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Abstract: Thus far, various phenomenon-mimicking algorithms, such as genetic algorithm, 

simulated annealing, tabu search, shuffled frog-leaping, ant colony optimization, harmony 

search, cross entropy, scatter search, and honey-bee mating, have been proposed to optimally 

design the water distribution networks with respect to design cost. However, flow velocity 

constraint, which is critical for structural robustness against water hammer or flow circulation 

against substance sedimentation, was seldom considered in the optimization formulation 

because of computational complexity. Thus, this study proposes a novel fuzzy-based velocity 

reliability index, which is to be maximized while the design cost is simultaneously minimized. 

The velocity reliability index is included in the existing cost optimization formulation and this 

extended multiobjective formulation is applied to two bench-mark problems. Results show that 

the model successfully found a Pareto set of multiobjective design solutions in terms of cost 

minimization and reliability maximization. 

Keywords: multiobjective optimization; water distribution network; fuzzy theory; 

harmony search; reliability 

 

1. Introduction 

Up to date, diverse phenomenon-mimicking algorithms (PMAs) have been proposed for the design 

optimization of water distribution networks (WDNs). These algorithms include genetic algorithm [1], 

simulated annealing [2], tabu search [3], shuffled frog-leaping algorithm [4], ant colony optimization 

algorithm [5], harmony search [6], cross entropy [7], scatter search [8], hybrid algorithm [9],  
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honey-bee mating optimization [10], differential evolution [11], adaptive cluster covering with local 

search [12], and Non-Dominated Sorting Genetic Algorithm-II [13]. 

Although various PMAs have been proposed, these were mostly applied to basic bench-mark 

WDNs, such as two-loop and Hanoi networks, which are gravity-fed systems with the following 

optimization formulation: 


=

=
P

i
ii LDfC

1

),(  (1)

where )(⋅f  is cost function which has two arguments of pipe diameter iD  and pipe length iL ; and P  is 

total number of pipe i . This cost function is to be minimized while satisfying the following constraints: 

  =− eoutin QQQ  (2)

where inQ  is inflow amount to a specific node; outQ  is outflow amount from the specific node; and eQ  

is external demand amount at the node. This continuity constraint must be satisfied for every node  

in a network. 

 = 0fh  (3)

where fh  is head loss due to pipe friction, which is calculated using Hazen-Williams or  

Darcy-Weisbach formulae. This energy conservation constraint must be satisfied for every loop in 

the network. 

min
jj HH ≥  (4)

where jH  is pressure head at node j ; min
jH  is minimal pressure head required for node j . This 

minimum pressure constraint must be satisfied for every node in the network. 

In addition to the above optimization formulation, one more reliability constraint was recently 

considered for the water network optimization. Geem et al. [14] added flow velocity constraint for 

every pipe as follows: 
maxmin
iii vvv ≤≤  (5)

where iv  is flow velocity through pipe i ; and min
iv  (0.1 m/s in this study) and max

iv  (3.0 m/s in this study) 

are respectively lower and upper bounds of flow velocities in pipe i . Here, in order to analyze the 

water network and to obtain hydraulic values such as flowrate, pressure head, and flow velocity, a 

popular simulator EPANET [15] is used. 

Although this flow velocity constraint has been seldom adopted in previous optimization researches [16], 

it is critical with respect to pipe reliability. Excessive high flow velocity causes pipe erosion and 

structural vulnerableness when water hammer occurs. Additionally, it causes significant head loss [17] 

because of the following relationships: 

85.1vhf ∝ (Hazen-Williams formula) (6)

m
f vh ∝  (Darcy-Weisbach formula) (7)
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Here, it should be noted that the friction coefficient in the Darcy-Weisbach formula is a function of 

the velocity. Thus, the relationship between head loss and velocity depends on the hydraulic regime 

(the hydraulic exponent m  is 2 only in “fully developed turbulent flow”; it ranges from 1.75 to 2 in 

“transition flow”; it is 1.75 in “hydraulically smooth flow”; and it becomes 1 in “laminar flow”). 

Meanwhile, minimum velocity condition is required to prevent fine material sedimentation, which 

sometimes blocks the pipe. 

This study intends to move forward one more step in terms of the reliability of flow velocity. 

Instead of being considered as the constraint, the flow velocity can be more precisely considered using 

fuzzy theory. 

Thus far, researchers have proposed some reliability indexes: Todini [18] enumerated various failures 

due to mechanical reason (such as pipe break, pump stop, and power outage) and hydraulic reason  

(such as demand change and pipe aging), and then proposed a resilience index which is a measure to 

quantify how much a network can overcome the failures; Prasad and Park [19] also adopted the 

resilience index and simultaneously optimized cost and reliability using genetic algorithm; Prasad and 

Tanyimboh [20] proposed flow entropy as a surrogate reliability measure, which alleviates the 

drawbacks of resilience index; Ghajarnia et al. [21] proposed a reliability index based on nodal pressure; 

and Liu et al. [22] suggested a flow entropy-based reliability index. Atkinson et al. [23] categorized 

various reliability indicators into four groups such as Resilience Index [18,19], Entropy [24,25], 

Minimum Surplus Head [26], and Performance [27,28]. 

However, no reliability index has been proposed yet with respect to flow velocity. Thus, the key 

point of this work is to present a new reliability index with respect to flow velocity using fuzzy theory. 

2. Fuzzy Theory and Multi-Objective Function 

If we just use the velocity constraint (Equation (5)) in the optimization formulation, there is no 
difference between the velocity adjacent to minimal allowed velocity ( min

iv ) or maximal allowed 

velocity ( max
iv ) and the in-between one. However, if we use fuzzy theory, we can consider how good a 

velocity is in terms of reliability. For example, the velocity in the center of minimum and maximum 

bounds should have much higher preference than that located slightly after minimum bound because 

the velocity near minimum bound may partially have the problems of low velocity. Fuzzy theory can 

quantify this preference. 

Fuzzy theory can be represented as a membership function in Figure 1 if we construct it in 

symmetric triangular shape. Actually the membership function can have more complicated shape. 

However, devising more complex shape of membership function requires another extensive task by 

surveying various hydraulic and practical aspects. Thus, this study adopts the most popular triangular 

shape to start with. As seen in the figure, velocity reliability (VR) or fuzzy membership degree is zero 
at min

ii vv =  or max
ii vv =  while it becomes 100% at ( ) 2maxmin

ii
mean
ii vvvv +== . Any in-between velocity 

has the reliability calculated as follows: 
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Then, total velocity reliability for a network, called velocity reliability index (VRI) in this study, 

can be calculated by summing all velocity reliabilities in each pipe, as follows: 


=

=
P

i
iVRVRI

1

 (9)

 

Figure 1. Fuzzy membership function for flow velocity Reliability. 

And this optimization problem becomes to have multiobjective functions as follows: 

Minimize 
=

=
P

i
ii LDfC

1

),(  and Maximize 
=

=
P

i
iVRVRI

1

 (10)

Equation (10) substitutes both Equation (1) and Equation (5) for this new bi-objective  

optimization problem. 

3. Harmony Search Algorithm 

Harmony search algorithm, first proposed by Geem et al. [29], has been continuously developed in 

terms of both theory and application. HS applications include structural design [30], geotechnical 

analysis [31], road property analysis [32], groundwater management [33], and project scheduling [34]. 

HS is similar to other evolutionary or phenomenon-inspired algorithms as a meta-heuristic 

algorithm. It possesses two basic operators (exploration operator for global search and exploitation 
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operator for local search) as other algorithms also have. However, each algorithm has its own 

uniqueness in term of how it balances the two operators. 

Furthermore, HS has its own theoretical background of stochastic derivative [35] to search for a 

global optimum, which is a new paradigm from the traditional gradient-based derivative in differential 

calculus. This novel derivative, which is applicable to a discrete variable rather than a continuous one, 

gives different selection rate to each candidate value for the discrete decision variable, as follows: 

( )
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f

ii

⋅+⋅+⋅=
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
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where f  is objective function; ix  is discrete decision variable; )(kxi  is a specific discrete value for 

the variable ix , which is the element of value set { }(1), (2), , ( ), , ( )i i i i ix x x k x K  ; iK  is total number 

of discrete values for the variable ix ; RandomP  is probability to consider random selection operation; 

MemoryP  is probability to consider memory consideration operation; PitchP  is probability to consider 

pitch adjustment operation; m  is neighboring index which has normally one; ( )n ⋅  is count function 

which counts the number of the specific discrete value stored in harmony memory (HM); and HMS  is 

size of HM which is expressed as follows: 
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Here, the summation of three probabilities RandomP , MemoryP , and PitchP  becomes unity (or 100%)  

as follows: 

1=++ PitchMemoryRandom PPP  (13)

Additionally, the cumulative value of the derivatives of all candidate discrete values for each 
variable ix  should be equal to unity: 
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In addition to this stochastic derivative, HS has a parameter-setting-free (PSF) process, which gives 

algorithm users user-friendliness without requiring tedious and time-consuming task of assigning proper 

values for algorithm parameters [36–38]. 

The PSF-HS simultaneously manages a new matrix, named OTM (operation type memory), to 

memorize the type of the operation: 
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where l
kot  denotes operation type, which has one of three values (random selection, memory 

consideration, or pitch adjustment). Based on OTM, algorithm parameters RandomP , MemoryP , and PitchP  

are automatically determined. 

HS also has a multiobjective optimization strategy [34]. While the original HS algorithm updates 

HM based on single objective function as follows: 

HMxHMx ∈∧∉ NewWorst  (16)

where Worstx  is worst solution vector stored in HM and Newx  is newly generated vector using stochastic 

derivative of Equation (11), the multiobjective HS algorithm updates HM based on two (or more) 

objective functions as follows: 
WorseNewNewWorse if xxHMxHMx ∈∧∉  (17)

where the symbol   represents strict domination. That is, only if the newly generated vector Newx  

strictly dominates another vector Worsex  stored in HM, these two vectors are swapped. Here, strict 

domination can be expressed as in Equation (18) or (19): 

)()( WorseNew CC xx <  And )()( WorseNew VRIVRI xx ≥  (18)

)()( WorseNew CC xx ≤  And )()( WorseNew VRIVRI xx >  (19)

Figure 2 shows a flowchart for the aforementioned multiobjective optimization procedure using 

fuzzy theory and harmony search. 

4. Applications and Results 

The proposed multiobjective HS model was applied to a popular bench-mark problem, two-loop 

WDN [39]. As shown in Figure 3, it has one reservoir, two loops, six demand nodes, and eight pipes. 

Because each pipe can choose any diameter from 14 candidates, total solution space becomes 
98 1048.114 ×= . With harmony memory size (HMS) = 30, harmony memory consideration rate 

(HMCR) = 0.9, pitch adjustment rate (PAR) = 0.2, and maximum iterations = 200,000, HS obtained 

the results, as shown in Figure 4, after 10 s. The structure of Pareto curve was not changed any more 

when the maximum iterations were extended up to 1,000,000. 

As seen in Figure 4, the best solution in terms of cost is A (C = $419,000, VRI = 5.58) and that in 

terms of reliability is D (C = $510,000, VRI = 7.17). Figure 3 also provides individual velocity  

(unit = m/s) and corresponding VR for the least cost solution (C = $419,000, VRI = 5.58), which is the 

identical best solution from the conventional cost-wise single objective optimization. 

Figure 5 and Table 1 compares four different Pareto solutions (A to D) chosen from Figure 4. As 

predicted, the flow velocities of solution A have higher variances from the mean velocity (1.55 m/s) 

than those of solutions B, C, and D in Figure 5. As observed in Table 1, different Pareto solutions have 
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different pipe diameters and flow velocities. For example, pipe 8 can have the diameter of one inch 

(corresponding velocity is 0.32 m/s) from solution A, that of 2 inches (0.51 m/s) from solution B, that 

of 4 inches (0.94 m/s) from solution C, and that of 8 inches (1.41 m/s) from solution D. The less the 

design cost is, the narrower the diameter is and the slower the velocity is in this case. 

 

Figure 2. Flowchart of multiobjective optimization. 

 

Figure 3. Schematic of two-loop network. 
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Figure 4. Pareto solutions of two-loop network. 

 

Figure 5. Pareto solutions of two-loop network. 

Table 1. Information of four solutions of two-loop network. 

Pareto Solution 

(Cost, VRI) 

Pipe Diameters (inch) and Velocities (m/s) 

1 2 3 4 5 6 7 8 

A ($419 K, 5.58) 18 (1.9) 10 (1.85) 16 (1.46) 4 (1.12) 16 (1.14) 10 (1.1) 10 (1.3) 1 (0.32) 

B ($441 K, 6.21) 20 (1.53) 12 (1.25) 16 (1.48) 4 (1.27) 14 (1.49) 10 (1.12) 8 (1.96) 2 (0.51) 

C ($459 K, 6.74) 20 (1.53) 10 (1.66) 16 (1.53) 4 (1.33) 16 (1.25) 10 (1.25) 8 (1.74) 4 (0.94) 

D ($510 K, 7.17) 20 (1.53) 8 (1.6) 18 (1.41) 3 (1.14) 16 (1.49) 12 (1.39) 6 (1.32) 8 (1.41) 
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When another loading condition (for example, every nodal demand is reduced by 30%) was tested 

for the least cost solution, VRI was reduced into 4.36 from 5.58 and flow velocity was also reduced in 

every pipe. 

The model was further applied to a real-world problem, Yeosu WDN. As shown in Figure 6, it has 

one reservoir, 11 loops, 18 demand nodes, and 29 pipes [14]. Because each pipe can choose any 

diameter from six candidates, total solution space becomes 2229 1068.36 ×= . 

 

Figure 6. Schematic of Yeosu water distribution network. 

With HMS = 30, HMCR = 0.95, PAR = 0.05, and maximum iterations = 610 , HS obtained the results 

after 2'54''. Figure 7 and Table 2 show Pareto solutions of the problem and Figure 6 also provides 

individual velocity (m/s) for the least cost solution (C = 211.6 million Korean Won, VRI = 12.28). 

Decision makers can choose any one design out of five Pareto solutions by considering its budget 

availability and reliability level. Additionally, if it has special constraint such that it should construct 

narrow diameter for pipe 12, it may choose the solution 3 (diameter of pipe 12 = 250 mm) rather than 

other solutions, which have higher diameter (300 mm) for pipe 12. 

 

Figure 7. Pareto solutions of Yeosu network. 
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Table 2. Information of pareto solutions of Yeosu network. 

Pipe Number 
Pipe Diameters (mm) 

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 

1 400 400 400 400 400 
2 200 200 200 200 200 
3 200 200 200 200 200 
4 200 200 200 200 200 
5 200 200 200 200 200 
6 300 300 300 300 300 
7 200 200 200 200 200 
8 200 200 200 200 200 
9 200 200 200 200 200 

10 300 300 300 300 300 
11 200 250 250 200 200 
12 300 300 250 300 300 
13 200 200 200 200 200 
14 200 200 200 200 200 
15 250 200 200 200 200 
16 200 200 200 200 200 
17 200 200 200 200 200 
18 300 300 300 300 300 
19 300 300 350 350 400 
20 200 200 200 200 200 
21 200 200 200 200 200 
22 300 300 250 300 250 
23 200 200 200 200 200 
24 250 250 250 200 250 
25 200 200 200 200 200 
26 200 200 200 200 200 
27 200 200 200 250 200 
28 200 200 200 200 200 
29 200 200 250 250 250 

Design Cost (Korean Won) 211.6 × 106 213.2 × 106 218.9 × 106 221.1 × 106 226.1 × 106

VRI 12.280 12.284 12.317 12.365 12.385 

When this model was applied to another popular benchmark Hanoi network, it could not find proper 
VRI because velocities of first couple pipes are extremely higher ( 1v  = 6.83 m/s and 2v  = 6.53 m/s) than 

maximum allowable velocity (3.0 m/s) although maximum candidate diameters (40 inch) were selected for 

the pipes [14]. Thus, pipe velocities could not be wedged between the lower and upper bounds. 

5. Conclusions  

This study performed WDN design optimization in terms of velocity reliability and cost 

minimization using fuzzy theory and harmony search. Using fuzzy theory, different degree of 

reliability was given to flow velocity of each pipe, and this expanded multiobjective formulation was 

optimized using HS. As a result, a Pareto set of WDN design solutions were successfully obtained. 
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The novelty of this study can be the fact that it proposes “preventive” reliability measure while 

traditional popular resilience indexes are “post-accident” reliability measure. Traditional resilience 

indexes increase when we add extra energy (for example, more energy to a pump for faster flowrate) to 

cope with failure situations. However, this surplus energy can be a burden on the system, causing 

quicker system deterioration. On the contrary, velocity reliability index in this study tries to avoid any 

excessive velocity, causing fewer burdens on the system. 

Based on this pioneering approach in velocity-wise reliability index, more practical researches are 

expected to enhance system reliability, as well as minimize design cost of real-world WDNs in the 

future. For example, the less-cost design, with less VRI, may cause more maintenance costs from 

sediment cleaning or structure break. Thus, if we also consider the maintenance cost, as well as 

construction cost with respect to life-cycle cost, it will become a more practical design optimization. 

Also, other related hybrid techniques such as controlled genetic algorithm [40] and genetic doping 

algorithm [41] can be considered in the future for devising another velocity-wise reliability index. 
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