vs*,
vn* = residual streamwise and transverse velocity components with reference to their depth-averaged
quantities; and <vs*vs*>, <vs*vn*> = so-called dispersion stresses, which represent the correlation
between the residual velocities. The first and the second terms in the right-hand-side (RHS) of
Equation (2) represent the influence of water surface gradient and the bed friction force, respectively,
whereas the third to the fifth terms represent the influence of nonlinear interactions between
longitudinal and transverse velocities. Blanckaert and de Vriend [11] suggested that the influence of
the correlation <vs*vs*> is not significant, and thus can be neglected. The water surface gradient, the
bed shear stress and the velocity correlation <vs*vn*> can be modeled as [5]:

∂zs

∂s
= −ψC f

U2

gH
+ nFr

2H
∂

∂s

(
1

Rs

)
(3)

〈v∗s v∗n〉 =
U2H 〈 fs fn〉

R
gsn (4)

τb
ρh

= ψC f U2 (5)

where ψ = friction amplification coefficient due to bending effect; Cf = Chezy’s friction coefficient;
U, H = width-averaged velocity and flow depth; Fr = Froude number, which is defined as U/(gH)1/2;
Rs = curvature radius of the streamline, which can be approximated by R; <fsfn> = shape coefficient
defining the average transverse transport of the streamwise quantities; and gsn = shape coefficient
characterizing the transverse distribution of <fsfn>, which vanishes at river banks and approaches its
maximum at the secondary flow cell. The transport equation for normalized transverse gradient of
flow velocity can be derived from the equations presented above. The normalized transverse velocity
gradient αs is defined as:

αs =
(1 + n/R) R

Us

∂Us

∂n
(6)

Taking spatial derivative in the longitudinal direction on both sides of Equation (6), we obtain:

∂

∂s

(
αs

(1 + n/R) R

)
=

1
Us

∂2Us

∂s∂n
− αs

(1 + n/R) R
1

Us

∂Us

∂s
(7)

Substituting Equations (1)–(5) into Equation (7) with some tedious yet straightforward
manipulations, the transport equation for αs is derived as:

∂
∂s

(
αs

(1+n/R)R

)
=

1
Us

∂
∂n

(
Un

αs+1
R

)
+ αs

(1+n/R)R
αs+1

R
Un
Us
− g

U2
s

∂2zs
∂s∂n

+ 2αs
(1+n/R)R

g
U2

s

∂zs
∂s + (1 + n/R)

ψC f
h

[
1
h

∂h
∂n −

1
(1+n/R)R

]
+U2 H〈 fs fn〉

U2
s R

gsn

[
2αs−1

R gsn

(
1

gsn

∂gsn
∂n + 1

h
∂h
∂n + 2

(1+n/R)R

)]
−U2 H〈 fs fn〉

U2
s R

(1 + n/R) ∂
∂n

[
gsn

(
1

gsn

∂gsn
∂n + 1

h
∂h
∂n + 2

(1+n/R)R

)]
(8)

According to Blanckaert and de Vriend [5], the first term represents the effect of the convective
transport caused by the cross flow; the second and third terms represents the effect of the longitudinal
and transverse gradient of the water surface; the fourth term represents the effect of bed friction force;
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the fifth term represents the effect of momentum redistribution caused by secondary flow. Equation (8)
can be further reduced by averaging over the width to obtain:

∂
∂s
( αs

R
)

= 1
12

αs+1
R

B2

R
∂
∂s

(
αs+Fr

2+A
R

)
−
(

1 + B2

6
2αs−1

R2

)
∂
∂s

(
1
R

)
− 2αs

R
ψC f

H

+
ψC f

H
Fr

2+A−1
R + 2χ

3
H〈 fs fn〉

R

[(
2αs−1

R

)2
+ 1

R
Fr2+A+2

R + 12
B2

] (9)

where A = user-prescribed bed scour factor; and B = channel width. Equation (9) is adopted as
the governing equation of the hydrodynamic submodel in the present study. Readers can refer
to Blanckaert and de Vriend [5] for more details of the derivation. They suggested the additional
energy loss in meander bends was contributed by three mechanisms: (1) the nonuniformity of the
depth averaged velocity profiles; (2) the additional bed shear stress caused by deformed velocity
distributions induced by secondary flow; and (3) the additional turbulence production due to bending
effect. Therefore, the friction amplification coefficient ψ can be computed by:

ψ = ψαs ψsecψtur (10)

where ψαs, ψsec and ψtur = friction amplification coefficients due to the velocity profile deformation, the
secondary flow and the increased turbulence production, respectively. Blanckaert [31] proposed an
analytical expression for ψαs, which can be expressed as:

ψαs = 1 +
1

12
B2αs

R2 (αs + 2) (11)

ψsec, ψtur are graphically determined in Blanckaert and de Vriend [11] as functions of βCf
0.15,

where β = Cf
−0.275(H/R)0.5(αs + 1)0.25 is called the bend parameter. In the present study, two analytical

expressions are given to approximate the graphical solutions of ψsec and ψtur as:

ψsec = 1 + 0.52βC f
0.15exp

− 1(
2.6βC f

0.15
)1.5

 (12)

ψtur = 1 + 2.5
κ2Q2

C f R2

1− exp

− 0.4

βC f
0.15
[(

βC f
0.15
)3

+ 0.25
]



2

(13)

<fsfn> are also graphically determined in Blanckaert and de Vriend [11]. The analytical expression
to approximate <fsfn> is:

〈 fs fn〉 =

1− exp

− 0.4

βC f
0.15
[(

βC f
0.15
)3

+ 0.25
]

 〈 fs fn〉0 (14)

where <fsfn>0 is the shape coefficient given by the linear model of de Vriend [32], which is computed as:

〈 fs fn〉0 =
8C f

κ
exp

−3.3
(C f

κ

) 2
3

 (15)
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where κ = von Karman constant. Equation (9) can be rearranged into the relaxation form: (1) to cope
with the solution algorithm to be developed in the later section; and (2) to reveal the major driving
mechanisms that determine the velocity redistribution process in a meander bend:

λ
∂

∂s

(αs

R

)
+ (1 + ε)

αs

R
= F (16)

where
λ = 1

2
H

ψC f

(
1− 1

12
αs+1

R
B2

R

)
ε = − 1

24
H

ψC f

[
B2

R
∂
∂s

(
F2

r +A
R − 4

R

)
+ 32χH〈 fs fn〉

R
αs−1

R

]
F = 1

2
F2

r +A−1
R − 1

2
H

ψC f
∂
∂s

(
1
R

) (
1− B2

6R

)
+ 4χ

ψC f
H2

B2
〈 fs fn〉

R

[
1 + 1

12
(F2

r +A+3)B2

R2

]
+ 1

24
H

ψC f
B2

R2
∂
∂s

(
F2

r +A
R

)
In Equation (16), the first term of F represents the effect of transverse water surface and bed

slope; the second term represents the effect of channel curvature change; the third term describes the
streamwise momentum redistribution by secondary flow; and the fourth term represents the effect of
the cross-flow due to changes in transverse water surface and bed slope. Equation (16) is simplified
from the two-dimensional depth-averaged flow equations represented by Equations (1) and (2),
yet retains all the essential terms quantifying the nonlinear interactions between the streamwise
and secondary flow. These terms are of the order (B/R)2/Cf, and are therefore neglected in the
first-order linear models based on the perturbation approach. In weakly curved channels where
B/R << 1, Equation (16) can be simplified to the following form:

αs
R + 1

2
H

ψC f
∂
∂s
( αs

R
)

= 1
2

F2
r +A−1

R − 1
2

H
ψC f

∂
∂s

(
1
R

)
+ 4χ

ψC f
H2

B2
〈 fs fn〉

R

(17)

where the friction amplification coefficient ψ is equal to unity, and the shape coefficient <fsfn>
is evaluated with the linear model of de Vriend [32]. The hydrodynamic model represented by
Equation (17) is essentially congruent with the perturbation approach and is therefore termed the
“linear” model, whereas the model described by Equation (16) is termed the “nonlinear” model in the
present study. Blanckaert and de Vriend [11] argued that in strongly curved channels (with relatively
high values of B/R) with smooth boundaries (with low values of Cf), these terms could be of similar
magnitudes with other driving terms, which might impose a significant impact on flow pattern and its
consequential morphological processes in meandering channels. Therefore, the proposed nonlinear
model represented by Equation (16) is more physically based, which can be applied in simulating the
meandering channels with various sinuosities.

2.2. Bank Erosion Submodel

The bank erosion submodel computes the planar displacement of the channel centerline with
prescribed flow condition at each computational time step, from which the new channel centerline can
be generated. The mass balance of sediment transport within the control volume in BERM is expressed
as [6]:

ω =
1
h

(
b

∂qs

∂s
+ qn

)
(18)

where ω = bank migration rate; h = local flow depth under the bank-full discharge, i.e., h equals
the bank height H along the cross section; qs, qn = sediment transport rates in the longitudinal and
transverse directions, respectively; and b = half width of the channel. Equation (18) indicates that the
bank migration (retreat or advance) is attributed by: (1) the unbalanced sediment transport in the
longitudinal direction; and (2) the transverse sediment, transported by the secondary flows.
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Some meanders tend to maintain roughly constant bankfull widths during evolution [19], which
means the migration rates computed by Equation (18) at the inner and the outer banks equal in
magnitude but with opposite signs. However, the width adjustment of sinuous channels, especially
channel widening is also a common phenomenon in field and laboratories. Therefore, the discharge
bisector line (also termed the center streamline in [6]), defined as the line each point of which equally
divides the flow discharge Q in half, is critical for estimating the bank migration rates:

∫ nDB

− B
2

Ushdn =
∫ B

2

nDB

Ushdn =
1
2

Q (19)

where nDB = transverse coordinate of the discharge bisector line. It is assumed that the migration rate
of the centerline can be approximated with the average value of the migration rates for the left and the
right banks, which can be expressed as:

ω = ωA =
1
2
(ωL + ωR) (20)

where subscript A denotes the average value; and L, R represent the left and the right banks,
respectively. Recent studies on meander models with adjustable channel widths [19,27] suggested
that the migrations of the outer and inner banks are controlled by independent mechanisms and
should therefore be simulated with different models. The similar idea is also used in the present study:
Equation (18) indicates that the bank migration rate in BERM is determined by the local sediment
transport rate (and its gradient), which might also vary in space. Therefore, the migration rates of the
left and right banks, ωL and ωR, are not necessarily equivalent.

The computation of ωL and ωR also requires the transverse profiles of flow velocity and flow
depth, which can be computed by [12]:

Us (n) ≈ U
(

1 + αs
n
R

)
(21)

h (n) ≈ H
[
1 +

(
Fr

2 + A
) n

R

]
(22)

A sediment transport formula is required to close the bank erosion submodel. A Levy-type
equation for bed-load transport [33] is adopted in the present study to calculate the longitudinal
sediment transport rate qs:

qs (1− P) ρs = 2k f D

(
Us√

gh

)2

(Us −Uc)

(
D
h

) 1
4

(23)

where P = sediment bed porosity; ρs = sediment density; kf = coefficient characterizing the sediment
transport intensity; D = representative size of sediment bed; Uc = critical flow velocity for sediment
entrainment. Equation (23) is suitable for estimating the sediment transport rate at bed-load dominated
streams in sand-bed river (D = 0.25–23 mm). If suspended load transport takes up a large fraction in
the total load, an alternative sediment transport should be implemented and tested. The transverse
sediment transport rate is related to qs by:

qn = Csqs (24)

where Cs = the ratio of transverse to longitudinal sediment transport. Ottevanger et al. [12] argued that
the direction of the bed-load transport deviated from the direction of the depth-averaged velocity due
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to two effects: the uphill pull exerted by the secondary flow and the downhill pull exerted by gravity.
They suggested that Cs can be computed by:

Cs =
Un

Us
− H

ατ

R
gτ − G

∂zb
∂n

(25)

where ατ denotes the deviation of bed shear stress to depth-averaged flow velocity due to secondary
currents; gτ is a width distribution function; and G is the gravitational pull. It is assumed that Cs

along the channel width can be approximated by the value at the centerline, where Un vanishes at
fully developed state [5]. The second term in the RHS of Equation (25) represents the uphill pull by
secondary flow, which is computed by [12]:

ατ

R
= ψτ

(ατ

R

)
0

(26)

where (ατ/R)0 represents the linear solution of the deviation of bed shear stress proposed by [32], which
is expressed as: (ατ

R

)
0
=

2
κ2

1−

√
C f

κ

 1
R

(27)

ψτ represents the nonlinear correction to the deviation proposed by Blanckaert and de Vriend [11],
which is originally graphically determined and can be approximated by an analytical expression as:

ψτ = 1− exp

− 1

βC f
0.15
(

βC f
0.15 + 1

)
 (28)

The third term in the RHS of Equation (25) represents the downhill pull by gravity. A gravitational
pull model is required to determined the value of G as a function of the dimensionless bed
shear stress τ*. Ottevanger et al. [12] reviewed several theoretical gravitational pull models, and
compared their performances against the experimental results. In the present study, the Sekine
and Parker’s gravitational pull model type ( G ∼ τ∗0.25) [34] was adopted, according to the fit in
Ottevanger et al. [12], which can be expressed as:

G = 0.80τ∗0.25 (29)

The lateral bed slope ∂zb/∂n can be related to the bed scour factor A by:

∂zb
∂n

= H
A
R

(30)

3. Solution Algorithm

Since the morphological time step is usually much larger than the hydraulic time step, the
nonlinear model can be solved in a decoupled manner: at each time step, the flow field is computed
by solving Equation (16) assuming a rigid channel bed; then the computed flow field is used to
compute the longitudinal and transverse sediment transport rates using Equations (23) and (24), and
the bank migration rate can be determined by BERM. An implicit scheme is employed in discretizing
Equation (16), with the coefficients λ, ε and the source term F evaluated at time level i:(

λ

∆s

)
i,j

[(αs

R

)
i+1,j+1

−
(αs

R

)
i+1,j

]
+ (1 + ε)i,j

(αs

R

)
i+1,j

= Fi,j (31)
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where subscript i and i + 1 represent the current and next time levels; j and j + 1 represent the current
local and its adjacent nodes; and ∆s = grid size. To suppress the instability growth, an under-relaxation
iteration scheme is employed:(αs

R

)k+1

i+1,j
= ζ

(αs

R

)k

i+1,j
+ (1− ζ)

(αs

R

)k+1,Sol

i+1,j
(32)

where superscript k and k + 1 represent the current and next iteration steps; superscript (k + 1, Sol)
represents the value obtained by solving Equation (31); and ζ = under-relaxation factor, which is set to
0.99 in the present study.

After the flow field is determined, the bank migration rate can be calculated by Equations (18) and (20).
The new channel after a given time interval ∆t is computed using the following expressions:

x = x0 + ω · ∆t · sinθ (33)

y = y0 + ω · ∆t · cosθ (34)

where x0, y0 = Cartesian coordinates of the original channel centerline; x, y = Cartesian
coordinates of the channel centerline after the migration; and θ = direction of channel centerline.
Equations (33) and (34) implicitly assume that the direction of bank migration is perpendicular to the
channel centerline. We herein make an important assumption that the new channel center defined by
(x, y) can be approximated with a Kinoshita-type curve [35]. This assumption can effectively suppress
the growth of model instability due to strong nonlinearity. Chen and Duan [6] implicitly adopted
a similar assumption for the linear hydrodynamic model when they used the analytical solution of
Johannesson and Parker [8] to compute the flow velocity distribution. A flow chart summarizing all
the steps to perform a full numerical simulation of meander evolution is given in Figure 1.
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4. Model Test

4.1. Case 1: Da Silva’s Flume Experiments

Da Silva [29] conducted a series of laboratory meandering flume experiments, two of which
were selected in the present study for model validation. The experiments were conducted in
two sine-generated flumes with deflection angles (θ0) of 30◦ and 110◦, respectively (referred to as
“S30 case” and “S110 case” hereafter). The meandering channels consisted of two meander loops,
which were connected to two straight channels at the upstream and downstream ends as the inflow
and outflow channels. The widths of both flumes are 0.4 m with fixed sidewalls, and the meander
wavelengths are 2.694 m and 9.298 m, respectively. The sediment bed was immobilized with varnish
spray, and the median size of the sediment particles was 2.2 mm. The longitudinal channel bed slopes
were 0.001 and 0.00089, respectively, and the transverse channel beds were flat in both cases (A = 0).
The flow discharges were kept constant as 2.10 L/s and 2.01 L/s, and the cross-sectional-averaged
flow depths were 3.2 cm and 3.0 cm, producing the B/H (width-to-depth ratio) values of 12.5 and
13.3, respectively. The B/H values in the laboratory flumes were usually smaller than those of natural
rivers, and caused the effect of the secondary flow to be more pronounced in sharply curved meander
bends [5]. Readers can refer to da Silva [29] for more details about the experimental set-ups. Da Silva
measured the transverse distributions of flow depth and depth-averaged velocity at 24 selected cross
sections, from which the parameter αs/R can be computed. The experiments were simulated by both
the linear and nonlinear models. The effects of the additional nonlinear processes considered in
Equation (16) are evaluated via comparison between the computed results and the experimental data.

The longitudinal αs/R profiles computed from the nonlinear model and the linear model were
compared in Figure 2 (S30 case) and Figure 3 (S110 case) with the measured data. It is shown that
the αs/R curves computed from the two models are similar for the S30 case, while significantly
differ from each other for the S110 case, especially near the apexes of bends. In the S30 case, the
αs/R profiles computed by both models generally agree with the measured data, although some
differences are observed where the streamwise coordinate s is between 2 and 3 m and between
3.5 and 4.5 m, indicating that the advective momentum transport caused by secondary flow is
slightly underestimated in these regions. This is possibly because both models describe the transverse
distribution of flow velocity by means of a function with only one degree of freedom, represented
by Equation (6), which can only approximately represent the real transverse distribution of the
velocity. In S110 case, the nonlinear αs/R profile matches well with the measured data, whereas the
linear αs/R profile is considerably overestimated with a maximum error of 36%. By retaining the
additional terms representing the nonlinear hydrodynamic interactions, the nonlinear model produces
smaller transverse velocity gradients thus more uniform velocity profiles along the channel width than
does the linear model. This is consistent with the assessment of the linear and nonlinear models in
previous literature. Blanckaert and de Vriend [5] assessed the performances of the linear and nonlinear
models in a sharply curved laboratory channel flume with a 193◦ bend, and concluded that the linear
model significantly overestimated the outward velocity redistribution whereas the nonlinear model
adequately captures the αs/R profile computed from the measured data. Ottevanger et al. [3] also
compared the performances of the two models with the Kinoshita laboratory flume experiment of
Abad and Garcia [35], the field data of the Polblue Creek in Australia [36], and the Tollense River in
Germany [37], and found that the nonlinear model outperformed the linear model in the first two cases
with very small B/H (width-to-depth ratio) values, yet both models yield similar results in the third
case with relatively larger B/H values. It is indicated that the nonlinear effect is trivial in mildly curved
channels, while nonnegligible in strongly curved channels. In general, the αs/R profiles computed
from the nonlinear model, despite some discrepancy at certain locations, generally agree with the
measurement, indicating the proposed hydrodynamic submodel is applicable in simulating the flow
structures with acceptable accuracy in both the low-sinuosity and high-sinuosity channels.
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4.2. Case 2: Friedkin’s Laboratory Experiment

Flume experiments regarding the evolution of meandering channels are not frequently seen in
the literature. In the classical flume experiment conducted by Friedkin [30], the channel gradually
developed from a mildly curved channel (θ0 = 30◦) into a strongly curved channel (θ0 > 90◦) in 32 h.
The locations of the channel talweg were measured in the experiment, which can be used in the present
study to test the bank erosion submodel. The width of the channel was 0.64 m, the initial wavelength of
the channel (θ0 = 30◦) was 7.62 m, the longitudinal bed slope was 0.0075, the upstream flow discharge
was maintained at 0.00283 m3/s, the initial flow depth was 3.0 cm, and the median particle size of the
sediment bed was 0.45 mm. The B/H ratio was 21.3, which was generally shallower than the typical
values used in laboratory flume experiments (see Ottevanger et al. [3] for example). The transverse
channel bed was initially flat at the beginning of the experiment, and gradually developed towards its
fully developed state during the experiment. For other details of the experimental set-ups, readers can
refer to Chen and Duan [6] or Friedkin [30]. The experiment was simulated with the nonlinear meander
model, and the results were compared with the measured data for validation. A computational time
step of 8 h for planimetry change is adopted in the simulation; therefore, the planform of channel has
been numerically adjusted four times (i.e., at hours 8, 16, 24, and 32). Following Chen and Duan’s
work, the transverse bed slope was assumed to increase linearly with time, which reaches the fully
developed state at the hour of 32. Therefore, the scour factor A for each time step can be temporally
interpolated between zero and its maximum value Amax (see details in Chen and Duan [6]).
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The channel centerlines computed by the nonlinear and linear models at each time step were
plotted in Figure 4. The measured channel centerline after 32 h of migration was also plotted in the
figure for comparison. It is shown that the lengths and widths of the meander bends of the channel
centerline predicted by both models are fairly close to those of the measured channel centerline,
indicating that the proposed models can at least capture some large-scale geometric properties, such as
the average growth rate, of the meander bend in Friedkin’s experiment [30]. Locally, the computed
channel centerline evidently deviates from the measured centerline, especially near the third meander
apex where the streamwise coordinate s varies between 8 and 12 m. Such deviations between the
model results and the experimental data might be caused by two simplifying assumptions adopted in
the model: (1) a Kinoshita-type planform with fixed flatness and skewness is imposed to approximate
the channel centerline in order to suppress the numerical instability; and (2) the bed scour factor A
(linearly related to the transverse bed slope) is prescribed to increase linearly with time during the
evolution. These model assumptions might not be realistic in Friedkin’s experiment [30], and should
be re-evaluated to allow the meander to evolve freely in future developments of the model.
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Figure 4. Comparison of the channel centerlines computed from: (1) the nonlinear model (blue solid line);
(2) the linear model (red dash line); and (3) the measured data (circles) for the meander evolution
simulations of Friedkin’s experiment. Numbers on the lines indicate the evolution time of the channel.

Since it is the focus of the present study to investigate the relevance of the nonlinear
hydrodynamics effects in meander evolution, it is of great interest to analyze the differences of the
results predicted by the linear and nonlinear models. It is shown that the channel centerline simulated
by the nonlinear model migrates slower than that by the linear model from the downstream of the
meander apex to the inflexion point. Such difference could be attributed to the different treatments
by the two models in modeling the secondary flow. Blanckaert [31] and Nanson [36] reported that
the secondary flow did not increase as the curvature of the channel continues to increase in sharp
meander bends, which was referred to as the saturation of the secondary flow. By retaining the
additional terms representing the nonlinear hydrodynamic interactions, the nonlinear model limits the
growth of the secondary flow, and results in smaller transverse velocity gradients and consequently
smaller bank migration rates than the linear model. However, the differences between the two sets
of model results are not significant, indicating that the nonlinear effects might not be strong on
meander evolution in this experiment possibly due to the relatively large curvature-radius-to-depth
ratio (R/H > 77), well exceeding the R/H values found in the test cases of Blanckaert and de Vriend [5]
and Ottevanger et al. [3] where the nonlinear effects were much more pronounced in shaping the flow
pattern in meander bends. Although the nonlinear effect is not very significant in the present case, the
difference between the linear and nonlinear models could accumulate in the long-term simulations
of meander evolution and causes significant deviations between their model results. Xu et al. [20]
and Bai and Wang [38] suggested that the small perturbations in meandering channels might have
long-term effects and eventually developed into large-scale meander bends, which they referred to
as “butterfly effect”. Therefore, the long-term effects of the nonlinear hydrodynamic interactions in
meander evolution should be further investigated in future studies.
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5. Discussion

5.1. Sensitivity of the Nonlinear Terms on Channel Geometry

The terms on the RHS of Equations (16) and (17) quantify the physical processes affecting the
simulation of flow pattern in the nonlinear and linear models, respectively. Herein, we use the symbol
NT to denote the difference between the RHS terms of Equations (16) and (17):

NT = FN − FL (35)

where FN and FL are the RHS terms of Equations (16) and (17), respectively. It is suggested that
NT mainly consists of three components: (1) curvature-induced energy loss; (2) enhanced advective
momentum transport by secondary flow; and (3) high-order nonlinear interactions represented by
the additional RHS terms in Equation (16). Since these components are inter-correlated, we use NT
as the indicator to represent their combined effects. NT was once considered trivial in existing linear
meander models, but proven relevant to the flow field in high-sinuosity channels by the simulation of
da Silva’s experiment. Therefore, two groups of sensitivity analyses, SA1 and SA2, were conducted to
assess the sensitivity of NT on channel sinuosity and its spatial scale. Sine-generated channels with
one meander wavelength were employed in the simulation, which was divided into 100 cross sections
at equal distance. The channel width, channel slope, and bed material size were kept the same as those
used in Friedkin’s experiment. The maximum deflection angle θ0 and the meander wavelength L were
selected as the representative geometry parameters: in SA1, three different deflection angles were used
(i.e., θ0 = 30◦, 70◦ and 110◦) to represent mildly, moderately, and strongly curved channels, respectively;
in SA2, the meander wavelength was set to be L0, 2L0 and 4L0 (corresponding to L/B = 23.5, 47.1 and
94.1, respectively) to represent channels with different L/B ratios, where L0 = 15.06 m equals to the
channel wavelength (curve length) for θ0 = 90◦ in Friedkin’s experiment. Leopold et al. [39] proposed
that the meander length is approximately 10 times the channel width based on empirical observations,
corresponding to a typical value of L/B = 21.2 for θ0 = 90◦. Although the large L/B values in the latter
two scenarios of SA2 are rarely seen in natural rivers, they are selected to evaluate the importance of
the nonlinear hydrodynamic effects in channels with different spatial scales. The discharge and flow
depth used in the simulations were larger than the actual values deliberately increased to enhance the
nonlinear effect so as to make the difference between different scenarios more visible. The detailed
parameters settings were listed in Table 1.

Table 1. Computational parameters used in the sensitivity analysis. Q = discharge; H = flow depth;
B = channel width; S = streamwise channel slope; d50 = median particle size of the bed materials;
θ0 = maximum deflection angle; L/B = wavelength-to-width ratio (L is the curve length of the channel
within one meander loop).

Parameter
SA1 SA2

Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

Q (m3/s) 0.02 0.02 0.02 0.02 0.02 0.02
H (m) 0.1 0.1 0.1 0.1 0.1 0.1
B (m) 0.64 0.64 0.64 0.64 0.64 0.64
S (-) 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075

d50 (mm) 0.45 0.45 0.45 0.45 0.45 0.45
θ0 (◦) 30 70 110 90 90 90
L/B (-) 23.5 23.5 23.5 23.5 47.1 94.1

Figure 5 shows the NT profiles in the meander bend when θ0 was set to be 30◦, 70◦ and 110◦. It is
shown that the magnitude of NT increases with θ0. The value of θ0 is an indicator of the sinuosity
of the channel, which corresponds to different stages of development for an evolving meandering
channel. It is indicated that the model error induced by neglecting the nonlinear effect is negligibly
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small in mildly curved channels (θ0 = 30◦), but gradually accumulates as the curvature effect becomes
stronger (θ0 = 70◦ and 110◦). This characteristic again confirms the findings in Xu et al. [20] that the
influence of nonlinearity generally increases with the sinuosity. The difference in the NT magnitudes
could well explain the deviation between the linear and nonlinear αs/R profiles (Figures 2 and 3): as
the NT magnitude grows from mildly to sharply curved channels, the error induced by failing to
account for the nonlinear hydrodynamic interactions in the linear model also increases and becomes
significant in the θ0 = 110◦ case. Figure 6 shows the NT profiles when L was set to be L0, 2L0 and
4L0. It is shown that the NT magnitude increases with decreasing L. When θ0 is fixed, the smaller L
corresponds to a meander bend of smaller scale. Therefore, the results suggest that the nonlinear effect
is more pronounced for small-scale meandering channels with higher H/R ratios. Xu et al. [20] also
analyzed the nonlinear effect in relate to the meander scale, and suggested that smaller river meanders
(with larger curvatures) tend to show more influence from the nonlinear consideration. Blanckaert
and de Vriend [5] analyzed the relative contributions of different components in the momentum
balance as a function of the geometric (width-to-curvature-radius ratio B/R, width-to-depth ratio B/H,
roughness Cf) and hydraulic (discharge Q) input variables in sharply curved flume experiments, and
found that the nonlinear terms representing the effect of the streamwise variations in curvature and
the velocity redistribution by secondary flow are the most important forcing terms in the momentum
balance in sharply curved flumes. Ottevanger et al. [3] conducted a similar analysis in a Kinoshita
flume and two sharply curved natural rivers, and also confirmed the importance of these processes.
They identified the scaling parameter (H/R)/Cf as the major control parameter in determining the
magnitudes of the two forcing terms. With all other geometry parameters held constant, the scaling
parameter (H/R)/Cf monotonically increases with θ0 and decreases with L. Therefore, the nonlinear
hydrodynamic effect, which increases with increasing θ0 and decreasing L, could also be scaled by
(H/R)/Cf. Both figures show similar spatial profiles along the channel: the NT magnitude approaches
its peak value near the meander apex where the channel curvature reaches its maximum value and
vanishes in the straight section where the channel curvature decreases to zero, further demonstrating
the close relationship between the nonlinear effect and the scaling parameter (H/R)/Cf. Nonetheless,
it is also noted that the local extrema of the NT magnitude do not coincide with the apex and inflexion
points, owing to the fact that an inertia phase lag is introduced in the numerical model. In summary,
the present analysis demonstrates the importance of the nonlinear hydrodynamic effects in the global
momentum balance in channels with high sinuosities and low curvature radius, and thus should not be
neglected in the numerical simulations of the later stages of meander evolutions for smaller channels.
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Figure 5. Sensitivity analysis of NT magnitude on the maximum direction angle θ0. NT = the difference
between the magnitudes of the RHS terms of Equations (16) and (17); XS No. = cross-section number in
the model. The channel starts and ends at the inflexion.



Water 2016, 8, 418 15 of 21
Water 2016, 8, 418  15 of 21 

 

 

Figure 6. Sensitivity analysis of NT magnitude on the meander wavelength L. NT =  the difference 

between the magnitudes of the RHS terms of Equations (16) and (17); XS No. = cross‐section number 

in  the model.  The  channel  starts  and  ends  at  the  inflexion.  L0  =  characteristic  channel  length, 

equivalent to the channel length in Friedkin’s experiment when θ0 = 90° (15.062 m). 

5.2. Impact of the Nonlinear Terms on Flow Pattern and Meander Evolution 

To analyze the effect of the nonlinear processes on meander simulations, the discharge bisector 

line and the channel centerline after 8 h of migration were compared with the NT magnitude for two 

sine‐generated channels with θ0 = 30° and θ0 = 90°. Since it is already shown that the NT magnitude 

varies with  channel  sinuosity  in  the  sensitivity  analysis, we will  continue  to  examine  how  such 

variations would affect the simulated flow pattern and channel evolution. 

The magnitudes of the RHS terms, the discharge bisector lines and the channel centerlines after 

8  h  of migration  for  θ0  =  30°  and  θ0  =  90° were  plotted  in  Figures  7  and  8.  The  computed NT 

magnitudes (represented by the gap between the lines for the nonlinear and linear RHS terms lines 

in Figures 7 and 8) are substantially larger in the θ0 = 90° case than in the θ0 = 30° case. As a result, 

the differences between the nonlinear and linear discharge bisector lines and channel centerlines are 

much more pronounced  in  the  former  case,  indicating  that  the nonlinear processes  substantially 

affects  the simulated  flow pattern and the meander evolution process. These additional processes 

cause  the nonlinear discharge bisector  line  to be closer  to  the original channel centerline, and  the 

nonlinear channel centerline to migrate slower than its linear counterparts. This is consistent with the 

findings in Blanckaert and de Vriend [5], who suggested that the nonlinear effect would hinder the 

growth of the secondary currents and limit the advective momentum transport, resulting in a more 

uniform transverse distribution of streamwise velocity and thus a smaller longitudinal gradient of 

flow velocity. Since BERM assumes a linear relationship between the longitudinal velocity gradient 

and the bank migration rate, both the longitudinal translation and lateral expansion of the simulated 

new channel computed by  the nonlinear model  tend  to slow down. This conclusion confirms  the 

results in previous literature. Abad et al. [17] employed the STREMR HySeD model, which adopted 

a correction for secondary flow effects due to streamline curvature, to simulate the bed evolution in 

a meandering channel and compared  the bed evolution patterns simulated with and without  the 

correction. They found that the amount of bed deposition and erosion in the latter case is faster than 

in the former case. Bai and Wang [38] suggested based on their theoretical model that the stability of 

the characteristic wave increases with increasing curvature, which indicated that the bend growth 

was  hindered  due  to  increasing  nonlinear  effects.  Eke  et  al.  [27]  also  reported  that  the  channel 

migration rate computed by their nonlinear model increased with increasing aspect ratio (width‐to‐

depth ratio), both of which will cause the nonlinear effects to be less pronounced according to the 

sensitivity analysis in the present study. However, decreasing the wavelength was found to increase 

0 20 40 60 80 100

-4

-2

0

2

4

6

XS No. [-]

N
T

 [
-]

 

 
L=L

0

L=2L
0

L=4L
0

Apex ApexInflextion

Figure 6. Sensitivity analysis of NT magnitude on the meander wavelength L. NT = the difference
between the magnitudes of the RHS terms of Equations (16) and (17); XS No. = cross-section number in
the model. The channel starts and ends at the inflexion. L0 = characteristic channel length, equivalent
to the channel length in Friedkin’s experiment when θ0 = 90◦ (15.062 m).

5.2. Impact of the Nonlinear Terms on Flow Pattern and Meander Evolution

To analyze the effect of the nonlinear processes on meander simulations, the discharge bisector
line and the channel centerline after 8 h of migration were compared with the NT magnitude for
two sine-generated channels with θ0 = 30◦ and θ0 = 90◦. Since it is already shown that the NT magnitude
varies with channel sinuosity in the sensitivity analysis, we will continue to examine how such
variations would affect the simulated flow pattern and channel evolution.

The magnitudes of the RHS terms, the discharge bisector lines and the channel centerlines
after 8 h of migration for θ0 = 30◦ and θ0 = 90◦ were plotted in Figures 7 and 8. The computed
NT magnitudes (represented by the gap between the lines for the nonlinear and linear RHS terms
lines in Figures 7 and 8) are substantially larger in the θ0 = 90◦ case than in the θ0 = 30◦ case. As a
result, the differences between the nonlinear and linear discharge bisector lines and channel centerlines
are much more pronounced in the former case, indicating that the nonlinear processes substantially
affects the simulated flow pattern and the meander evolution process. These additional processes
cause the nonlinear discharge bisector line to be closer to the original channel centerline, and the
nonlinear channel centerline to migrate slower than its linear counterparts. This is consistent with the
findings in Blanckaert and de Vriend [5], who suggested that the nonlinear effect would hinder the
growth of the secondary currents and limit the advective momentum transport, resulting in a more
uniform transverse distribution of streamwise velocity and thus a smaller longitudinal gradient of
flow velocity. Since BERM assumes a linear relationship between the longitudinal velocity gradient
and the bank migration rate, both the longitudinal translation and lateral expansion of the simulated
new channel computed by the nonlinear model tend to slow down. This conclusion confirms the
results in previous literature. Abad et al. [17] employed the STREMR HySeD model, which adopted
a correction for secondary flow effects due to streamline curvature, to simulate the bed evolution
in a meandering channel and compared the bed evolution patterns simulated with and without the
correction. They found that the amount of bed deposition and erosion in the latter case is faster than in
the former case. Bai and Wang [38] suggested based on their theoretical model that the stability of the
characteristic wave increases with increasing curvature, which indicated that the bend growth was
hindered due to increasing nonlinear effects. Eke et al. [27] also reported that the channel migration
rate computed by their nonlinear model increased with increasing aspect ratio (width-to-depth ratio),
both of which will cause the nonlinear effects to be less pronounced according to the sensitivity analysis
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in the present study. However, decreasing the wavelength was found to increase the migration rate in
their analysis, which seem to contradict with the results in the present study. This is possibly related to
the width adjustment process in their simulations, which needs to be further investigated in the future
study. From the spatial distributions of the three parameters in a meander bend, it is also noted that
the nonlinear effect (indicated by the difference between the nonlinear and linear RHS terms shown
by the top plot of Figure 8) is most obvious near the midpoint between the inflexion point and the
meander apex, which has an in-phase relationship with the difference between the nonlinear and the
linear channel centerlines after migration (shown by the bottom plot of Figure 8), indicating that the
simulated channel migration process is strongly affected by the additional processes accounted for in
the nonlinear model. Nonetheless, the difference between the nonlinear and linear discharge bisector
lines (shown by the mid plot of Figure 8) shows a different spatial distribution, indicating that the
influence of the nonlinear processes on the simulated flow pattern is more complex possibly due to the
strong three-dimensional characteristics of meander flow.

The differences between the linear and nonlinear results have important implications for meander
evolution simulations. The linear hydrodynamic model only provides satisfactory results at low
sinuosity/curvature, whereas the nonlinear one provides satisfactory results over the entire curvature
range. This is important for modeling the planform evolution of natural rivers. In natural rivers, the
curvature and sinuosity usually grow due to erosion at the outer bank and deposition at the inner bank
until the upstream and downstream limbs of a meander bend meet and a cut-off event occurs that
locally re-straightens the river, leading to a new cycle in the river planform evolution. By retaining the
additional terms representing the nonlinear hydrodynamic interactions, the nonlinear hydrodynamic
will considerably improve the planform evolution in the high curvature/sinuosity phase of this cycle.
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Figure 7. Comparison of the linear and nonlinear RHS terms (top); the difference between the discharge
bisector lines and the original channel centerlines (middle); and the new channel centerlines after 8 h
of migration (bottom) computed by the nonlinear and linear models in the θ0 = 30◦ case.
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Figure 8. Comparison of the linear and nonlinear RHS terms (top); the difference between the discharge
bisector lines and the original channel centerlines (middle); and the new channel centerlines after 8 h
of migration (bottom) computed by the nonlinear and linear models in the θ0 = 90◦ case.

5.3. Limitations of the Present Model

The proposed nonlinear model, at its present form, cannot be directly applied in simulating the
planform evolution or other long-term morphodynamic processes of natural rivers due to a number of
limitations, which should be improved in the future development of the model:

(1) A Kinoshita-type planform with fixed flatness and skewness is imposed to approximate the
channel centerline in order to suppress the numerical instability. This assumption might be
the cause for the deviation between the model results and the measured data in Friedkin’s [30]
experiment. The assumption should be replaced in order to allow the channel to develop into
freely meandering planforms in the future development.

(2) The present model does not include a cut-off and local re-straightening module, and thus can
handle the simulation of meander evolution only up to the incipient neck cut-off. The cut-off
will inevitably occur when the channel sinuosity grows until the upstream and downstream
limbs are jointed. The modules to describe the occurrences of cut-off events and local
re-straightening processes should be incorporated in the model for simulating the long-term river
planform dynamics.

(3) The Levy-type equation adopted in the bed erosion model is an empirical sediment transport
equation based on certain datasets, and only accounts for bed-load transport in a certain particle
size range. Extension and generalization of the description of sediment transport, including both
the bed-load and suspended-load transport, should be considered in the future development for
a wider range of applications of meander evolution.

(4) The width adjustment process is not simulated in the present study. Parker et al. [19] proposed
a theoretical framework for meander migration by using separate relations for modeling the
migrations of the eroding and depositing banks, which has been successfully applied in [27] in
simulating the coevolution of the width and sinuosity of the meandering channels. Due to the
importance of the aspect ratio (width-to-depth ratio) in determining the nonlinear dynamics of the
meander channel, the effect of width adjustment should be considered in the future development.
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Apart from the model limitations, the data collected in Friedkin’s experiment are not ideal for the
validation of numerical meander models. Difference can be observed between the centerlines of the
two meander loops (Figure 4), possibly because the centerline was actively evolving at the time when
the measurements were made. A meander evolution experiment conducted in mobile banks with
hydrodynamic and morphodynamic measurements recorded in detail should be extremely helpful in
investigating the dynamics of the meander evolution and assessing the performances of the meander
evolution models.

6. Conclusions

In the present study, a nonlinear meander evolution model was developed by coupling the
hydrodynamic model of Blanckaert and de Vriend [5] and BERM of Chen and Duan [6]. The proposed
model was tested with the flume experiments of da Silva [29] and Friedkin [30]. Two groups of
sensitivity analyses are conducted to study the covariation of the additional terms considered in the
nonlinear model and the channel geometry parameters. The impacts of the nonlinear processes on the
simulated flow pattern and meander evolution process are investigated by comparing the discharge
bisector lines and the new channel centerlines computed from both the nonlinear and the linear models
for two sine-generated channels with different sinuosities. The main findings of this study are:

1. The proposed nonlinear model is applicable in simulating the flow field and the evolution process
of meandering channels with various sinuosities. It is found that the nonlinear effect is trivial in
mildly curved channels, but is nonnegligible in strongly curved channels, which is in agreement
with the conclusion in Xu et al. [20]. The αs/R profile computed by both the linear and nonlinear
models agree well with the experimental data in da Silva’s 30◦ experiment [29], whereas the
nonlinear αs/R profile match better with the experimental data than the linear model in da Silva’s
110◦ experiment, confirming the findings of Blanckaert and de Vriend [5] and Ottevanger et al. [3]
that the nonlinear model outperforms the linear model in strongly curved channels.

2. In the simulation of Friedkin’s experiment [30], the bend growth rates computed by both models
generally agree with the measured data, but the computed channel centerlines locally deviate
from the measured centerline possibly due to the imposed Kinoshita-type planform and the
prescribed bed scour factor. The channel centerline simulated by the nonlinear model migrates
slower than that by the linear model in the downstream of the meander apex due to the nonlinear
hydrodynamic interactions. However, the difference between the nonlinear and the linear results
are not obvious, possibly due to the high width-to-depth ratio in this case.

3. The sensitivity analysis indicates that the magnitude of the additional terms in the nonlinear
model increases with increasing maximum direction angle (sinuosity) and decreasing channel
length. This is also consistent with the findings of Xu et al. [20] that the influence of nonlinearity
generally increases with sinuosity and decreases with channel scale.

4. The additional processes considered in the nonlinear model tend to cause the computed discharge
bisector line to be closer to the original channel centerline, and the channel evolution process
to slow down. This is in consistent with the findings of Abad et al. [17], Bai and Wang [38],
but seemingly contradicts with Eke et al. [27], who reported the migration rate decreased with
increasing wavelength possibly because the width adjustment was also simulated in their study.
The difference between the nonlinear and linear channel centerlines after migration is in phase
with the difference of the nonlinear and linear RHS terms, indicating that the simulated channel
migration process is strongly affected by the additional processes accounted for in the nonlinear
model. Nonetheless, the difference between the nonlinear and linear discharge bisector lines
shows a different spatial distribution, indicating that the influence of the nonlinear processes
on the simulated flow pattern is more complex possibly due to the strong three-dimensional
characteristics of meander flow.
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Nomenclature

αs normalized transverse distribution of streamwise velocity
Us depth-averaged longitudinal flow velocity
Un depth-averaged transverse flow velocity
U width-averaged flow velocity
R radius of curvature of channel centerline
Rs radius of curvature of the streamline
s longitudinal coordinates
n transverse coordinates
zs water surface elevation
zb bed elevation
τb bed shear stress
ρ fluid density
ρs sediment density
vs* residual longitudinal velocity components
vn* residual transverse velocity components
H width-averaged flow depth
Cf Chezy’s friction coefficient
Fr Froude number
B channel width
b half width of the channel
ψ flow resistance amplification coefficient due to bend effects
χ shape coefficient related to the transverse velocity profile
A scour factor related to the transverse bed slope
<fsfn> shape coefficient defining the average transverse transport of the streamwise quantities
gsn shape coefficient characterizing the transverse distribution of <fsfn>
β bend parameter
ψsec additional friction due to secondary flow
ψαs the deformation of velocity profiles
ψtur increased turbulence production rate
κ Karman constant
h local flow depth
Q flow discharge
nDB transverse coordinate of the discharge bisector line
P sediment bed porosity
kf coefficient characterizing the sediment transport intensity
D representative size of sediment bed
Cs the ratio of transverse to longitudinal sediment transport
qs sediment transport rates in the longitudinal direction
qn sediment transport rates in the transverse direction
ατ deviation of bed shear stress to depth-averaged flow velocity due to secondary currents
gτ width distribution function
ψτ nonlinear correction to the deviation
G gravitational pull
τ* dimensionless bed shear stress
g gravitational acceleration
ζ under-relaxation factor
Uc critical flow velocity for sediment entrainment
L meander wavelength
ω bank migration rate
S streamwise channel slope
θ direction angle of channel centerline
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