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Abstract: Evaporation from bare sandy soils is the core component of the hydrologic cycle 

in arid environments, where vertical water movement dominates. Although extensive 

measurement and modeling studies have been conducted and reported in existing literature, 

the physics of dry soil and its function in evaporation is still a challenging topic with 

significant remaining issues. Thus, an overview of the previous findings will be very 

beneficial for identifying further research needs that aim to advance our understanding of 

the vapor flow resistance (VFR) effect on soil water evaporation as influenced by 

characteristics of the dry soil layer (DSL) and evaporation zone (EZ). In this regard, six 

measurement and four modeling studies were overviewed. The results of these overviewed 

studies, along with the others, affirm the conceptual dynamics of DSL and EZ during drying 

or wetting processes (but not both) within dry sandy soils. The VFR effect tends to linearly 

increase with DSL thickness (δ) when δ < 5 cm and is likely to increase as a logarithmic 

function of δ when δ ≥ 5 cm. The vaporization-condensation-movement (VCM) dynamics in 

a DSL depend on soil textures: sandy soils can form a thick (10 to 20 cm) DSL while sandy 

clay soils may or may not have a clear DSL; regardless, a DSL can function as a transient 

EZ, a vapor condensation zone, and/or a vapor transport medium. Based on the overview, 

further studies will need to generate long-term continuous field data, develop hydraulic 

functions for very dry soils, and establish an approach to quantify the dynamics and VFR 

effects of DSLs during wetting-drying cycles as well as take into account such effects  when 

using conventional (e.g., Penman-Monteith) evaporation models. 
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1. Background 

Evaporation from bare sandy soils is the core component of the hydrologic cycle (dominated by 

vertical water movement) in arid/semiarid regions, where any disturbance to the fragile hydrology is 

likely to trigger land desertification and deteriorate the very sparse vegetation ecosystem [1–7]. For 

instance, the 51,700 km2 Horqin Sandy Land (HSL; 118°35′ to 123°30′ E, 42°41′ to 45°15′ N), one of 

the most typical sandy lands in the world and historically part of the largest and most characteristic 

Eurasian grassland [8], has undergone severe desertification in recent decades [9,10]: deserted land has 

reached 57.8% of the HSL’s total area [11]. This is primarily because inappropriate reclamation for 

agriculture (e.g., chisel plough tillage in fall) and overgrazing [12] has adversely altered the natural 

hydrologic condition [7]. As a result, this region is losing biome productivity [13] as well as incurring 

environmental problems such as more frequent dust storms of greater magnitude and frequency [14–17]. 

Similar desertification-related issues exist all over the world [18,19], including Africa and the 

southwestern USA [20]. Addressing these bioenvironmental problems requires that physical processes 

of soil evaporation (e.g., vapor and moisture advection/diffusion through variably saturated soils) are 

accurately described [21–23]. Such regions are dominated by bare sandy soils that most of the time are 

covered by a thin (5 to 30 cm) top dry soil layer (DSL) [7,24,25], within which soil moisture is 

dominantly in vapor phase and soil water potentials are usually below −1.5 × 104 cm [26]. Such a DSL 

can have an important vapor flow resistance (VFR) effect on the soil water evaporation rate and dynamic 

processes under natural conditions [23,27]. In other words, the DSL can retard underlying soils from 

further drying. Hereinafter, the VFR effect is measured as the difference between the soil water 

evaporation rate with a DSL and without a DSL. A good understanding of the VFR effect is obviously 

needed but currently lacking [28]. The relative VFR effect, REvfr in percent and being greater for a larger 

VFR effect, can be computed as: 

%100×−=
noDSL

DSLnoDSL
rfr E

EE
RE  (1)

where noDSLE  is the soil evaporation rate with no DSL, and noDSLE  is the soil evaporation rate with DSL. 

In practice, the conventional evaporation models [29–34] that are used in watershed hydrology (e.g., 

Soil and Water Assessment Tool or SWAT) [35,36] and land-atmosphere interaction (e.g., Community 

Land Model or CLM) [37,38] models estimate soil water evaporation without explicitly considering the 

VFR effect [39,40] partially due to our insufficient knowledge of physical dynamics (e.g., thickness 

variation and the vaporization-condensation cycle) within DSL. Alternatively, those models simply use 
a lumped parameter, namely surface resistance ( s

sr ), to represent the VFR effect of DSL, with s
sr  usually 

estimated as a function of soil surface moisture only [40–50]. In reality, for a given soil profile, a DSL 

can be formed on the surface during soil drying and its thickness will gradually increase with elapsed 

time, while a thin evaporation zone (EZ) around the bottom boundary of the DSL will be moved down 

into a greater depth [51–55]. The soil water within the EZ is predominantly in liquid phase, whereas the 
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soil water within the DSL can either be in vapor or liquid phase, depending on the cyclic change in solar 

radiation and soil temperature [56]. For any given day, the EZ is active throughout the day and moves 

vertically with the development/reduction of the DSL at both diurnal and inter-diurnal time scales, but 

the DSL can act as an EZ between late morning and early afternoon and may function as a condensation 

zone at other times when solar radiation and soil temperature are low. Figure 1 illustrates possible 

distributions of DSL and EZ within a vertical soil profile as a result of repeated drying-wetting cycles. 

A model that cannot appropriately consider these dynamic processes is likely to have little value in 

addressing the aforementioned bioenvironmental problems in arid/semiarid regions. Also, this similar 

issue is likely to bias the prediction of land-atmosphere interactions because soil water evaporation 

dynamics are erroneously modeled [38,57]. 

 

Figure 1. Possible distributions of dry soil layer (DSL) and evaporation zone (EZ) within a 

soil profile for situations of: (a) continuously drying; (b) drying and wetting; (c) drying, 

wetting, and drying; (d) continuously drying with condensation/re-evaporation; (e) drying 

and wetting with condensation/re-evaporation and (f) drying, wetting and drying with 

condensation/re-evaporation. 

Philip and de Vries [21] developed a theory that can be modeled with a set of partial differential 

equations governing liquid-heat-vapor dynamic processes in porous materials (including soils). 

Hereinafter, this model is designated as the PdV for description purposes. Following the PdV model, [51] 

suggested that the desiccation of a soil profile can go through three phases (i.e., Phase I to III). In Phase I, 

the soil is sufficiently moist and soil water evaporation (E) is indistinguishable from that from a saturated 

surface (Es), whereas in Phase III, surface layers are very dry and E is sensitive to and may be negatively 

correlated with heat flux into soil. In Phase II, because the soil has intermediate moisture content, E is 

independent of Es and depends on soil moisture distribution only. During Phase I, liquid water is supplied 

from the lower layers and vaporized at the soil surface at rate Es, and then the vapor is transferred into 

the ambient atmosphere. On the other hand, during Phase II and III, vaporization takes place not at the 

surface but within the soil mass (e.g., the EZs), and the vapor diffuses upward through a top DSL to the 

surface and then into the atmosphere. The soil evaporation for the situations illustrated in Figure 1b,e 

can be in Phase I or II, while the soil evaporation for the other situations illustrated in Figure 1 is likely 

to be in Phase III. For Phase I and II, E tends to be maximal when total heat flux into the soil is greatest 

(e.g., seasonally in summer and daily at noon), whereas for Phase III, in contrast, E tends to be maximal 
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when total heat flux out of the soil is greatest (e.g., seasonally in winter and daily at midnight). However, 

as pointed out by [26] and in my own research, due to wrong modeling premises (e.g., the traditional 

hydraulic functions are assumed to still be suitable for water potentials of <−1.5 × 104 cm) or insufficient 

and inclusive experimental (mostly laboratory soil-column) data, previous studies [22,23,53–71] 

primarily examined and reported dynamics of Phase I and II evaporation. For this reason, the features 

presented by those researchers are unlikely to be found at any sites under naturally dry conditions, where 

most of the time a top DSL lies over underlying moist soils and Phase III dominates the soil water 

evaporation process. 

The PdV is becoming applicable in practice because of the technologic advancement of heat pulse 

sensors in the past decade [72–75]. However, to date, few applications (including [76–79]) in very dry 

regions, where Phase III dominates the hydrology cycle most of the time, have considered the 

insufficiency of traditional hydraulic function resulting from prevalent soil air or film flow [80]. Among 

the typical studies of Phase I and II, [63] parameterized a PdV model using measured data on heat flux, 

soil moisture, and pore air humidity of a repacked Toyoura fine sand column, and then used the model 

to numerically examine the dynamics of DSL. The numerical experiment revealed that soil water 

evaporation mainly took place at the bottom boundary of and transiently occurred within the DSL. This 

finding was further verified by [53] from observations at a 60 m × 50 m fallow site (35°58′ N, 140°27′ E) 

and at a 500 m × 500 m sand dune site (35°32′ N, 134°14′ E), where the soils are dominated by sand 

particles (0.02 to 2.0 mm in diameter), and by [69] from observations at a 125 m × 125 m bare field 

(41°59′ N, 93°41′ E), where the soil has a clay loam texture. On the other hand, [68] parameterized and 

used three PdV models to evaluate influences of depth- versus space-dependent values for soil thermal 

conductivity (λ) on simulated subsurface evaporations from repacked 15-cm-long sand, silt, and silty 

clay soil columns. The columns were fully saturated at the beginning of the laboratory experiments and 

started to become dry either under constant or diurnal atmospheric conditions. Those authors concluded 

that: (1) the “undetectable zone” (i.e., the layer from soil surface to first sensor needle) can cause 

underestimation of soil evaporation; (2) a very small (e.g., ≤1.0 mm) grid spacing near the soil surface 

is needed to capture vaporization/condensation dynamics within the DSL; 3) depth-dependent λ will 

yield more accurate estimates of subsurface evaporation; and 4) the soil-water retention functions for the 

sand and silt columns, whose water content tends to approach their residual values at a relatively high 

pressure head, are better described by the Fayer and Simmon model [81], whereas the soil-water retention 

function for the silty clay column is better described by the traditional van Genuchten model [82]. Moreover, 

Novak [22] parameterized and used a PdV model to reproduce the observed EZ dynamics at a bare  

silt-loam site (49°15′ N, 121°46′ W) for a 10-day rain-free period. This period was preceded by rainy 

days with a cumulative rainfall of 14.8 mm, yielding wet soil conditions at the beginning of the study 

period. The traditional Campbell (1974) model was used to describe the soil-water retention function of 

the site. The unique aspect of this simulation was that the grid resolution is more than adequate to 

correctly determine the reported location, magnitude, and shape of the subsurface evaporation zone that 

develops during daytime for many of the days as well as the effects of the evaporation zone on surface 

energy, soil temperature, and soil moisture. 

The objectives of this overview were to: (1) summarize existing findings, and (2) highlight further 

research needs regarding Phase III soil water evaporation from sandy soils with a top DSL (soil moisture 

θ < 1% or water potential ψ < −1.5 × 104 cm) most of the time. In other words, this overview focused on 
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field-measured as well as modeled dynamics of DSLs and EZs and their effects on the soil water 

vaporization-condensation-movement (VCM) process in very dry environments. 

2. Measured VFR Effect 

As stated above, although a number of observational studies of soil water evaporation have been 

presented in existing literature, few of them were conducted at sites with a perennial top DSL and were 

specifically designed to quantify the VFR effect on the VCM process. Among the few studies, this 

overview selected six representatives (Table 1), including [26], [28], [36], [53], [83] and [84], to 

highlight the to-date groundbreaking findings from field measurements all over the world. Herein, these 

six representative studies were overviewed not in their chronological order, but based on the scientific 

interrelation among the findings they present. Also, this overview extrapolated the data and findings 

from these studies to further scrutinize the interrelation. 

Table 1. List of the representative studies selected for the overview. 

Type Authorship Journal Year Domain 
Soil 

Texture 
Process Unique Findings* 

Measuring 

Goss and 

Madliger [26] 

Water 

Resources 

Research 

2007 field 
Sandy 

clay 
drying 

No clear DSL was 

formed; traditional  

soil-water retention 

functions are not 

applicable for very dry 

soils 

Liu et al. [28] 
Arid Land 

Geography 
2006 field 

Dune 

sand 
drying 

VFR effect increases 

with thickness (δ) of 

DSL; when δ > 5 cm, 

evaporation is 

independent of climate 

and soil moisture in EZ. 

Wang et al. [36] 
Arid Zone 

Research 
2006 field 

Dune 

sand 
drying 

DSLs (θ = 0.42 to 

0.54%) of δ = 10 to 18 

cm were formed; EZs 

were at bottom 

boundaries of the DSLs. 

Yamanaka and 

Yonetani [53] 

Journal of 

Hydrology 
1999 field sandy drying 

DSLs (θ < 1%) of δ = 2 

to 9 cm were formed; 

VFR effect increases 

with δ and should be 

considered in s
sr . 

Daamen and 

Simmonds [84] 

Water 

Resources 

Research 

1996 Field sandy drying 

A very thin (< 3 mm) 

DSL had a VFR effect of 

25%. 

Kobayashi et al. 

[83] 

Journal of 

Agricultural 

Meteorology 

1989 column 
Dune 

sand 
drying 

DSLs (θ ≤ 0.7%) of  

δ = 1.5 cm were formed; 

VFR effect linearly 

increases with δ. 
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Table 1. Cont. 

Type Authorship Journal Year Domain 
Soil 

Texture 
Process Unique Findings * 

Modeling 

Sakai et al. [68] 

Water 

Resources 

Research 

2011 columns 
sand, silt, 

silty clay 
drying 

VFR effect is larger for 

coarse- than  

fine-textured soil; DSLs 

can exist for all soils. 

Novak [22] 

Agricultural 

and Forest 

Meteorology 

2010 field loam drying 

DSL and EZ varied 

diurnally; both 

condensation and 

evaporation occurred 

within DSL. 

Sakai et al. [67] 

Soil Science 

Society of 

America 

Journal 

2009 column 
Dune 

sand 
wetting 

Traditional water 

retention functions are 

invalid for dry soils; both 

condensation and 

evaporation occurred 

within DSL. 

Yamanaka et al. 

[63] 

Hydrological 

Processes 
1998 columns 

sand, 

loam, 

clay 

drying 

Very thin EZs were 

formed beneath DSLs of 

δ = 2.0 cm; both 

condensation and 

evaporation occurred 

within DSL. 

Notes: * DSL: dry soil layer; EZ: evaporation zone; VFR: vapor flow resistance; θ: volumetric soil water content (or soil 

moisture); and 
s
sr : soil surface resistance. 

At a site in the HSL, [28] used PVC microlysimeters (inside diameter 5.7 cm and depths 35 to 60 cm) 

to measure evaporation from bare sandy soils covered by DSLs with six different thicknesses of 5, 10, 

15, 20, 25, and 30 cm. At the same time, a contrasting PVC microlysimeter (inside diameter 5.7 cm and 

depth 20 cm) was filled with moist soils to measure VFR-free evaporation. Soil water content was 

measured using the conventional oven-drying method, soil and air temperature using a thermometer, and 

rainfall using a rain bucket. All measurements were done for a time block of 12 h (7:00 a.m. to 7:00 p.m.)  

on each of the 11 days from 13 May to 20 August 2005. On each measurement day, soils in the 

microlysimeters were completely replaced by new soil samples to minimize errors resulting from the 

micro-recycling of soil water [85]. The measurements indicate that EDSL decreases with the increase of 

DSL thickness (δ) (Equation (2)) and that REvfr increases with the increase of δ as a logarithmic function 
(Equation (3)). In the equations, the four positive coefficients have clear physical meanings: 1a  and 3a  

reflect influences of soil water and soil thermal properties and the vertical gradient of soil water content, 
while 2a  and 4a  reflect influences of aerodynamic characteristics. 

21 aaEDSL +⋅−= δ  (2)

( ) 43 ln aaREvfr +⋅= δ
 (3)

where δ = 5 to 30 cm; and 1a , 2a , 3a , and 4a  are four positive coefficients. 



Water 2015, 7 4558 

 

 

For the study site, 1a  = 2.383 × 10−4 to 6.503 × 10−4 (mean 4.345 × 10−4 and coefficient of variation 

Cv = 0.333), 2a  = 0.107 to 0.235 (0.183 and Cv = 0.221), 3a  = 9.743 to 26.004 (mean 17.146 and  

Cv = 0.285), and 4a  = −7.810 to 51.598 (mean 25.908 and Cv = 0.638), with a large coefficient of 

determination R2 > 0.85. When δ > 5 cm, EDSL was mainly controlled by the vertical gradient of soil 

water content and basically independent of the air temperature and soil moisture level in the buried EZ, 

and REvfr became as high as 92.4% (Figure 2). For a given day, the threshold of DSL thickness, δE→0  

in cm, above which soil water evaporation ceases (i.e., REvfr = 100% in Equation (3)), can be estimated as: 

3

4100

0
a

a

E e
−

→ =δ  
(4)

On the 11 measurement days, δE→0 varied from about 38 to 370 cm, with a mean of 106 cm and  

Cv = 0.90 (Figure 3). Given that the maximum DSL thickness is usually less than 30 cm [26,42,86], the large 

variation of δE→0 implies that soil water evaporation will always occur in the HSL though the evaporation 

rate can become very low. 

 

Figure 2. Measured relative vapor flow resistance (VFR) effect (REvfr in Equation (3)) 

versus thickness (δ) of dry soil layer (DSL) at a site in the Horqin Sandy Land (after [28]). 

At a sand dune site in the Mu Su Sand Land (MSSL; 108°50′54″ to 108°58′00″ E, 37°38′42″ to 

37°42′42″ N), [36] measured soil water content profiles (vertical depth 40 cm using three soil samples 

at each of the layers 2 cm apart) on the crest, ridge, sunshine side, and shade side of the sand dune for 

six consecutive days from 1 to 6 May 2004. At the same time, soil and air temperatures were measured 

using a thermometer, while rainfall was measured using a rain bucket. On a given day, the measurements 

were made one to three times. The results indicate that the thicknesses of the DSLs on the crest, sunshine 

side, and shade side were 10, 18, and 12 cm, respectively. However, during the entire measurement 

period, no DSL was formed at the ridge, where the soils were continuously moistened by water from the 

surrounding soils by gravity because the ridge has ground elevations lower than its surrounding areas. 
Those authors did not examine the VFR effects of the DSLs. Using the mean values of 3a  = 17.146 and 

4a  = 25.908 in Equation (3), it was determined that REvfr > 65% for the sand dune, with the highest VFR 

effect of 75.5% on the sunshine side. 
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Figure 3. Thresholds of thickness of the dry soil layer (DSL), δE→0 in Equation (4), on the 

11 measurement days at in the Horqin Sandy Land (after [28]). 

In a field plot, which has 91% sand (i.e., soil particle diameter 2.0 to 0.05 mm) content and is located 

at 40 km southeast of Niamey, Niger, [84] measured bare soil water evaporation rate on a half-hourly 

basis using PVC microlysimeters (inside diameter 16 cm and depth 10 cm). The microlysimeters were 

filled with undisturbed soil cores extracted randomly within a plot area by pushing them into the soil, 

excavating, and then sealing them at the bases. Each microlysimeter was mounted in an outsized liner 

tube in an undisturbed part of the plot and seated on a load cell at the bottom of the liner tube. The output 

of the load cell is a voltage that is proportional to the weight of the microlysimeter, which was monitored 

every 5 min and then averaged every half hour to get the soil water evaporation rate with an accuracy of 

±0.1 mm·h−1. Net radiation, rainfall, and wet and dry bulb temperatures were continuously monitored at 

the field plot, and wind speed measurements were taken from an automatic weather station 600 m  

from the plot. The measurements were made in September 1991 for two days. The results indicate that 

a 3-mm-thick top DSL was formed with a REvfr ≈ 25%. Such a VFR effect falls in the range (20% to 
40%) computed using Equation (3) with 4a  = 51.598 and any valid value for 3a , indicating that 

aerodynamic characteristics might play a dominant role in soil water evaporation because of a very thin 

DSL (3 mm << 5 cm). 

Using a transparent acrylic resin tube (inside diameter 5 cm and depth 5 cm) that was filled with 

repacked soils from the Japanese Tottori Sand Dune (134°14′ E, 35°32′ N), [83] measured the soil water 

evaporation rate and DSL thickness for 46 consecutive hours. The tube was placed in a chamber where 

the climate condition was maintained to be invariant: temperature 30 °C, relative humidity 60%, 

irradiance induced by 30,000 LX metalhalide lamps, and 0.5 m·s−1 horizontal wind provided by fans. 

The temperatures on the top and bottom surfaces of the column were measured using thermister 

thermometers at an interval of one hour. The measured REvfr tended to increase with δ by following a 

linear function (R2 = 0.937) better than a logarithmic function (R2 = 0.727) (Figure 4). For a given value 
of δ, the measured REvfr was much larger than that predicted by Equation (3) regardless of values for 3a  

and 4a . One possible reason is that Equation (3) is based on field measurements for 5 cm ≤ δ ≤ 30 cm, 
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which is not unlikely questionable for column-based measurements for δ ≤ 1.5 cm. Another possible 

reason is that the climate condition in the experimental tube is much more favorable for evaporation than 

any realistic climate condition. Such a timely invariant climate condition might minimize aerodynamic 

resistance, leading to a positive linear relationship between REvfr and δ. 

At one 60 m × 50 m fallow site (140°27′ E, 35°58′ N) and another 500 m × 500 m dune site (134°14′ 

E, 35°32′ N) located in Japan, [53] measured soil water evaporation and DSL thickness in July or August 

1996. Both sites are dominated by sand particles (>70%) and have very low clay content (<10%). The 

soil moistures within two layers of 0 to 1 cm (θ0→1) and 0 to 5 cm (θ0→5) were measured using the 

conventional oven-drying method, while the bottom boundary of the DSL was visually distinguished by 

the contrast of color and δ was measured using a caliper. The measurements were made at noon every 

day and/or every 4 h on an intensive observation day. Factors on climate (i.e., radiation, air temperature, 

wind speed, humidity, and rainfall) and soil (i.e., temperature and heat flux) were measured using sensors 

at a time interval of 5 min and then averaged every hour for analysis. For the fallow site, δ approached 

2 cm while θ0→1 and θ0→5 decreased to 1.25% and 8.75%, respectively, whereas for the dune site, δ 

approached 9 cm while both θ0→1 and θ0→5 decreased to <1.0%. Because those authors did not measure 
EnoDSL, it is impossible to directly determine REvfr as defined in Equation (1). Instead, s

sr  was computed 

by those authors as a function of θ0→1 without taking into account δ. The computed s
sr  tends to decrease 

with the increase of θ0→1 and the decrease of δ, indicating its generic reasonability; a hysteresis loop, 
however, is clearly presented, indicating limitations of conventional s

sr  formulas. Nevertheless, the 

results reveal that in dry sandy soils, liquid water transport from deeper soil layers stopped at the bottom 

boundary of the DSL and vapor water transport was dominant in the DSL, and that VFR effect increased 

with DSL thickness. 

  

Figure 4. Measured and predicted relative vapor flow resistance (VFR) effect (REvfr in 

Equation (3)) versus thickness (δ) of the dry soil layer (DSL) for a 5-cm-long repacked 

columm of the Japanese Tottori dune sand soil (after [83]). 

In contrast to the above five studies, [26] measured soil water transport from 5 July to 18 October 

2005 at a Tanzania site (37°38′ E, 6°51′ S). The fine-textured soil is classified as sandy clay (49% sand, 

4% silt, and 47% clay) and thus may have different soil-water properties from the sandy soils of the 

other five studies. Using Rotronic Hygroclip SC05 sensors with a diameter of 5 mm (Retronic AG, 
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Bassersdorf, Switzerland, http://www.rotronic.com), those authors measured soil pore air relative 

humidity and soil temperatures at depths until 70 cm, and then analyzed the soil-water retention function 

and the dynamics of soil water evaporation. The results indicate that the retention function could not be 

satisfactorily described by traditional van Genuchten (1980) and similar models, and that pore air relative 

humidity depended on soil temperature, which violates the basic assumption of the PdV model. This is 

because the study soil had a water potential ψ < −1.5 × 104 cm, when the movement of adsorbed water 

films dominated the flow in water-filled capillaries. However, unlike the findings of the other five 

studies, the results do not indicate a clear DSL: the layer, within which evaporation occurred, was 

confined to the first 1.5 cm and did not progress much further. Those authors attributed such an 

inconsistency to the fact that the other five studies were based on “either wrong premises or insufficient 

and inconclusive experimental data” and claimed that their data are the only ones reported so far that 

allow a clear distinction of the transition between liquid water and water vapor transport. In my view, 

the inconsistency is likely due to distinctly different soil-water properties of fine- versus coarse-textured 

soils. Because the capillary action is much stronger in fine- rather than coarse-textured soils, for the 

sandy clay soils at the Tanzania site, the evaporated water from the top 1.5 cm EZ could be effectively 

recharged by capillary water from deeper soil layers and only little water was taken from the water 

storage in the EZ itself, whereas for the sandy soils at the sites in the HSL, MSSL, Niger, and Japan,  

a lower EZ was produced by the stopping of liquid water movement at the bottom boundary of  

the DSL and vapor water transport was dominant in the DSL. As revealed by the measurements, when 

ψ < −1.5 × 104 cm, for the Tanzanian sandy clay soils, the unsaturated water conductivity is five orders 

of magnitude higher than the responding representative literature values, while for the sandy soils, the 

magnitudes of unsaturated water conductivity and vapor conductivity below the bottom boundary of the 

DSL are much lower and those above the DSL are much higher than the responding representative 

literature values. 

The preliminary field measurements support the DSL and EZ dynamics illustrated in Figure 1 for 

sandy soils but not for sandy clay soils in very dry environments. This was hypothesized by [63]. For 

sandy (coarse-textured) soils, the VFR effect on the soil water evaporation rate increases with the 

thickness (δ) of the DSL as a linear function when δ < 5 cm but as a logarithmic function when δ ≥ 5 cm. 

The VFR effect depends on both aerodynamic characteristics (e.g., wind speed) and soil water/thermal 

properties (e.g., vertical gradients of water content and temperature), with the former being more 

dominant than the latter when δ < 5 cm but the latter becoming more dominant than the former when  

δ ≥ 5 cm. In contrast, for sandy clay (fine-textured) soils, because of a strong capillary action and  

a not-much-lowered unsaturated water conductivity of the top layer at very large water potential (i.e.,  

ψ < −1.5 × 104 cm), a DSL will not be efficiently formed as a result of water recharge from deeper soil 

layers. Although formed under long-lasting dry climate conditions, such a DSL may be very thin and 

have a very small VFR effect on soil water evaporation. To date, no measurement has been reported 

regarding the dynamics and VFR effect of multiple DSLs resulting from repeated drying-wetting cycles. 

3. Modeled VFR Effect 

As with field measurement studies, although a number of modeling studies of soil water evaporation 

have been reported in existing literature, few of them focused on Phase III evaporation in very  
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dry environments. Among the few studies, this overview selected four representatives (Table 1), 

including [22], [63], [67] and [68], to analyze advances and challenges in modeling Phase III soil water 

evaporation. Again, these representatives were overviewed in chronological order to highlight the 

continuous improvements of modeling techniques. 

As stated above, primary modeling studies are based on the PdV model expressed as [21]: 
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(5)

where z is the depth from the soil surface and is negative below the surface (m); t is the time (s); θw is 

the volumetric liquid water content (m3·m−3); θv is the volumetric water vapor content (expressed as an 

equivalent volumetric water content = 
w

v

air ρ
ρ

⋅θ  m3·m−3); qw and qv are the fluxes (positive upward) of 

liquid water and water vapor (expressed as equivalent liquid water) per unit horizontal-area soil (m·s−1), 

respectively; θair is the volumetric air content (m3·m−3); ρv and ρw are the densities of water vapor and 

liquid water (kg·m−3), respectively; ψ is the water potential (m); KLψ (m·s−1) and KLT (m2·°C·s−1) are the 

isothermal and thermal liquid water hydraulic conductivities, respectively; Kvψ (m·s−1) and  

KvT (m2·°C·s−1) are the isothermal and thermal vapor hydraulic conductivities, respectively. Sh is the soil 

heat storage (J·m−3); qh is the total soil heat flux (J·m−2·s−1); λ is the soil thermal conductivity 

(W·m−1·°C−1); Tr is an arbitrary reference temperature below which qw and qv contribute no heat flux 

(°C); Cw (=4.18 MJ·m−3·°C−1) and Cv (=1.8 MJ·m−3·°C−1) are the volumetric heat capacities of liquid 

water and water vapor, respectively; Cs (=1.92·MJ m−3·°C−1) is the volumetric heat capacity of soil 

particles; θs is the volumetric solid content (m3·m−3); and L is the latent heat of vaporization of water (J·m−3). 

The evaporation (positive) or condensation (negative) rate between the soil surface and atmosphere, 
t
sfE  (m·s−1), can be computed as: 

),0(),0( tqtqE vw
t
sf +=

 (6)

The depth-dependent evaporation/condensation rate, e (s−1), can be determined by solving the mass 

conservation equation expressed as [87]: 
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For a discretized grid with thickness of Δz, the average evaporation/condensation rate from this grid 
within a time interval of Δt, t

iE  (m·s−1), can be approximated as: 
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where t

i,vθ  and 1t

i,v

−θ  are the volumetric water vapor contents (expressed as equivalent water contents, 

m3·m−3) within the grid at current and previous time steps, respectively; and 2/1t

2/1i,vq −
+  and 2/1t

2/1i,vq −
−  are the  
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Δt-averaged fluxes of water vapor (expressed as equivalent liquid water fluxes, m·s−1) at the lower and 

upper faces of the grid. 

Yamanaka et al. [63] set up finite-element PdV models for three 60-cm-long columns of fine sand, 

loam, and clay soils, and solved the models by the Crank-Nicholson implicit method [88] with Gauss 

elimination. The elements have a thickness from 0.5 mm near the surface to 10 cm at lower depths. 

Although sensors were used to continuously measure soil moisture, soil temperature, and pore-air 

humidity at various depths in the field from which the fine sand soil column was taken, the models used 

hypothetical evaporative flux and net radiation (either constant or diurnal) as the upper boundary 

condition. The lower boundary condition was specified as a constant temperature and no water flux. The 

models neglected 
z

T
K LT ∂

∂  and ( ) wrw qTTC ⋅−⋅  in Equation (5) and did not consider the enhancement 

factor for KvT [89,90]. The traditional van Genuchten [82] soil-water retention function was used and 

the unsaturated liquid water hydraulic conductivity, KLψ, was derived by substituting the retention 

function into the Mualem model [91], which might be invalid in cases of low water content, as evidenced 

by [26]. The results show that evaporation actually took place within a very thin (<2 mm) EZ located at 

the bottom boundary of the 2.0-cm-thick DSL, and that condensation and evaporation occurred in the 

DSL during the nighttime and daytime, respectively. However, the VFR effects were not reported and 

could not be estimated because the responding evaporation rate without the DSL was not predicted. 

Sakai et al. [67] set up a PdV model for six identical dune sand (90% of soil particles > 0.1 mm and 

3% of soil particles < 0.02 mm) columns (height 10 cm and diameter 10 cm) using the HYDRUS-1D 

code [92], and used the model to reproduce the measured condensation dynamics. In the laboratory 

experiment, the tops of the columns were exposed to hot (37 °C) and moist air, while the closed bottoms 

of the columns were maintained at 20 °C by circulating constant-temperature water along the base of the 

columns using a water pump. The model used finite elements of 1 mm thickness and uniform initial soil 

moisture of 0.45% for all elements. The upper boundary condition was specified as the measured weight 

change of the entire column, while the lower boundary condition was specified as being no-flux. The  

soil-water retention function of Fayer and Simmons [81], parameterized using measured (ψ, θ) data until  

ψ = −1.0 × 104 cm, was used in the model. The unsaturated liquid water hydraulic conductivity, KLψ, was 

derived by substituting the parameterized retention function into the Mualem model [91]. The results 

indicate that the model simulation performance was sensitive to KLψ, which is shaped by the  

pore-connectivity coefficient, and KvT, which is shaped by the enhancement factor. This implies that a 

soil-water retention function for low water potentials (e.g., ψ < −1.5 × 104 cm) is crucial for modeling 

VCM dynamics within very dry sandy soils, while it is still unknown whether the Fayer-Simmons 

function is valid when ψ < −1.5 × 104 cm. Nevertheless, the model fairly reproduced the observed VCM 

dynamics that: (1) water vapor entered the soil column from the hot top surface and condensed at the 

cold bottom; (2) liquid water moved upward and evaporated at the moisture front in the middle of the 

column; (3) liquid water and water vapor then circulated between the bottom and the moisture front; and 

(4) increases in liquid water flow (and the evaporation rate) were compensated by increases in vapor 

water flow (and the condensation rate). 

Novak et al. [22] set up a finite-element PdV model and solved the model using MATLAB® scripts 

for a Canadian bare field with dominant soils of silt loam (121°46′ W, 49°15′ N). The one-dimensional 

soil domain extends from z = 0 to 4 m, with an element thickness increasing logarithmically from  
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6.9 × 10−7 m at the soil surface to 0.025 m at the bottom of the domain. The model neglected water vapor 

storage (i.e., assumed θv = 0 in Equation (5)), which might be problematic for modeling vapor diffusion 

dynamics within the DSL. The traditional Campbell (1974) soil-water retention function and equations 

of unsaturated hydraulic conductivities for liquid water and water vapor were used. For a 10-day 

simulation period, the upper boundary condition was specified as the observed time series of water flux 

from the soil surface into the atmosphere and radiation, while the lower boundary condition was 

specified as zero gradients of water potential and temperature. The model was calibrated by adjusting 

saturated liquid water hydraulic conductivity to closely match the observed time series of soil 

temperature and soil moisture at various depths. The relatively large simulation errors for later simulation 

days were attributed to the fact that the model used vertically homogeneous soil hydraulic and thermal 

properties and/or assumed θv = 0. The results clearly indicate VCM diurnal variations and steadily 

decreasing peak evaporation rates (16 to 5 mm·d−1) with the lapse of days. For a given simulation day, 

the evaporation rates varied from zero to a peak value. On some days, evaporation solely occurred at the 

soil surface because the condensed water in the early morning and/or the previous night rewetted the 

surface soils, while on the last two simulation days, a top DSL (δ = 0.2 cm) always existed and 

evaporation solely occurred at the bottom boundary of the DSL. However, the VFR effect was not 

reported by that author, and it could not be estimated because the responding evaporation rates without 

the DSL were not presented either. 

Sakai et al. [67] set up PdV models for three 15-cm-long sand, silt, and silty clay soil columns and 

another 20-cm-long silt soil column using the HYDRUS-1D code with a grid spacing of less than 1.0 mm. 

A hypothetical constant or diurnal climate was used as the upper boundary condition, while zero water 

flux and a constant temperature of 25 °C were used as the lower boundary condition. The models used 

traditional van Genuchten [82] and Fayer and Simmons [81] soil-water retention functions and the 

unsaturated hydraulic conductivities for liquid water and water vapor were estimated with the Mualem [91] 

pore-size distribution model for the retention functions, and λ was estimated by an empirical equation 

presented by Chung and Horton [93]. The models reveal that the EZ was at the soil surface in the 

beginning of the simulation but moved down to deeper depths with drying, and that regardless of the 

climates, the EZ of the silty clay soil column remained at the soil surface much longer in time than the 

EZs of the other two coarse-textured soil columns. In terms of the simulation results of using the constant 

climate, the top DSLs for the sand, silt, and silty clay soil columns reached maximum thicknesses of 0.3, 

0.2, and 0.15 cm, respectively, with the responding VFR effects of 50%, 47%, and 7%, respectively. 

This is consistent with the finding of [26] that fine-textured soils tend to have a much thinner DSL with 

a smaller VFR effect on soil water evaporation. Nevertheless, as with the measurement study conducted 

by [83] (Figure 4), the hypothetical constant climate might be favorable for soil water evaporation, 

leading to the large VFR effects for not-very-large δ values. Also, because the traditional soil-water 

retention functions and the empirical equation for λ may become invalid when a DSL appears [26], the 

simulated soil water evaporation rates and VFR effects are likely uncertain in accuracy. 

The primary modeling studies were used to reproduce VCM dynamics observed in laboratory soil 

columns, but none of them was specifically designed to quantify the VFR effect of the DSL on soil water 

evaporation. For this reason and because the models were driven either by artificial or hypothetical 

atmospheric conditions, it is unknown at what degree the modeling results can reflect situations of the 

real world. In addition, because the models used traditional soil-water retention functions that are 
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probably invalid for very dry soils, as evidenced by some observations [26], and had a short simulation 

period covering either the drying or wetting process but not both, the modeling results are mainly for 

Phase I and II evaporations or, at most, the early stage of Phase III evaporation, as indicated by the fact 

that the modeled DSLs of the drying process have a thickness of δ ≤ 2.0 cm and soil moisture of θ > 2%. 

Further, the models used empirical equations (e.g., Chung and Horton [93]) for λ, which might cause 

large calculation errors of heat balance at the moisture front. As a result, the predicted dynamics of DSLs 

and EZs can be irreconcilable. Nevertheless, as with the measurement studies, the modeling studies also 

affirm the conceptual soil water evaporation dynamics illustrated in Figure 1. 

4. Further Research Needs 

Although prominent efforts have been made to understand soil water evaporation, the physics of dry 

soil and its function in evaporation is a challenging topic with significant remaining issues because of 

the lack of continuous observations with sufficiently high spatiotemporal resolutions to capture soil 

water VCM dynamics within very dry soils and to establish hydraulic functions that are applicable for  

ψ < −1.5 × 104 cm. In order to address such issues, further research will be needed in the following  

four aspects. 

Firstly, field measurements need to be conducted to generate long-term high-resolution observations 

of soil water content, water potential, soil temperature, and relative humidity in pore air of in situ bare 

sandy soils, where Phase III evaporation is usually dominant. In this regard, typical experimental sites 

should be instrumented using sensors to simultaneously observe data on climate as well as soil water 

and soil thermal properties. Beside existing sensors, a high-resolution heat pulse sensor (HRHPS) with 

a needle spacing of ≤1 mm is currently not available, and it needs to be designed and fabricated to 

minimize errors resulting from “undetectable zone” [68]. Such a HRHPS will make it possible to:  

(1) continuously observe dynamics of DSLs and EZs resulting from drying-wetting cycles; and (2) 

capture sharp gradients of soil water and soil thermal properties within DSLs and at DSL-EZ interfaces. 

The 11-needle (stainless steel) heat pulse sensor proposed by [70] may have some potential, but its current 

design is not unproblematic and has not been tested for dry sandy soils. 

Secondly, hydraulic functions for very dry sandy soils (ψ < −1.5 × 104 cm) need to be developed. As 

revealed by previous studies (e.g., [26]), the traditional soil water retention functions, developed by 

Brooks and Corey [94], Campbell [95], van Genuchten [82], Fayer and Simmon [81], and Lambot et al. [96], 

are applicable for unsaturated soils with a water potential of ψ > −1.5 × 104 cm. However, it is unknown 

and questionable whether those functions are applicable for very dry soils when Phase III evaporation is 

dominant. The long-term high-resolution observations will provide an opportunity to develop soil water 

retention functions that are applicable for different ranges of soil moisture. These retention functions in 

turn can be used in the Burdine [97] and/or Mualem [91] models to develop liquid water and water vapor 

hydraulic conductivity functions for very dry sandy soils. 

Thirdly, an approach needs to be established to quantify dynamics of DSLs and EZs resulting from 

wetting-drying cycles as well as the VFR effect of DSLs. As illustrated in Figure 1, at a given time, a 

soil profile can have multiple DSLs and EZs with various thicknesses and vertical positions. During 

continuous drying, the top DSL will become thicker and its bottom dry front will be moved down, 

whereas during continuous wetting, an EZ may be formed at the soil surface and its bottom wet front 
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will be moved down. If a top DSL already exists when wetting starts, the subsequent drying-wetting 

cycles can result in a striped distribution of DSLs and EZs, with an EZ beneath a DSL and vice versa. 

Moreover, within a DSL, isolated/patched evaporation pores can be formed from condensation of vapor [23] 

that diffuses into the DSL from its adjacent DSLs and/or EZs. To date, little is known about these 

dynamics, their influential factors, and their influences on soil water evaporation rate [27]. Our intuitive 

knowledge or insight is that the top DSL plays a larger role in retarding soil water loss to the ambient 

atmosphere than the buried DSLs that are either beneath an EZ or have patched evaporation pores. 

However, because these buried DSLs have a reduced heat storage capacity [98] and a lowered thermal 

conductivity [99–101], they can still exert resistances of varying degrees to vapor diffusion. Herein, such 

an approach can be established by analyzing the long-term high-resolution observations and simulations of 

VCM dynamics within in situ dry sandy soils. 
Finally, a set of empirical coefficients, which can be used to correct s

sr  to consider the lumped  

effect of DSLs and EZLs on soil water evaporation, need to be created. Given the simplicity and 
popularity of s

sr  in using conventional evaporation models, such as Penman-Monteith [29,30,102] and 

Shuttleworth-Wallace [31], the creation of such empirical coefficients is expected to noticeably increase 

the accuracy of those evaporation models in predicting soil water evaporation in arid environments. The 
existing formulas define s

sr  as a function of latent heat flux from top soil layer (LEs), but such a function 

can become invalid for Phase III because within the top DSL almost no vaporization occurs and LEs may 
be negligible. However, practical applications (e.g., [103,104]) of those s

sr  formulas assumed that soil 

water vaporization solely occurs within the top soil layer, and they computed LEs as a function of total 
soil evaporation, leading to the overestimation of LEs due to the underestimation of s

sr . A correction to 
s

sr  by the newly developed empirical coefficients will make it handy to take into account DSL VFR 

effects and EZ enhancement effects with no requirement to know details of DSL and EZ dynamics 

resulting from repeated wetting-drying cycles, maintaining the simplicity of the models. With this 

regard, [38] proposed (conceptually without any observational basis) a linear functional relation 
(Equation (9)) between s

sr  and δ by assuming a maximum DSL thickness of δmax < 0.3 cm, which is 

consistent with the observations of [83]. It was found that the δ-based s

sr  noticeably improved the 

performance of the CLM in simulating evaporation in accordance with the FLUXNET-MTE (Model 

Tree Ensemble) data [105] and total water storage in accordance with the GRACE (Gravity Recovery 

and Climate Experiment) observations [106]. Because this relation is currently unique and may be a 

good start for developing generic correction coefficients, it is reproduced herein as: 

τ
δ

⋅
=

v

s
s D

r
 

(9)

where s
sr  is the soil surface resistance to evaporation (s·m−1); δ is the thickness of the DSL (m); Dv is 

the molecular diffusivity of water vapor in air (m2·s−1); and τ is the tortuosity factor of vapor flow paths 

through the soil matrix (–). 

δ is estimated as: 



Water 2015, 7 4567 

 

 








≥

<
−
−⋅

=

DSL

DSL
airDSL

DSL

θθ

θθ
θθ
θθδ

δ
0

0
0

max

                               0

       
(10)

where δmax is the theoretical maximum DSL thickness (m); θDSL is the soil moisture below which the soil 

is defined as DSL; θ0 is the surface soil moisture; and θair is the air-dry soil moisture. 

θair is estimated as: 
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where θsat is the saturated soil moisture; ψsat is the water potential at θsat; ψair (=106 cm) is the water 

potential at θair; and b is the pore size distribution index [107]. 

Dv is computed as: 
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where T is the soil surface temperature (K). 

τ is computed as: 

( ) ( ) bsatb

b

airsat

332 −+
⋅−= θθθτ (13)

5. Conclusions 

This overview summarized the to-date advances in quantifying the VFR effect of the DSL on the soil 

water evaporation rate in very dry environments. Both measurement and modeling studies affirm the 

conceptual dynamics of DSLs and EZs resulting from either the drying or wetting process. On the one 

hand, because of the advancement of sensor technologies, measurement studies have shifted the focus 

from laboratory experiments to field observations. Although most of the studies traced temporal 

variations of the vertical soil moisture profile (i.e., VCM dynamics), few of them have been specifically 

designed to measure the VFR effect. The preliminary observations indicate that the VFR effect tends to 

linearly increase with DSL thickness (δ) when δ < 5 cm and is likely to increase as a logarithmic function 

of δ when δ ≥ 5 cm. For coarse-textured (e.g., sandy) soils covered by a DSL with δ ≥ 5 cm, the VFR 

effect can become so large that the soil water evaporation rate will be almost independent of climatic 

conditions as well as the soil moisture level of the EZ positioned at the bottom boundary of the DSL. In 

contrast, for fine-textured (e.g., sandy clay) soils, a thick DSL usually cannot be formed while a very thin 

(<1.5 cm) DSL may exist. On the other hand, extensive modeling studies have been conducted in terms 

of the PdV model. For unknown reasons, primary modeling studies were designed to reproduce observed 

VCM dynamics in laboratory columns rather than in in situ soils, and thus it is unknown at what degree 

the modeling results can reflect situations of the real world. Also, the use of traditional hydraulic 

functions by the modeling studies is unlikely to be unproblematic for very dry soils. 

Based on this overview, further research will need to: (1) generate long-term high-resolution field 

observations of Phase III evaporation during repeated wetting-drying cycles; (2) develop hydraulic 

functions for very dry sandy soils; (3) establish an approach to quantify dynamics of DSLs and EZs 



Water 2015, 7 4568 

 

 

resulting from repeated wetting-drying cycles as well as the VFR effect of DSLs; and (4)  
enable empirical equations of soil surface resistance ( s

sr ) to take into account the VFR effect of the DSL 

in the simplest way, as demonstrated by [38], to improve the accuracy of conventional models (e.g., 

Penman-Monteith) in predicting soil water evaporation in very dry environments. 
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