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Abstract: Model spin-up is an adjustment process where its internal stores move from an 

initial state of unusual conditions to one of equilibrium. Model outputs during this spin-up 

process are often unrealistic and misleading. This study investigates some primary factors 

affecting spin-up time using the Xinanjiang model for 22 river basins throughout the 

United States. A 10-year recursive simulation with three data sets indicates that time 

required for model equilibrium is not only a function of initial conditions, but also is 

affected by input data sets (precipitation and evaporation). The model requires less time to 

be equilibrated under wetter initial conditions (lowest under saturated initial condition). 

Moreover, model spin-up time shows distinct variations with the dryness of the input data 

sets. Analysis suggests that wet basins (ratio of evaporation over precipitation <0.9) require 

less time (55 days) for model equilibrium in comparison to that of dry basins (298 days). 

The spin-up time displayed an exponential relationship with the basin aridity index  

(r2 = 0.85). This relationship could provide a way to predict the maximum model spin-up 

time using the precipitation and evaporation information only. Predicting maximum model 

spin-up time based on this relationship could be valuable to reduce uncertainty, particularly 

under data scarce situations. 

Keywords: spin-up time; aridity index; Xinanjiang model; model initialization; soil 

moisture memory; recursive simulation 
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1. Introduction 

Hydrological models constitute an important tool for managing water resources. They can be used 

as a support instrument for understanding physical processes or prediction purposes. A hydrological 

model can serve to predict a risk of flooding, indicate the susceptible areas and timing of inundation, 

and be useful in preparing for evacuation in advance. Likewise, a prediction of future floods and their 

magnitudes could assist with the planning of protective measures. A hydrological model could also be 

used to assess climate change impacts on water resources. However, sound hydrological prediction 

requires both access to quality hydrological data and the application of suitable modeling techniques. 

Hydrological models are unique and their accuracy could differ greatly from model to model due to 

differences in model structure (i.e., different field capacities), input data sets and parameterizations. 

Even a single model could produce diverse outputs and achieve different accuracies due to variations 

in calibrations. A great deal of the literature discusses the effect of model initial conditions to its 

outputs [1–7]. These studies highlighted the complex interaction among soil moisture initial 

conditions, climatic factors and soil properties. When a model is calibrated with a different initial state 

compared to the target basin’s long-term climatology, the model undertakes a period of spin-up during 

which its internal stores (i.e., soil moisture) adjust from the initial conditions to an equilibrium  

state [8,9]. The model output during this adjustment period is highly impacted on by the initial 

condition, and consequently may show huge drift and not be usable. Literature suggests that the typical 

spin-up time of the land surface model (LSM) could range from one to several years [8–12]. Once the 

model achieves its equilibrium state, the simulated output usually agrees better with the observations 

and responds realistically to the inputs [8,11,13,14]. Hence, special attention is required for specifying 

the model initial conditions. However, due to the scarcity of long-term records or spatially distributed 

information specifying the catchment states, the model’s initial conditions are usually inferred from 

limited observations or an initial guess [14]. Rodell et al. [12] suggests using climatological average 

states from the same model for the purpose of initialization in the absence of long term forcing data. 

Several researchers claimed that spin-up time is not only associated with the water holding capacity 

and its initial values, but also with atmospheric forcing and surface conditions [8–12]. In an LSM 

model study, Cosgrove et al. [11] demonstrated that spin-up time varies spatially and is highly 

correlated with precipitation and temperature. Moreover, they noted that spin-up time is highly 

influenced by the soil moisture persistence or soil moisture memory (SMM). A low SMM indicates 

that the soil moisture anomalies are short-lived and dissipate quickly, enabling the model to recover 

relatively quickly from an undesirable initial state. On the other hand, a high SMM that indicates the 

slowness of anomaly dissipation and would delay the process of model equilibrium. Seck et al. [13] 

also documented the link between initial conditions and meteorological conditions. They mentioned 

the slowness of model equilibrium under dry initial condition due to the longer system memory. 

Rahman et al. [15] proposed an easy way to estimate basin scale SMM using aridity index (ratio of 

annual evaporation over annual precipitation) information only. Since SMM and model spin-up time 

are interlinked, it is also intuitive to have a relationship between aridity index and model spin-up time. 

To minimize the uncertainty associated with the model spin-up process, modelers often implement 

two main techniques. Firstly, the model is often run repeatedly using a single or multiple years of 

forcing data until it reaches an equilibrium state and thereafter initializes the model according to this 
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equilibrium state [16,17]. However, this repeated model run with single year forcing data might not be 

sufficient to train the model given the extremes of climatological phenomenon. Moreover, it demands 

computation time and energy [16]. Secondly, modelers often perform the analysis task by excluding 

the first few months’ (years’) model outputs [18]. The length of this data exclusion (spin-up time) is 

mostly defined by a guess. However, guessing a spin-up time does have its limitations. Excluding 

initial model outputs could be a very costly task in developing countries where hydro-climatic data is 

very scarce. Over-estimating the spin-up period will lead to a loss of important information. Likewise, 

an underestimation would affect the conclusion by incorporating erroneous initial model outputs. 

Moreover, guessing spin-up time (if any) for a shorter period, particularly for seasonal or monthly 

simulation would be very problematic. Therefore, understanding the spin-up behavior of a model is 

essential for a better calibration and simulation experience. 

Despite its importance, only a very few studies have examined the spin-up behavior of land  

surface [8,9,11,12,18] or hydrological models [13,14,16]. These studies have been done to examine the 

model spin-up behavior under diverse conditions of climate, vegetation, and soil types. Although the 

conclusions have often been model-specific, they delivered essential guidelines on model initial 

condition settings, and thus reduced modeling errors. However, most of all these studies have been 

conducted on the basis of multiple years (mostly 10-year) recursive simulations, using only a particular 

year’s input data sets. Recursive runs with a single year input data sets would not be sufficient to train 

the model with climatological extremes. Moreover, conclusions of these studies have been mainly 

based on the results of one basin or study site. The present study attempted to overcome these 

limitations by employing 10-year recursive runs using three different climatological input data sets 

under four different initial conditions. This study has been done using the Xinanjiang (XAJ)  

model [19] over 22 river basins throughout the United States. 

The XAJ model [19] is a conceptual hydrological model developed by the Flood Forecast Research 

Laboratory of the East China Technical University of Water Resources (presently, Hohai University). 

The XAJ model has been widely employed to simulate runoff generation within a catchment in 

China’s humid and semi-arid regions, and other parts of the world [20]. Researchers consider spin-up 

time based on their personal feeling, experience, and purpose. Lin et al. [21] considered a spin-up 

period of 19 days during a four-month streamflow simulation for the Shiguanhe River Basin, China. In 

another study, Lu et al. [22] considered only 12 h of spin-up time while forecasting floods at the 

Huaihe River Basin’s Wangjiaba sub-basin. It is very difficult to comment on the acceptable duration 

of the XAJ model spin-up time, as it is mainly controlled by the purpose, scope and scale of interest. 

However, it could be useful to know the spin-up behavior of the XAJ model under different conditions 

to judge and decide the spin-up time for improved simulation exercises. Considering this objective, 

this study investigates the spin-up behavior of the XAJ model for 22 river basins across the USA. 

Firstly, this study examines the model spin-up times for three different climatological input data sets 

(precipitation and evaporation). Secondly, it analyzes the model spin-up times under four initial 

conditions for each of the input data sets. Thirdly, it assesses the link between the model spin-up time 

and soil moisture memory. Fourthly, it explores the relationship between the model spin-up time and 

the basin’s aridity index (ratio of annual evaporation over annual precipitation). Finally, it shows an 

easy way to predict the maximum model spin-up time using only the aridity index information. 
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2. Materials and Methods 

2.1. Study Area 

This study analyzes 22 river basins across the USA. Stream gauge locations of the analyzed basins 

are shown in Figure 1. The river basins were selected based on prior calibration experience of the XAJ 

model by Rahman et al. [15]. Rahman et al. [15] selected these river basins to avoid snow impacts on 

SMM calculations and mentioned the XAJ model’s capability to simulate river discharge with good 

accuracies. This study selected the same river basins or basins located within the area analyzed by 

Rahman et al. [15] intending to reduce calibration efforts and to enable linking between SMM and  

spin-up time. Moreover, snow processes would introduce additional system memory and affect its 

spin-up behavior. Analyzed basins are located in nearly snow-free areas. Based on 30-year climate 

normals (1981–2010) released by NOAA’s National Climatic Data Centre [23], the basins have less 

than 7 snow-days (a snow-day is a day that records at least 2.5 mm snow/day) and receive less than 

200 mm of total new snow per year. A summary of the analyzed basins’ physical and hydro-climatic 

characteristics is presented in Table 1. 

 

Figure 1. Stream gauge location map over the USA mainland. 

2.2. Data 

The basin scale daily precipitation, P (daily mean areal precipitation calculated from ground based 

gauge precipitation), potential evaporation, PE (developed from NOAA Evaporation Atlas), and 

streamflow, Q data (developed from USGS hydro-climatic data) were obtained from the U.S. Model 

Parameter Estimation Project (MOPEX) data sets [24,25].  
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Table 1. Studied MOPEX basins, locations and basic characteristics. 

MOPEX ID 

Location 
Average 

Precipitation 

(mm/year) 

Average 

Potential 

Evaporation 

(mm/year) 

Average  

Snow-Days 

(day/year) 

Average 

Total New 

Snow 

(mm/year) 

Average Soil 

Moisture 

Saturation 

(%) 

Longitude Latitude State 

11532500 −124.05 41.79 CA 2687 740 0.00 0 82 

12027500 −123.03 46.78 WA 1599 579 3.00 127 75 

03550000 −83.98 35.14 NC 1846 771 3.90 193 75 

03504000 −83.62 35.13 NC 1893 762 3.90 193 90 

03410500 −84.53 36.63 TN 1389 817 6.20 160 74 

02387500 −84.94 34.58 GA 1480 901 0.70 18 73 

03574500 −86.31 34.62 AL 1467 941 0.80 41 74 

14308000 −122.95 42.93 OR 1347 805 2.20 76 62 

07378500 −90.99 30.46 LA-MS 1594 1077 0.60 23 63 

07375500 −90.36 30.51 LA-MS 1633 1074 0.60 23 64 

02492000 −89.90 30.63 LA-MS 1583 1071 0.60 23 47 

02456500 −86.98 33.71 AL 1425 982 0.80 41 66 

02414500 * −85.56 33.12 AL 1370 975 0.80 41 65 

02472000 −89.41 31.71 MS 1492 1060 0.60 23 64 

02448000 −88.56 33.10 MS 1421 1057 0.60 23 72 

07290000 −90.70 32.35 MS 1435 1073 0.60 23 57 

07056000 −92.75 35.98 AR 1180 916 3.80 132 68 

07288500 −90.54 33.55 MS 1381 1112 0.60 23 62 

07340000 −94.39 33.92 OK 1329 1156 5.60 198 70 

07072000 −91.11 36.35 AR 1114 964 3.80 132 62 

07348000 −93.88 32.65 LA 1173 1223 0.10 0 47 

07346050 −94.75 32.67 TX 1128 1246 1.3 4 53 

06914000 −95.25 38.33 KS 957 1206 10.00 373 61 

Notes: * Indicates the validated river basin in Alabama, USA; bold face, Italic font style indicates dry basins (ζ > 0.9). 

2.3. Xinanjiang Model Parameters, Calibration and Validation 

The runoff formation in the XAJ model is based on the repletion of storage concept, where the 

runoff starts to generate once the soil moisture content of the unsaturated zone reaches its field 

capacity, and subsequently runoff equals the rainfall excess without further loss [19]. Inputs to the XAJ 

model are areal mean precipitation and potential evaporation. Input data sets throughout this 

manuscript indicate time series of daily precipitation and potential evaporation. Streamflow from the 

whole basin is the output. There are 15 parameters in the XAJ model [26] and those could be 

determined by basin characteristics [19]. A list of XAJ model parameters and their ranges is presented 

in Table 2. 
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Table 2. Parameters in the Xinanjiang model.  

Parameter Physical Meaning Range 

Cp Ratio of measured precipitation to actual precipitation 0.8–1.2 
Cep Ratio of potential evaporation to pan evaporation 0–2.0 
b Exponent of the tension water capacity curve 0.1–0.3 

imp Ratio of the impervious to the total area of the basin 0–0.005 
WUM Water capacity in the upper soil layer (mm) 5–20 
WLM Water capacity in the lower soil layer (mm) 60–90 
WDM Water capacity in the deeper soil layer (mm) 10–100 

C Coefficient of deep evaporation 0.1–0.3 
SM Areal mean free water capacity of the surface soil layer (mm) 1–50 
EX Exponent of the free water capacity curve 0.5–2.5 
KI Outflow coefficient of the free water storage to interflow 0–0.7; KI + KG = 0.7 
KG Outflow coefficient of the free water storage to groundwater 0–0.7; KI + KG = 0.7 
cs Recession constant for channel routing 0.5–0.9 
ci Recession constant for the lower interflow storage 0.5–0.9 
cg Daily recession constant of groundwater storage 0.9835–0.998 

The XAJ model calibration for this study has been carried out with the aid of a web-based 

application [27,28]. 

This web platform not only allows the user to calibrate the XAJ model in a user friendly 

environment, but also provides: firstly, helpful calibration support by suggesting parameter settings 

developed by Li and Lu [26]; and secondly, hydrograph visualization and calculating Nash-Sutcliffe 

(NASH) efficiency [29]. NASH efficiency was calculated based on Equation (1).  
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where Qo, Qs and oQ  are the observed daily streamflow, simulated daily streamflow, and average 

observed daily streamflow, respectively. 

2.4. Recursive Simulation Design 

To detect the spin-up trends, one-year input data from 1 January to 31 December was repeated in a 

yearly cycle for 10 years. A similar recursive experiment was done in several model spin-up  

studies [8,11,13,14]. This yearly recursive simulation removes inter-annual climate variability and 

links any model adjustment processes to the equilibrium state of its internal stores (i.e., soil moisture) 

from an initial anomaly directly to the spin-up processes. However, this single-year recursive 

simulation may not be able to represent an accurate climatology, and may or may not achieve an 

unnatural equilibrium [30]. To overcome this limitation, recursive simulations were done with three 

separate input data sets representing mean, 5th and 95th percentile climatology. 
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2.4.1. Preparation of Input Files 

Streamflow for each basin was simulated with three separate input files, created with a single year 

data that is close to: (i) 5th percentile; (ii) mean; and (iii) 95th percentile climatology. To maintain 

consistency among the simulations, a single parameter set was used to simulate all three input files. 

However, practically, it is very unlikely to achieve good calibration accuracy for different 

climatologies using same parameter set due to the difference in water balance and high parameter 

sensitivity to precipitation (some basins would even produce negative NASH efficiency). As a 

solution, we tried to manipulate the input data sets in such a way that can represent different 

climatologies by keeping the same distribution pattern throughout the year. The input to the XAJ 

model is precipitation and potential evaporation. The potential evaporation climatology does not vary 

between a “dry year” and “wet year”. Therefore, we opted to generate hypothetical precipitation (also 

streamflow for validation purposes) climatology by manipulating that of the mean year. This 

modification aimed to gain relatively good calibration accuracy while still capturing the climatology. 

The objective of this study is to present the spin-up behavior under different climatologies. The 

modified intra-year precipitation distribution definitely differs from the actual one. However, we 

believe that this is still sufficient to fulfil our objective. This experimental design may not be the 

perfect one, but it is an improvement from earlier approaches. 

Firstly, the mean, 5th percentile and 95th percentile precipitation and streamflow climatology were 

computed from 52-year observed data sets (1948–1999). Secondly, the year that closely represents the 

mean year climatology was selected to prepare the mean year input file by repeating 1 January to  

31 December for 10 years. Thirdly, 5th percentile and 95th percentile input files were created by 

manipulating the mean year precipitation and streamflow data based on Equations (2) and (3). 

mean

x
imeanix P

P
PP ×= ,,  (2)

mean

x
imeanix Q

Q
QQ ×= ,,  (3)

where Pmean,i and Px,i are the ith day precipitation for the mean and 5th or 95th percentile year, 

respectively; Qmean,i and Qx,i are the ith day streamflow for the mean and 5th or 95th percentile year, 

respectively; Px, Qx, Pmean and Qmean are annual precipitation for the 5th or 95th percentile year, annual 

streamflow for the 5th or 95th percentile year, annual precipitation for the mean year and annual 

streamflow for the mean year, respectively. 

2.4.2. Initial Conditions 

The XAJ model was run with four soil moisture initial conditions for each of the input climatology. 

The details of initial conditions are given in Table 3. 
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Table 3. Xinanjiang model soil moisture initial conditions. 

Initial Condition Physical Meaning 

Saturated 100% of the field capacity 
Intermediate 50% of the field capacity 

Dry Zero soil moisture 
Climatology Mean climatology initial condition 

2.4.3. Model Calibration 

The XAJ model was firstly calibrated with the mean year input file declaring an initial condition as 

intermediate. Once it achieves a good agreement between the daily observed and simulated discharge, 

the same parameter sets were used for the remaining simulations. A total of twelve simulations  

(4 initial conditions × 3 climatologies for each basin) were conducted for each basin. Average layered 

soil moisture values, obtained from the output of first simulation (mean year input file with an 

intermediate initial condition) were considered to be the average climatology of the basin. 

2.5. Definition of Model Spin-Up Time 

There are several accepted definitions of model equilibrium or spin-up. Yang et al. [8] define a 

complete model equilibrium state as the state at which the “model’s state at year n+1 is identical to 

that at year n”. However, in practice, it is very difficult to achieve identical sates between two 

recursive simulations, thus quite a few approaches have been proposed [11]. Spin-up can be defined 

based on the e-folding time (time required to reduce the yearly differences in daily/monthly model 

output to its 1/e value) [31], halving time (time required to reduce the yearly differences in 

daily/monthly model output to its half) [32] or percent cut off-based (PC) time (time required for 

yearly changes in daily/monthly model output to decrease to a certain threshold; see Cosgrove et al. [11] 

and de Goncalves et al. [9]). Of these, PC time has been widely used for detecting the model 

equilibrium [8,9,11,14,18,33,34]. 

In this study, the model equilibrium state has been defined on the basis of PC time. PC time defines 

the extent of time required for yearly changes in daily model output to decrease to a certain threshold. 

Generally, the threshold value for the model equilibrium varies from 1% to 0.01% depending on the 

purpose and scope [8,9,11,14,33]. This study detects the equilibrium at 0.01% threshold. The 

percentage change of daily values of total soil moisture was calculated by Equation (4). 

100
,1

,1, ×
−

=
+

+

in

inin

D

DD
PC  (4)

where PC, Dn,i and Dn+1,i are the percentage change, the total soil moisture at day i of year n  

and n+1, respectively. 

2.6. Reporting of Model Spin-Up Time 

Every basin produces twelve different spin-up times (4 initial conditions × 3 climatologies for each 

basin). The analysis relating to the basin aridity index considers the highest spin-up time produced by 

the initial condition that is closest to the average climatology. The average saturation of the river 
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basins is shown in Table 1. The average saturation of 18 out of 22 river basins is close to 50% of their 

respective field capacities. Therefore, the spin-up time produced with an intermediate initial condition 

was reported for those basins. The remaining four river basins seem to have average saturation close to 

their full capacity, and thus spin-up times produced with a saturated initial condition was reported for 

those basins (first four basins of Table 1). 

As discussed earlier, the model achieves an equilibrium state quickly under less SMM conditions.  

Rahman et al. [15] argued that soil moisture state loses all the memory once it becomes saturated.  

In harmony, this study also assumes that the XAJ model will take little or no time to achieve an 

equilibrium state under highly wet conditions (aridity index approaches zero). Thus, the regression 

equation presented in this paper, which shows the relationship between the spin-up time and aridity 

index, was optimized so that the model’s behavior in arid conditions beyond the examined basins 

could be better understood. 

2.7. Calculation of Basin Aridity Index and Soil Moisture Memory 

The aridity index value, ζ was calculated from independent sets of precipitation and potential 

evaporation data. The aridity index was estimated by interpolating the aridity index values of  

400 MOPEX river basins across the USA (excluding the basins analyzed in this paper). The aridity 

index was calculated after Li and Lu [26], Equation (5).  

ζ
PE

P
=  (5)

where ζ, PE and P are the aridity index, mean annual potential evaporation and ground-based mean 

annual areal precipitation, respectively. 

The interpolation was done employing the Kriging method with the aid of the ArcGIS Spatial 

Analyst tool (version 10.0). The interpolated aridity index values showed high agreement with those of 

calculated (using the 53-years precipitation and potential evaporation data used for climatological 

analysis) ones with an r2 values of 0.99. Consistent with Rahman et al. [15], the river basins are 

grouped as wet (ζ < 0.9) and dry (ζ > 0.9) basins for simplicity of analysis. 

The basin average soil moisture memory (SMM) timescale in days was estimated after  

Rahman et al. [15] using Equation (6). 
1.25ζτ 24.76( 1)SMM e= −   (6)

where τSMM is the SMM timescale in days and ζ is the basin aridity index. 

3. Results and Discussion 

3.1. Hydrograph, SMM Timescale and Aridity Index 

The daily NASH efficiencies of the analyzed basins range from 0.43 to 0.87. The validated daily 

hydrograph for the mean year simulation is presented in Figure 2. The validation result suggests that 

the simulated daily streamflow agrees very well with those of daily observed streamflow. The  

basin-wise range of NASH efficiency, SMM timescale and aridity index are included in Table 4. 
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Figure 2. Validated daily hydrograph of 20 analyzed river basins (calibrated with mean 

year input data sets). MOPEX ID is presented in parenthesis. 

3.2. XAJ Model Spin-Up Time and SMM Timescale 

Analyzed basins’ spin-up time ranged from 2 to 655 days. The wet basins (ζ < 0.9) require less time 

(mean spin-up time 55 days) to be equilibrated compared to the dry basins (ζ > 0.9; mean spin-up time 

298 days). Basin-wise model spin-up times produced with an initial condition that is close to the 

average climatology (intermediate for 18 basins and saturated for 4 basins) are given in Table 4. 
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Table 4. Summary of the XAJ model spin-up time analysis. 

MOPEX ID Area (sq.km) Daily NASH Aridity Index (ζ) τSMM (day) τXsp (day) 

11532500 1577 0.70–0.75 0.29 11 7 
12027500 2318 0.71–0.73 0.39 16 3 
03550000 269 0.58–0.72 0.40 16 2 
03504000 135 0.70–0.77 0.40 16 9 
03410500 2471 0.59–0.70 0.58 26 14 
02387500 4144 0.67–0.72 0.61 28 18 
03574500 829 0.72–0.82 0.64 30 23 
14308000 1163 0.77–0.84 0.68 33 27 
07378500 3315 0.43–0.61 0.70 35 43 
07375500 1673 0.75–0.85 0.71 35 40 
02492000 3142 0.77–0.82 0.71 36 24 
02456500 2292 0.65–0.70 0.72 36 43 

02414500 * 2696 0.79 0.73 37 55 
02472000 1924 0.48–0.79 0.76 39 40 
02448000 1989 0.43–0.83 0.80 42 73 
07290000 7283 0.54–0.61 0.80 43 131 
07056000 2147 0.64–0.81 0.81 43 65 
07288500 1987 0.75–0.84 0.86 48 68 
07340000 6895 0.58–0.61 0.88 50 342 
07072000 1134 0.61–0.87 0.90 52 192 
07348000 8125 0.46–0.71 1.09 72 134 
07346050 383 0.55–0.74 1.15 79 211 
06914000 865 0.43–0.69 1.34 108 655 

Notes: * Indicates the validated river basin in Alabama, USA; bold face, Italic font style indicate dry basins (ζ > 0.9). 

Average spin-up times of the XAJ model in wet and dry basins for all three input data sets with four 

initial conditions are shown in Figure 3. Spin-up time tends to increase with the dryness of initial 

conditions in all basins for both mean and 95th percentile input data sets. In contrast, wet and dry 

basins respond differently when the XAJ model is run with the 5th percentile input data sets. XAJ 

model spin-up time increases with dryness of the initial conditions for wet basins while calibrated with 

the 5th percentile input data sets. In contrast, the XAJ model takes less time to achieve equilibrium for 

the 5th percentile input data sets with dry initial condition. In wet basins, saturated initial condition 

requires less time to reach equilibrium. Similarly, Seck et al. [13] also suggests that spin-up for dry 

initial condition is slower than that of wet initial conditions. However, available literature does not 

clarify which initial condition should facilitate equilibrium condition in the least amount of time. 

We believe that any initial condition that is close to the average climatology should theoretically 

lead to equilibrium quickly. In wet basins (average climatology around 70% of the field capacity), dry 

initial condition creates maximum anomalies, and, thus, would take the longest time to reach 

equilibrium. Similarly, in dry basins (average climatology slightly over 50% of the field capacity), dry 

initial conditions also create the maximum number of anomalies, and thus might equilibrate slowly. In 

both wet and dry basins, we expected that the intermediate initial condition (50% of the field capacity) 

would achieve equilibrium quickly. However, the present study reveals that the XAJ model 
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consistently tends to achieve equilibrium quickly under saturated initial conditions for all the basins 

(except for dry basins simulated with 5th percentile input data sets) irrespective to their average 

climatology. This might be an XAJ model dependent phenomena and the XAJ model would always 

approach equilibrium quickly under a saturated initial condition. Moreover, the XAJ model seems to 

behave differently under dry-dry (dry basins simulation with dry climatologies) conditions. The 

exceptional behavior of the XAJ model spin-up time, while simulating with 5th percentile climatology, 

could be better understood by analyzing drier basins. Unfortunately, the XAJ model is reported to 

work better under humid and semi-humid conditions [19,20,26], thus, such investigation under dry-dry 

conditions would be challenging. Nevertheless, the outcomes of the present study would be essential 

for the application of the XAJ model for most of the areas. 
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Figure 3. Average XAJ model spin-up time (in days) produced with different initial 

conditions and input data sets; (a) wet basins (ζ < 0.9) (b) dry basins (ζ > 0.9). 

Among the input data sets, the 95th percentile exhibits the least spin-up time requirement for any 

initial condition. Moreover, saturated initial condition with the 95th percentile input data sets displayed 

the minimum time requirement to be equilibrated. Figure 3 reveals that the XAJ model spin-up time 

tends to increase with both the dryness of initial condition and the climatology of input data sets. 

Therefore, the findings of the present study indicate that, for wet basins, a saturated initial condition 

could save XAJ model spin-up time, regardless of the input data set climatologies. However, for dry 

basins, a drier initial condition could be wise in the case where the input data sets represent a  

drier climatology. 

Model simulation with climatology initial conditions also disclosed a substantial time requirement 

for the XAJ model equilibrium. This implies that model initialization, based on observed or model 

derived climatological mean, may not always be sufficient to avoid the spin-up error. A precise model 

initialization might also require spin-up time to be considered for subsequent analysis. Estimated 

model spin-up time (with climatology initial condition) exhibits a strong agreement with the basin 
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average SMM timescales (calculated from independent data sets) with an r2 of 0.81 (Figure 4). This is 

consistent with Cosgrove et al.’s [11] argument regarding the association between model equilibrium 

and soil moisture persistence. 

 

Figure 4. Relationship between basin-wise soil moisture memory and XAJ model spin-up time. 

This high r2 value not only indicates the influence of soil moisture anomaly dissipation speed on the 

model spin-up time, but also justifies the use of recursive simulation to detect the XAJ model’s spin-up 

behavior. Even though a single year’s forcing data was used to run the model in a recursive way, it can 

still sufficiently capture the basin’s characteristics. 

3.3. Predictability of XAJ Model Spin-Up Time from Basin Aridity Index 

Literature [13,14] suggests that spin-up time for an integrated hydrological model is much longer 

than that which is typically reported for LSMs. Comparing spin-up time of models of different types 

would be a very difficult task. Soil moisture persistence is stronger compared with those of 

meteorological fluxes [35]. Similarly, soil moisture persistence in the deeper layer is much stronger 

than that of the surface layer [36–38]. Therefore, the model spin-up study considering equilibrium for 

different state variable (sensible/latent heat flux, total soil moisture, root zone soil moisture, depth of 

water table, discharge, ground water storage, etc.) would provide different results. However, model 

spin-up behavior (how it approaches equilibrium under different circumstances) could be compared 

quite easily. The XAJ model’s spin-up behavior seems to be consistent with those of LSMs.  

Noah’s LSM spin-up study [18] on the Korean Data Assimilation System argued that dry land areas 

take more than 40 months for spin-up, compared to wet areas. Similarly, Rodell et al. [12] claimed that 

Mosaic [39] LSM shows less spin-up time in humid regions compared to arid regions. Moreover, 

Cosgrove et al. [11] demonstrated a strong spatial variation and correlation of spin-up time with 

precipitation and temperature. 

Computed basin-wise XAJ model spin-up time (mostly with an intermediate initial condition) 

reveals an exponential relationship with basin aridity index (calculated from independent data sets) 
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with an r2 value of 0.85 (Figure 5). The relationship between the basin aridity index and model spin-up 

time can be expressed by Equation (7). 

( )3.83ζτ 3.65 1Xsp e= −  (7)

where τXsp is the XAJ model spin-up time in days and ζ is the basin aridity index. 

 

Figure 5. Relationship between basin aridity index and XAJ model spin-up time. 

This relationship could be useful for roughly estimating the maximum XAJ model spin-up time 

when no information about the soil moisture climatology is available. This equation may not provide 

the exact spin-up duration, but could be useful for a safe estimation to avoid the spin-up error. Annual 

scale precipitation and potential evapotranspiration datasets are widely available compared that of soil 

moisture climatology, and thus would aid modeling exercises under data scarce situations. Declaring 

an intermediate initial condition is easy and straightforward compared to setting a climatology initial 

condition. However, it should be noted that this relationship is based on the daily scale model 

simulation only, thus, the XAJ model spin-up times for shorter or longer scales might be different. 

The equation was validated against the actual spin-up behavior of the XAJ model for the Tallapoosa 

River Basin, Alabama, USA (MOPEX ID # 02414500; ζ = 0.73, gauge location shown in Figure 1). 

The equation suggests a maximum spin-up time of 56 days for a basin with an aridity index of 0.73. A 

recursive simulation with several initial conditions (mean year input data) indicates that the model 

takes a maximum of 55 days to reach an equilibrium soil moisture state (dry initial condition, see 

Figure 6). Theoretically, a spin-up time produced with the climatologic initial condition would be even 

closer to the physical state. However, considering the difficulty in setting a climatology initial 

condition, this study prefers to report the relationship based on the spin-up time produced with an 

intermediate initial condition. 
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Figure 6. Time series plot of total column soil moisture (mm) over the 11 year simulation 

for validated river basin at Alabama, USA (the Tallapoosa River basin, MOPEX ID  

# 02414500). 

4. Conclusions 

Spin-up is the process during which a model adjusts its internal stores to an equilibrium state from 

an unusual initial state. Model outputs during this adjustment process are highly affected by the initial 

conditions, and consequently could be unrealistic and misleading. To avoid this problem, modelers 

often prefer to set the model initial condition as close to the reality and/or exclude the model outputs 

for the first few months. However, studies suggest that perfect initialization may not be sufficient for 

eliminating the risk of erroneous model output. The model adjustment process is not only affected by 

the initial condition but also by the characteristics of input data sets. Similarly, exclusion of the first 

few months’ model outputs is not an ideal solution. Exclusion of model output, guided by a feeling, 

could lead to underestimating or overestimating spin-up time. Therefore, prior information about the 

model’s behavior under different conditions or preferable initial conditions will improve the detection 

of spin-up time or reducing spin-up time, respectively. This study investigates the XAJ model’s  

spin-up behavior using different initial conditions and input data sets (representing separate 

climatology) for 22 river basins across the USA. 

The XAJ model shows an increasing trend of spin-up times against both the dryness in input data 

sets and initial conditions. The responses are identical in wet and dry basins for the mean and 95th 

percentile input data sets. In contrast, it behaves differently in wet and dry basins for the 5th percentile 

input data sets. In wet basins, spin-up times tend to increase with the dryness of initial conditions, 

while dryer initial conditions produces less spin-up time in dry basins. Among the input data sets, 95th 

percentile exhibited the least spin-up time requirement, regardless of the basin dryness. For all the 

basins, a 95th percentile input data sets with saturated initial condition showed the minimum time to be 
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equilibrated. Analysis suggests that a saturated initial condition is preferable for a mean year or 95th 

percentile data sets for all the basins. However, it would be wise to utilize saturated and dry initial 

condition for the dryer input data sets (5th percentile) for wet and dry basins, respectively. 

Finally, the wet basins require less time for model equilibrium compared to those of dry basins.  

The spin-up time displays a high correlation with the basin soil moisture memory timescale. Moreover, 

the XAJ model spin-up timescale exhibits an exponential relationship with basin aridity index. This 

relationship allows estimation of the XAJ model spin-up time using only precipitation and evaporation 

information. Estimation of the XAJ model spin-up time could be valuable to reduce uncertainty 

associated with the guessing of spin-up time, based simply on feeling or experience. Prior information 

about model spin-up time would allow us to fully use the information included in short data records 

under data scarce situations. 
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