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Abstract: River basin simulation and multi-reservoir optimal operation have been critical 

for river basin management. Due to the intense interaction between human activities and 

river basin systems, the river basin model and multi-reservoir operation model are 

complicated with a large number of parameters. Therefore, fast and stable optimization 

algorithms are required for river basin management under the changing conditions of 

climate and current human activities. This study presents a new global optimization 

algorithm, named as heuristic dynamically dimensioned search with sensitivity information 

(HDDS-S), to effectively perform river basin simulation and multi-reservoir optimal 

operation during river basin management. The HDDS-S algorithm is built on the 

dynamically dimensioned search (DDS) algorithm; and has an improved computational 

efficiency while maintaining its search capacity compared to the original DDS algorithm. 

This is mainly due to the non-uniform probability assigned to each decision variable on the 

basis of its changing sensitivity to the optimization objectives during the adaptive change 

from global to local search with dimensionality reduced. This study evaluates the new 

algorithm by comparing its performance with the DDS algorithm on a river basin model 

calibration problem and a multi-reservoir optimal operation problem. The results obtained 

indicate that the HDDS-S algorithm outperforms the DDS algorithm in terms of search 

ability and computational efficiency in the two specific problems. In addition; similar to the 

DDS algorithm; the HDDS-S algorithm is easy to use as it does not require any parameter 
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tuning and automatically adjusts its search to find good solutions given an available 

computational budget. 

Keywords: dynamically dimensioned search; non-uniform probability; dimensionality 

reduction; sensitivity analysis; Soil and Water Assessment Tool (SWAT);  

multi-reservoir operation 

 

1. Introduction 

It has been increasingly recognized that climate change and human activities have a profound 

impact on river basin management [1–3]. The law of hydrologic cycle evolution, which could be 

explored by river basin simulation effectively, has a profound impact on river basin management in 

terms of efficiency of system optimization [4–8]. Because the intense interactions between climate 

change and human activities lead to great changes in river quantity and quality regimes, river basin 

simulation becomes more difficult under the influence of many parameters. On the other hand, due to 

the uneven distribution of water resources in terms of time and space, a large number of reservoirs have 

been constructed in China as well as in many other countries. Although the joint operation of 

multi-reservoir systems could assist water resource optimal distribution in river basins, the complex 

topological structure of multiple reservoir systems in river basins makes the joint operation more 

difficult [9–14]. 

Because a large number of decision variables and constraints exist in the river basin model and the 

multi-reservoir operation model, developing high-performance optimization algorithms is critical for 

river basin model calibration problems and multi-reservoir optimal operation problems in river basin 

management. Use of conventional optimization algorithms to solve these optimization problems might 

result in slow convergence and low accuracy issues. Heuristic algorithms, which mimic human thinking, 

have become popular in recent years, as they are able to provide near-optimal solutions and can improve 

the speed of search [15,16]. 

There are many heuristic algorithms that are developed in recent years, such as Genetic  

Algorithms [17–23], Particle Swarm Optimization [24,25], Shuffled Complex Evolution (SCE) [26,27] 

and Ant Colony Optimization [28–30]. The SCE algorithm is one of the popular optimization algorithms 

in the river basin model calibration over the past 10 years given that more than 300 different publications 

referenced the original SCE publications [26,27,31]. However, various kinds of optimization algorithms 

need to utilize an extraordinary number of function (or model) evaluations to approximate the global 

optimum more accurately and it would considerable time to solve the complex optimization problems. 

Generally, a wide variety of such problems could be solved in a simulation-optimization framework. 

The time required for one single simulation can vary from seconds to hours; the budget should be spent 

as efficiently as possible as it usually is limited. A global optimization algorithm called dynamically 

dimensioned search (DDS), which was proposed by Tolson and Shoemaker [32], is able to automatically 

refine and update optimal search space, and thus reduce the number of iterations required to reach 

satisfying solutions. Tolson and Shoemaker [32] compared the DDS and SCE algorithms from two 

aspects—The number of decision variables and the number of iterations, and found that the DDS 
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algorithm is able to converge faster and get better solutions within a specified number of iterations, 

which proves its effectiveness for solving complex optimization problems. Due to the relatively good 

performance, simplicity and parsimony of the DDS algorithm, i.e., its ability to automatically scale the 

search space for good solutions within a specified computational time limit without requiring algorithm 

parameter adjustment, the DDS algorithm is ideally suited for solving computationally expensive 

optimization problems. 

Most optimization algorithms treat each decision variable with an equal and constant probability to 

search and do not consider the variation of the probability in the search process, e.g., the SCE algorithm 

searches in the global space without dimension reduced. However, the DDS algorithm searches globally 

at the start of the search and conducts a more localized search as the number of iterations approaches  

the maximum allowable number of function evaluations, which is achieved by dynamically and 

probabilistically reducing the number of dimensions in the neighborhood and the reducing probability is 

distributed to each decision variable equally. Meanwhile, Hansen and Ostermeier [33] developed an 

adaptive evolutionary strategy to improve search efficiency, where decision variable co-variant matrix 

could be constructed and their automatic adjustment could be implemented in the search process. 

This study presents a further developed DDS algorithm to solve high-dimensional optimization 

problems, i.e., river basin model calibration problem and multi-reservoir optimal operation problem in 

river basin management, with many parameters more efficiently. The newly developed global optimization 

algorithm, named as heuristic dynamically dimensioned search with sensitivity information (HDDS-S), 

is built on the DDS algorithm and could also search from global to local space with a reduced number of 

dimensions. However, during the adaptive change from global to local search with dimensionality 

reduced, instead of the reducing probability being distributed to each decision variable equally in the 

DDS algorithm, the non-uniform probability is assigned to each decision variable on the basis of its 

changing sensitivity to the optimization objectives in the HDDS-S algorithm. To evaluate the efficiency 

in solving high-dimensional and computationally expensive optimization problems in river basin 

management, the HDDS-S algorithm is tested extensively against the DDS algorithm on the river basin 

model calibration problem for the Tang-Wang River Basin in Jilin province, China, and the optimal 

operation problem for the DHF-GYG-SW (Dahuofang reservoir (DHF), Guanyinge reservoir (GYG), 

and Shenwo reservoir (SW)) multi-reservoir in the northeast of China. 

2. Methods 

2.1. Benchmark Optimization Algorithm 

The optimization problem can be represented in the following mathematical way: ݕ = (ݔ)݂݊݅݉ = ݂݉݅݊൫ݔଵ,⋯ , .ݏ ௣൯ݔ .ݐ ݃݅൫ݔଵ,⋯ , ௣൯ݔ ≤ 0, ݅ = 1,2, ⋯ , ݉ 	ℎ௝൫ݔଵ,⋯ , ௣൯ݔ ≥ 0, ݆ = 1,2, … , ݊ 

(1)

where ݕ is the objective function of one optimization problem, ݔ = ൫ݔଵ,⋯ , ⋯,ଵݔ൫	௣൯ is the parameter set, ݃௜ݔ , ݅)	௣൯ݔ = 1,2,⋯ ,݉) and ℎ௝	൫ݔଵ,⋯ , ݅)	௣൯ݔ = 1,2,⋯ , ݊) are constraint functions. 
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This study presents the HDDS-S algorithm developed on the basis of the DDS algorithm to 

effectively perform river basin simulation and multi-reservoir optimal operation during river basin 

management. The original DDS algorithm is chosen as the benchmark optimization algorithm, that is, 

the HDDS-S algorithm is tested extensively against the DDS algorithm in solving high-dimensional and 

computationally expensive optimization problems in river basin management. The DDS algorithm was 

developed for the purpose of finding good global solutions, which are opposed to globally optimal 

solutions, within a specified number of maximum function evaluations. The key feature of the DDS 

algorithm was motivated by past experience from manual calibration of river basin models and reservoir 

operation models. A number of model parameters should be modified simultaneously early in the 

optimization exercise due to the fact that only relatively poor solutions could be obtained more often at 

this moment. However, as the optimization results improve, it becomes necessary to only modify a few 

parameters simultaneously so that the current gain in optimization results would not be lost. 

Additionally, through the observation of multi-dimensional decision variable optimization process, 

Tolson and Shoemaker [32] found that the number of decision variables that need to be optimized for 

improving the quality of solutions is decreasing as the values of decision variables approach their best 

values gradually. Therefore, unlike other heuristic algorithms that optimize each decision variable 

within a fixed space all the time, the DDS algorithm automatically sets the searching region size 

according to the current iteration count and user-specified maximum number of function (or model) 

evaluations to reflect the phenomenon that the number of decision variables to be optimized is 

decreasing, which is achieved by dynamically and probabilistically reducing the number of dimensions 

in the neighborhood and the reduced probability is distributed to each decision variable equally. The 

probability of choosing each decision variable to search based on a function of iteration count in the 

DDS algorithm could be calculated as: ܲ(݅, ݆) = 1 − ݈݊(݆) ݈݊(ܰ)⁄  (2)

where ܲ(݅, ݆) is the probability of choosing decision variable ݔ௜ to search on iteration ݆, ܰ is the 

total number of iterations. 

On the other hand, in the original DDS algorithm, candidate solutions are created by perturbing the 

current solution values in the randomly selected dimensions only. These perturbation magnitudes are 

randomly sampled from a normal distribution with a mean of zero to keep the DDS algorithm as simple 

and parsimonious as possible. The DDS algorithm is a greedy type of algorithm since the current best 

solution is never updated with a solution that has an inferior value of the objective function. See Tolson 

and Shoemaker [32] for a detailed description of the DDS algorithm. 

2.2. Heuristic Dynamically Dimensioned Search with Sensitivity Information 

The regular used algorithms adopt equal probability search approach without dimension reduction, 

e.g., the SCE algorithm. The DDS algorithm could select dimensions to search randomly with a function 

of iteration count, and the number of selected dimensions is decreasing gradually with the increase of 

iteration count. Similar to the DDS algorithm, covariance matrix adaptation (CMA) and a multi-algorithm, 

genetically adaptive multi-objective (AMALGAM) algorithms could create the number of offspring points 

self-adaptively based on experiences, and all the points are searched with the same probabilities [33–36]. 
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Heuristic dynamically dimensional search with sensitivity information (HDDS-S) improves the equal 

probability random search with dimension reduction in the DDS, CMA and AMALGAM algorithms, 

realizing the non-uniform probability search with the changing sensitivity of different dimensions to the 

objectives. The search approaches of different algorithms are shown in Figure 1. 

  

Figure 1. The search approaches of different algorithms. (a) Equal probability search 

approach without dimension reduction; (b) Equal probability search approach with 

dimension reduction; (c) Non-uniform probability search with dimension reduction. 

Because the number of decision variables that need to be optimized for improving the quality of 

solutions is decreasing as the values of decision variables approach their best values gradually, the 

changing process of decision variable sensitivity works on two principles: (1) the sensitivity of decision 

variable reduces with the increase of decision variables selected for searching on each iteration; (2) the 

sensitivity of decision variables is continuously cumulative with the increase of iteration number. 

In the HDDS-S algorithm, to reflect the two principles, firstly, the sensitivity of each decision 

variable could be calculated as: ቊݏ௜,௝ = 1 ௝݊ ௜ݔ ∈ ௝ܺ⁄ݏ௜,௝ = 0 ௜ݔ ∉ ௝ܺ  (3)

where ݏ௜,௝ is the sensitivity of decision variable ݔ௜(݅ = 1,⋯ ݆)݆ on iteration (ܦ, = 1,⋯ ,ܰ), ௝݊ is 

the number of decision variables selected for searching on iteration ݆, ௝ܺ is the collection of decision 

variables selected for searching on iteration ݆, ܦ and ܰ are the total number of decision variables 

and iterations respectively. 

Secondly, the cumulative sensitivity of decision variable could be calculated as: ܿݏ௜,௝ = ෍ (ܰ − ݆ + ݈) ݉⁄ ×௝௟ୀଵ ௜,௟ݏ  (4)

where ܿݏ௜,௝ is the cumulative sensitivity of decision variable ݔ௜ from 1 to iteration ݆. 
Similar to the DDS algorithm, the HDDS-S algorithm could search from global to local space with  

a reduced number of dimensions. However, instead of the reducing probability being distributed to each 

decision variable equally in the DDS algorithm, the non-uniform probability is assigned to each decision 

variable on the basis of its changing sensitivity to the optimization objectives in the HDDS-S algorithm. 

The probability of choosing a decision variable to search based on its cumulative sensitivity could be 

calculated as: 



Water 2015, 7 2219 

 ܲ(݅, ݆ + 1) = (1 − ݈݊(݆) ݈݊(ܰ)⁄ ) × ൫൫ܿݏ௜,௝ − ݏ ௝ܿ௠௜௡൯ ൫ݏ ௝ܿ௠௔௫ − ݏ ௝ܿ௠௜௡൯ൗ ൯ (5)

where ܲ(݅, ݆ + 1) is the probability of choosing decision variable ݔ௜ to search on iteration ݆ + ݏ ,1 ௝ܿ௠௔௫ and ݏ ௝ܿ௠௜௡ are the maximum and minimum cumulative sensitivity values among all decision 

variables from 0 to the iteration ݆. The calculation of ܲ(݅, ݆ + 1) reflects the dynamic adjustment  

of decision variable search strategy, that is, the non-uniform probability search with the changing 

sensitivity of different dimensions to the objectives. 

Therefore, the HDDS-S algorithm has the following characteristics: firstly, changing of the 

sensitivity matrix of multi-dimension parameters (decision variables) and cumulative sensitivity of each 

parameter are updated dynamically during the process of optimization according to the relationship 

between dimension selection and optimizing efficiency; secondly, the probability of choosing each 

parameter to optimize is calculated according to its cumulative sensitivity; finally, the optimization 

strategy of choosing parameters with non-uniform probability during the process of parameter 

optimization is realized to improve convergence rate and optimization efficiency. Additionally, similar 

to the DDS algorithm, the only algorithm parameter to set in the HDDS-S algorithm is the scalar 

neighbourhood size perturbation that defines the random perturbation size standard deviation as a 

fraction of the decision variable range. Tolson and Shoemaker [32] recommended the value of 	r 
parameter as 0.2 (and used in this study) because this yields a sampling range that practically spans the 

normalized decision variable range for a current decision variable value halfway between the minimum 

and maximum. 

The complete HDDS-S algorithm pseudo-code for minimization can be seen in the Appendix 

Pseudo-code of HDDS-S. 

3. Model Description and Study Area 

Almost all river basin models contain effective physical and/or conceptual model parameters that 

are either difficult or impossible to directly measure. Optimization algorithms could be used to automate 

the calibration, i.e., automatic calibration is defined as an optimization algorithm-based search for a set 

of river basin model parameter values that minimize the model prediction errors relative to available 

measured data for the system being modeled process. Tolson and Shoemaker [32] compared the 

performance of the DDS algorithm to that of the SCE algorithm, which is currently one of the most 

commonly applied algorithms for automatic calibration of river basin models, with multiple optimization 

test functions as well as real and synthetic SWAT2000 model automatic calibration formulations. In 

that study, numerical results demonstrate that the DDS algorithm is a more computationally efficient 

and robust optimization algorithm than the SCE algorithm in the context of river basin model 

automatic calibration. Therefore, the HDDS-S algorithm developed on the basis of DDS is evaluated 

by comparing its performance with the DDS algorithm on a river basin model calibration problem  

in this paper. 

Meanwhile, river basin simulation is closely related to multi-reservoir optimal operation. Firstly, the 

future runoff series under the changing conditions could be generated on the basis of the law of 

hydrologic cycle evolution, which could be explored with river basin model effectively, e.g., SWAT 

model. Secondly, the future runoff series need to be used as the inputs of the multi-reservoir operation 

model to explore the impacts of changing conditions on multi-reservoir operation, determine the 
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operation rules, and assist in making multi-reservoir optimal operation decisions under changing 

conditions. As with river basin simulation, multi-reservoir optimal operation has been critical for river 

basin management; the multi-reservoir operation model contains large number of decision variables to be 

calibrated, i.e., large number of the curves and the number of time periods, which increases the 

complexity and problem, and poses a significant challenge for most optimization tools currently 

available [9–14]. To evaluate the universality of the HDDS-S algorithm in river basin management,  

the HDDS-S algorithm is also evaluated by comparing its performance with the DDS algorithm on a 

multi-reservoir optimal operation problem in this paper. 

Two cases are used to extensively test our new HDDS-S algorithm against the DDS algorithm in this 

paper: (1) the river basin model calibration for Tang-Wang River Basin; and (2) the optimal operation 

for the DHF-GYG-SW multi-reservoir. The main difference between the multi-reservoir operation 

model and river basin model is that the decision variables in multi-reservoir operation models are 

reservoir operation rule curves, which consist of a series of storage volumes or levels at different 

periods, and the aim of multi-reservoir optimal operation is to establish reservoir operation rule curves 

at the planning/design stage and provide long-term operation guidelines for reservoir managers to meet 

expected water demands [37–39]. Therefore, the decision variables, which will be optimized in the two 

optimization problems, are parameters of the river basin model and multi-reservoir optimal operation 

model, and the dimension being varied is the number of model parameter values being changed to 

generate a new search neighbourhood. 

3.1. Model Description 

3.1.1. River Basin Model 

Overview of the SWAT Model 

The SWAT model is a catchment-scale semi-distributed river basin model developed by the 

Agricultural Research Service of the United States Department of Agriculture; its detailed description 

can be seen in many references, such as [40,41]. The SWAT model can be run at a daily time step when 

the Soil Conservation Service (SCS) curve number method is used to calculate surface runoff, and it is 

not designed to accurately simulate detailed, single-event flood routing. In this paper, the river basin 

model calibration problem is formulated based on the set of the SWAT2005 flow-related parameters, 

which impact snowmelt, surface runoff, groundwater, and lateral flow simulation. 

Because SWAT is a semi-distributed river basin model and Hydrological Responding Units (HRUs) 

divided with geographic information are its basic units, some parameters are not regarded as spatial 

variables but rather constant values across all spatial units and some other parameters are spatially 

varied among different HRUs. For example, those parameters related to snowmelt have constant values 

in all spatial units, and could be calibrated one by one. However, some parameters, such as SCS curve 

numbers, could be assigned different values for different spatial units, which significantly increase the 

complexity and computational model requirement of parameter calibration. In this paper, a single factor 

is used to represent spatial variation, by increasing or decreasing spatially varying parameter values from 

their base or default values. For spatially varied parameter, this approach maintains the relative 

differences in the base or default parameter values assigned to different spatial units. 
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The flow-related parameters of the SWAT model and their ranges are listed in Table 1, where the 

parameter ranges are based mainly on the default ranges in the SWAT2005 model documentation. 

Table 1. Parameter list. 

No. Name Brief Description (units) Minimum Maximum 

1 SFTMP snow fall temperature (°C) −5 5 
2 SMTMP snowmelt temperature threshold (°C) −5 5 
3 SMFMX melt factor for snow on June 21 (mm/°C) 1.5 8 
4 TIMP snowpack temperature lag factor 0.01 1 
5 ESCO soil evaporation compensation factor 0.001 1 
6 SURLAG surface runoff lag coefficient 1 24 
7 GW_DELAY groundwater delay time (days) 0.001 500 
8 ALPHA_BF base flow alpha factor 0.001 1 
9 GWQMN threshold groundwater depth for return flow (mm) 0.001 500 
10 LAT_TTIME lateral flow traveltime (days) 0.001 180 

11 CN2 a SCS runoff curve number multiplicative factor for 
moisture condition II 

0.75 1.25 

Note: a Parameters are multiplicative factors used to adjust the spatial variation across all model units. 

Evaluation Criterion and Objective Function 

The mean relative error (ܧܴܯ ), the coefficient of determination (ܴଶ ), and the Nash–Sutcliffe 

efficiency (ܰܵܧ) are used to evaluate the simulated streamflows with the observed streamflows. ܧܴܯ is computed according to Equation (6): ܧܴܯ = ൫ܳ௣തതതത − ܳ௧തതത൯ ܳ௧തതത⁄ × 100% (6)

where ܳ௣തതതത  and ܳ௧തതത  are the means of the simulated streamflows and the observed streamflows, 

respectively. “ܧܴܯ values of 0 indicate a perfect fit. Positive values indicate model overestimation 

bias, and negative values indicate model underestimation bias [42].” ܴଶ is computed according to Equation (7): 

ܴଶ =෍ ൫ܳ௣௜ − ܳ௣തതതത൯(ܳ௧௜ − ܳ௧തതത)௡௜ୀଵ ඨ෍ ൫ܳ௣௜ − ܳ௣തതതത൯ଶ௡௜ୀଵ ෍ (ܳ௧௜ − ܳ௧തതത)ଶ௡௜ୀଵ൘  (7)

where ܳ௣௜  is the 	݅ th simulated value for the streamflows; ܳ௧௜  is the ݅ th observation for the 

streamflows; and ݊ is the total number of observations. “ܴଶ describes the portion of the variance in 

measured data explained by the model. ܴଶ ranges from 0 to 1, with lower values indicating more error 

variance, and typically ܴଶ = 1 is considered the optimal value [43].” ܰܵܧ is computed according to Equation (8): ܰܵܧ = 1 −෍ ൫ܳ௣௜ − ܳ௧௜൯ଶ௡௜ୀଵ ෍ (ܳ௧௜ − ܳ௧തതത)ଶ௡௜ୀଵ൘  (8)

The ܰܵܧ  ranges between −∞  and 1.0, with ܰܵܧ = 1.0  as the optimal value. According to  

Luo et al. [44], values between 0.0 and 1.0 are generally viewed as acceptable levels of performance, 
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whereas a value less than 0.0 means that the mean observed value is a better predictor than the simulated 

value, which indicates unacceptable performance. 

To evaluate the HDDS-S algorithm by comparing its performance with that of the DDS algorithm on 

river basin model calibration, the sum of squared differences between the simulated streamflows and the 

observed streamflows is used as the objective function, which is shown in Equation (9): ܵܵܧ =෍ ൫ܳ௣௜ − ܳ௧௜൯ଶ௡௜ୀଵ  (9)

where ܵܵܧ is the sum of squared differences between the simulated streamflows and the observed 

stream flows. 

3.1.2. Multi-Reservoir Optimal Operation Model 

Multi-Reservoir Operation Rule 

Multi-reservoir operation rule consists of operation rule curves and rationing factors for each water 

demand. Details of the operation rule curves and their corresponding water supply rationing factors are 

illustrated in Figure 2 and Table 2. The forms of reservoir operation rule curves based on 36 10-day 

periods are shown schematically in Figure 2. The operation rule curves are defined according to 

reservoir storage, that is, the dynamic water storage of the reservoir is taken as the single, influential 

factor for reservoir operation. 

 

Figure 2. Reservoir operational rule curves. 

In this paper, the active water storage of reservoir is divided into three parts, zone I, zone II and  

zone III, by two operation rule curves for industrial (D1) and agricultural (D2) demands. Each of the 

water demands has a related rule curve and a rationing factor. Because different kinds of water demands 

require different reliabilities and different degrees of priority in practice, the rationing factors usually have 

different values. For example, assume water rationing factor is α1 for the operation rule curve for industrial 

demand (D1) in Figure 2. When the water storage of the reservoir lies in zone I or zone II, water demand 
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D1 is fully met, i.e., the amount of water supply is D1; when the water storage of reservoir is in zone III, 

the amount of water supply is calculated by applying the water rationing factor, i.e., α1 × D1. 

Table 2. Operation rule implied by rule curves. 

Reservoir Storage 
Water Supply for Each Demand 

Demand 1 (D1) Demand 2 (D2) 

Zone I D1 D2 
Zone II D1 α2 × D2 
Zone III α1 × D1 α2 × D2 

Rationing factor α1 α2 

Multi-Reservoir Operation Model 

The multi-reservoir optimal operation problem is formulated as a single-objective optimization 

problem, where decision variables are the water storages at different periods on different operation 

curves, including industrial and agricultural curves of XN-2 (the virtual reservoir which GYG and SW 

reservoirs are aggregated into) and DHF reservoirs. Meanwhile, the operation for the entire system 

should meet the guaranteed rate of each water demand, i.e., the guaranteed water-supply rate of industry 

and agriculture are above 95% and 50%, respectively. The guaranteed rate of each water demand can be 

calculated by statistics from the operation result, shown in Equation (10): ܴܩ௜(ݔ) = ௜ܰܩܶܰ ௜ܶ + 1 (10)

where ݔ is the vector of decision variables, i.e., the water storages at different periods on an operation 

rule curve; ܴܩ௜  is the guaranteed rate for water demand ݅  (industrial water demand when ݅ = 1, 

agricultural water demand when ݅ = 2), which measures the frequency of water demand being satisfied 

during entire time periods and is used as an indicator to reflect water supply capacity of the system; ܰ ௜ܶ 
is the entire operation period for demand ݅ (industrial demand when ݅ = 1, agricultural demand when ݅ = 2); similar to ܰ ௜ܶ, ܰܶܩ௜ is the time period when water demand ݅ is being satisfied. 

Additionally, the number of depth damages, which indicate that the reservoir water storage has been 

lowered to dead water storage, should be as few as possible during the operation for the entire system. 

Similarly, the number of depth damages could be calculated by statistics from the operation result. 

In this paper, the objectives are set to minimize the number of depth damages, ans improve the 

guaranteed rate of each water demand during the operation for the entire water supply system: 	݂݉݅݊(ݔ) = 1 −෍ ෍ ௜,௝௡௝ୀଵ௠௜ୀଵܴܩ +෍ ෍ ௜,௝௡௝ୀଵ௠௜ୀଵܦܰ .ݏ  .ݐ (࢞)ଵ,௝ܴܩ ≥ (࢞)ଶ,௝ܴܩ 95% ≥ 50% 

(11)

where ܴܩ௜,௝ is the guaranteed rate for water demand ݅ in subsystem	݆ (Sub A when ݆ = 1, Sub B when ݆ = 2, and Sub C when ݆ = 3); similarly, ܰܦ௜,௝ is the number of depth damages for water demand ݅ in 

subsystem ݆. 
For the multi-reservoir operation optimization problem, the mass balance equations are: 
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 ܵ௧ାଵ − ܵ௧ = ௧ܫ − ܴ௧ − ܵ ௧ܷ − ௧ (12)ܴ௧ܧ = ,(࢞)݃ ܵ ௧ܷ = ,(࢞)݇ ௧ܧ = ܵ(13) (࢞)݁ ௧ܶmin ≤ ܵ௧ ≤ ܵ ௧ܶmax, ܵ ௧ܶmin ≤ ࢞ ≤ ܵ ௧ܶmax (14)

where ܵ௧ is the initial water storage at the beginning of period ݐ; ܵ௧ାଵ is the ending water storage at the 

end of period ܫ ;ݐ௧, ܴ௧, ܵ ௧ܷ, and ܧ௧ are inflow, delivery for water use, spill and evapotranspiration 

loss, respectively; and ܵ ௧ܶmax and ܵ ௧ܶmin are the maximum and minimum storage, respectively. 

3.2. Study Area 

3.2.1. Tang-Wang River Basin 

The Tang-Wang River is the first level tributary of the left bank of Song-Hua River, China. The total 

length of the Tang-Wang River is approximately 509 km. Its basin drains an area of 20,383 km2.  

The study area is limited to the upper-middle stream region of the Tang-Wang River above Yixin 

hydrologic station, herein still referred to as Tang-Wang River Basin. The river basin drains an area of 

11,376 km2. The basin boundary and associated SWAT model sub-basin boundaries are presented in 

Figure 3. There are 87 sub-basins defined in the Tang-Wang River Basin, where 16 rain gauges and  

1 streamflow gauge are located. Daily Meteorologic data (temperature, solar radiation, weed speed, 

relative humidity), daily precipitation data and stream flow data used in SWAT Model Calibration for 

Tang-Wang River Basin are listed in Table 3. 

 

Figure 3. Tang-Wang River Basin. 
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Table 3. Hydrometeorological data for Tang-Wang River Basin. 

Time Scale Hydrologic/Meteorologic Element Station Period 

Daily 

Precipitation 16 gauges, such as Dongsheng 1979–2001 

Streamflow Yixin 1979–2001 

Temperature, relative humidity, weed 
speed and solar radiation 

Yichun 1979–2001 

To evaluate the HDDS-S algorithm by comparing its performance with that of the original DDS 

algorithm on river basin model calibration, two scenarios are constructed: (1) model auto-calibration 

with the HDDS-S algorithm; and the (2) model auto-calibration with the DDS algorithm. The Yixin 

streamflow gauge was chosen as calibration station, and streamflow data from the 1979–2001 period 

were used to calibrate the model parameters. For each scenario, the first two months (January and 

February) are used as a warm up period for model simulation. The rest of the time periods in each 

scenario are used to assess the model’s performance in the parameter calibration process. 

3.2.2. DHF-GYG-SW Multi-Reservoir 

This paper use thes DHF-GYG-SW multi-reservoir located in Huntai Basin as a case study, which 

consists of the Dahuofang reservoir (DHF), Guanyinge reservoir (GYG), and Shenwo reservoir (SW). 

Huntai basin, including Hun River and Taizi River, is located in a rapidly urbanizing region of  

Northeast China (Figure 4). 

 

Figure 4. The location of the adopted water supply multi-reservoir. 

DHF is a carry-over storage and is located in the trunk Stream of Hun River. It drains an area  

of 5437 km2, and the total length of the Hun River is approximately 169 km within the basin. GYG and 

SW are cascade reservoirs and located in the trunk stream of the Taizi River. GYG is a carry-over 
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storage and drains an area of 2795 km2, while SW drains an area of 6175 km2 with incomplete year 

regulation performance. The reservoir characteristics, annual average inflow and water supply tasks are 

illustrated in Table 4. 

Table 4. Reservoir characteristics and tasks of water supply. 

Reservoir 
Minimum Capacity 

(108 m3) 

Active Capacity (108 m3) Annual Average 

Inflow (108 m3) 

Tasks of  

Water Supply Drought Season Flood Season 

DHF 1.34 14.30 10.00 15.70 (2) (5) 

GYG 0.35 14.20 14.20 11.10 (1) (3) (4) (5) 

SW 0.35 5.43 2.14 12.80 (4) (5) 

Notes: Indicate: (1) industrial water supply from reservoir directly; (2) agricultural water supply for DHF-SCH 

(DHF-Sanchahe) interval; (3) industrial water supply for GYG-SW interval; (4) agricultural and industrial 

water supply for SW-SCH (SW-Sanchahe) interval; (5) agricultural and industrial water supply for SW-DLHK 

(SW-Daliaohekou) interval. 

The whole multi-reservoir system consists of three parts: subsystem A (Sub-A), which contains DHF 

and DHF-Sanchahe (SCH) interval; subsystem B (Sub-B), which contains GYG, GYG-SW interval, SW 

reservoir, and SW-SCH interval; and subsystem C (Sub-C), which contains SCH-Daliaohekou (DLHK) 

interval. The corresponding topological structure is generated, as shown in Figure 5a. Sub-A is supplied 

with water from DHF and uses DHF operation rules to decide how to supply water to each user in this 

subsystem. Sub-B is supplied with water from GYG and SW, which constitute cascade reservoirs and so 

are aggregated into one virtual reservoir (XN-2 reservoir), as shown in Figure 5b. Sub-C is supplied with 

water from the parallel reservoir, i.e., XN-2 and DHF, the common tasks in Sub-C should be allocated to 

XN-2 and DHF. The water ratio method is employed to allocate the common tasks in Sub-C, which is a 

simple and efficient method shown in Figure 5c,d. 

 

Figure 5. Reservoir aggregation and common water supply task allocation, (a) initial 

topological structure; (b) formation of virtual aggregate reservoir; (c) final topological 

structure after reservoir aggregation; (d) common water supply task allocation in the final 

topological structure. 
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The calculation of water division coefficient α is shown in Equations (15)–(17): α = ஽ுி,௧ܦܫܵ ൫ܵܦܫ஽ுி,௧ + ⁄௑ேିଶ,௧൯ܦܫܵ ஽ுி,௧ܦܫܵ(15)  = ܵ஽ுி,௧ + ஽ுி,௧ܫ − ௑ேିଶ,௧ܦܫܵ஽ுி,௧ (16)ܦ = ܵ௑ேିଶ,௧ + ௑ேିଶ,௧ܫ − ௑ேିଶ,௧ (17)ܦ

where ܵ஽ுி,௧ is the initial water storage of DHF at the beginning of period ܫ ;ݐ஽ுி,௧ and ܦ஽ுி,௧ are the 

inflow into DHF and water supply from DHF during the period ݐ, respectively; ܵ௑ேିଶ,௧ is the initial water 

storage of virtual aggregate reservoir XN-2 at the beginning of period ݐ, i.e., the sum water storage of 
GYG and SW; ܫ௑ேିଶ,௧ and ܦ௑ேିଶ,௧ are the inflow into XN-2 and water supply from XN-2 during the 

period ݐ, i.e., the sum inflow into GYG and SW, the sum water supply from GYG and SW, respectively. 

4. Applications of the HDDS-S Algorithm and Results 

4.1. River Basin Model Calibration 

The river basin model calibration problem for the Tang-Wang River Basin is used to validate 

effectiveness of the new HDDS-S algorithm. The Yixin hydrologic station, located at the outlet of 

Tang-Wang River Basin, is chosen as the calibration station, and the streamflow data from the 

1979–2001 periods are used to calibrate model parameters. Based on the two scenarios S0 and S1, i.e., 

model auto-calibration with the HDDS-S and DDS algorithms respectively, performances of the two 

algorithms in the river basin model parameter auto-calibration are evaluated on Intel Core™ 2 Duo, with 

a 2.66-GHz CPU. In different scenarios, average required computation time under the same number of 

function evaluations, i.e., ܰܧܨ = 1000 , or the same simulation accuracy, i.e., ܵܵܧ = 370,000 , 

through 30 optimization trials are shown in Figure 6. 

 

Figure 6. Average required computation time under the same number of function 

evaluations (ܰܧܨ = 1000) and the same simulation accuracy (ܵܵܧ = 370,000) in different 

scenarios through 30 optimization trials. 
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In different scenarios, average simulation results at the Yixin hydrologic station under the same 

number of function evaluations, i.e., ܰܧܨ = 1000, through 30 optimization trials is shown in Figure 7. 

 

Figure 7. Observed and average simulated monthly streamflows during the period from 

1979 to 2001 at the Yixin hydrologic station through 30 optimization trials. 

Seen from Figures 6 and 7, under the same number of function evaluations (ܰܧܨ = 1000), the 

average required computation time increases from 145.40 h in the case of the DDS algorithm to 171.32 h 

in the HDDS-S algorithm. Although the model performance improves from 11.79% (ܧܴܯ) in the case 

of the DDS algorithm to 9.94% in the HDDS-S algorithm at the Yixin hydrologic station, there is little 

difference of model performances between the DDS algorithm and the HDDS-S algorithm in terms of 

the other two evaluation criterions because the simulation results will approximate their optimal values 

after 1000 function evaluations to a large extent. Under the same simulation accuracy (ܵܵܧ = 370,000), 

the average required computation time reduces from 115.74 h (ܰܧܨ = 796) in the case of the DDS 

algorithm to 69.90 h (ܰܧܨ = 408) in the HDDS-S algorithm through 30 optimization trials. Although 

the average computation time in the case of the HDDS-S algorithm increases due to the additive 

sensitivity computation of each dimension decision variable compared to the DDS algorithm under the 

same iteration number, the average computation time in the case of the HDDS-S algorithm reduces 

greatly compared to the DDS algorithm under the same simulation accuracy. 

The performances of the two algorithms in river basin model calibration are evaluated not only from 

average required computation time under the same number of function evaluations, average required 

computation time under the same simulation accuracy, and average simulation results at Yixin hydrologic 

station under the same number of function evaluations, but also from average convergence process of 

the objective function and average calibration process of model parameters under the same number of 

function evaluations. Convergence processes of the objective function under the same number of 

function evaluations (ܰܧܨ = 1000) through 30 optimization trials in different scenarios are shown in 

Figure 8. It is further indicated that due to the consideration of the changing sensitivity information of 

each dimension decision variable, under the same number of function evaluations, convergence rate of 
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the objective function is improved in the HDDS-S algorithm compared to the DDS algorithm. 

Additionally, there are few differences of the HDDS-S algorithm convergence processes among 

different optimization trials, which indicate the reliability and stability of the HDDS-S algorithm in solving 

model auto-calibration problem. 

Under the same number of function evaluations (ܰܧܨ = 1000), the average cumulative varied times 

for each parameter during model auto-calibration process in different scenarios through 30 optimization 

trials are shown in Figure 9, where the average cumulative varied times in S0 indicate the cumulative 

sensitivity of each parameter. 

 

Figure 8. Convergence processes of the objective function under the same number of 

function evaluations (ܰܧܨ = 1000) in different scenarios through 30 optimization trials,  

(a) and (b) convergence processes in two random optimization trials; (c) average convergence 

process through 30 optimization trials. 

 

Figure 9. Average cumulative varied times for each parameter during model auto-calibration 

process under the same number of function evaluations (ܰܧܨ = 1000) in different scenarios 

through 30 optimization trials, where the description of each parameter in the x axis could 

be found in Table 1. 



Water 2015, 7 2230 

 

The average cumulative varied times for each parameter during model auto-calibration process under 

the same number of function evaluations (ܰܧܨ = 1000) through 30 optimization trials are different 

between the two scenarios, i.e., the DDS algorithm, which selects dimension for perturbation completely 

at random with a uniform probability, could not reflect the sensitivity information of each parameter. 

The details are indicated from two aspects. 

(1) As indicated in the cumulative varied times in the case of the HDDS-S algorithm, some 

parameters need to be varied many times due to strong sensitivities, e.g., SFTMP, ALPHA_BF and 

ESCO. However, the cumulative varied times of these parameters in the DDS algorithm are less. 

(2) Similarly, some parameters need to be varied fewer times due to weak sensitivities, e.g., SMTMP, 

SMFMX, SURLAG and CN2. However, their cumulative varied times in the DDS algorithm are  

greater than. 

Under the same number of function evaluations (ܰܧܨ = 1000) through 30 optimization trials, 

average calibration processes of model parameters SFTMP, SMFMX, SURLAG and ESCO, in different 

scenarios are shown in Figure 10. 

 

Figure 10. Average calibration process of model parameters under the same iteration 

number (ܰܧܨ = 1000) through 30 optimization trials in different scenarios, (a) SFTMP;  

(b) SMFMX; (c) SURLAG and (d) ESCO. 

It is indicated from Figures 9 and 10 that the value of the most sensitive parameter SFTMP needs to 

be varied through the whole calibration process, while its calibration is stopped when reaching some 

iteration number in the DDS algorithm. Similarly, the value of some more sensitive parameters, such as 

ESCO also needs to be varied many times, while it is calibrated with fewer variation times, scatter 

variation moments and obvious stagnation phenomenon in the DDS algorithm. However, less sensitive 

parameters SURLAG and SMFMX needs to be varied fewer times, while it is calibrated with more 

variation times, scatter variation moments and obvious stagnation phenomenon in the DDS algorithm. 
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Therefore, no matter how sensitive these parameters are, they could be calibrated to their optimal 

values much faster with the HDDS-S algorithm than the DDS algorithm. 

River basin model calibration results show that the computation time and efficiency could be 

improved in the HDDS-S algorithm, including the enhanced convergence rate of objective function, 

concentrated varied moments, reduced blind variation and stagnation phenomenon, compared to the 

DDS algorithm. Therefore, the HDDS-S algorithm is more efficient than the DDS algorithm in the river 

basin model calibration for the specific catchment. 

4.2. Multi-Reservoir Optimal Operation 

The optimal operation problem for DHF-GYG-SW multi-reservoir is used to evaluate the universality 

of the HDDS-S algorithm in river basin management. The input data are inflow and water demand data, 

including the industrial and agricultural water demands in the future planning year, i.e., 2030, and the 

history inflow from 1956 to 2006. Each calculation year is divided into 24 time periods (with ten days as 

scheduling horizon from April to September, and a month as scheduling horizon in the remaining 

months). Since the industrial water supply occurs through the whole year, there are twenty-four decision 

variables for industrial water supply. The agricultural water supply occurs only during the periods from the 

second ten-day of April to the first ten-day of September, thus there are fifteen decision variables for 

agricultural water supply. Therefore, the entire operation system has four rule curves and (24 + 15) × 2 = 78 

decision variables in total. 

Similarly, based on the two scenarios S0 and S1, i.e., multi-reservoir optimal operation in the case of 

the HDDS-S algorithm and multi-reservoir optimal operation in the DDS algorithm respectively, 

average performances of the two algorithms in multi-reservoir optimal operation are evaluated under the 

same iteration number (ܰܧܨ = 10,000) through 30 optimization trials from three aspects, including 

average required computation time, average objective function value, and average guaranteed water-supply 

rate on Intel Core™ 2 Duo, with a 2.66-GHz CPU. 

First of all, the rationality of operation rules derived after 10,000 function evaluations in one random 

optimization trial in the case of the HDDS-S algorithm is evaluated, and the joint scheduling charts are 

presented in Figure 11. 

As industrial water demand is more urgent than agricultural water demand, and the agricultural water 

would be limited primarily when reservoir storage is insufficient, the water supply rule curve for 

agriculture is above the operation rule curve for industry, as shown in Figure 10. In the scheduling cycle 

duration, each rule curve decreases before the flood season and then has a different degree of uplift after 

the flood season. In order to prepare for the large inflow of the summer flood season and to reduce 

surplus water, the reservoir active storage before the flood season should be lowered and then the 

number of limited water supply is reduced, i.e., the operation rule curves are decreased before the flood 

season. After the flood season, when the inflow decreases gradually, in order to ensure that no depth 

damage happens in dry years, the curves are raised to fill reservoirs as early as possible and the number 

of limited water supply is increased. In addition, the largest agricultural water use happens from April to 

May, thus the operation rule curve of agriculture is higher in the duration to conserve water and mitigate 

potential future shortages for industrial demand in some dry years. Specifically, referred to DHF 

reservoir, its water supply rule curve for industry falls in the duration from March to April due to spring 
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floods produced by melting snow, meanwhile, its water supply rule curve for industry raises in May 

because the largest agricultural water use happens from April to May and much water has been supplied 

to agriculture. 

 

Figure 11. The derived operational rule curves with the HDDS-S algorithm after 10,000 

function evaluations in one random optimization trial, (a) DHF reservoir operation rule 

curve; (b) XN-2 reservoir operation rule curve. 

Additionally, the average scheduling results determined by operation rule curves derived with the 

HDDS-S algorithm after 10,000 function evaluations in 30 random optimization trials are: (1) In Sub A, 

the guaranteed rate for industrial and agricultural water demands are 95.10% and 75.35% respectively; 

(2) In Sub B, the guaranteed rate for industrial and agricultural water demands are 95.81% and 75.46% 

respectively; (3) In Sub C, the guaranteed rate for industrial and agricultural water demands are 96.08% 

and 62.56% respectively. The average guaranteed rates in all three subsystems meet the requirement, 

i.e., guaranteed rate for industrial and agricultural water demands exceed 95% and 50% respectively. 

Therefore, as mentioned above, the derived operational rule curves of DHF reservoir and XN-2 

reservoir in the HDDS-S algorithm and the scheduling results are reasonable. 

In different scenarios, under the same number of function evaluations (ܰܧܨ = 10,000), average 

required computation time and objective function value through 30 random optimization trials are 

shown in Table 5. 

Table 5. Average computation time and objective function value under the same iteration 

number (ܰܧܨ = 10,000) through 30 random optimization trials in different scenarios. 

Scenario Objective Function Value Computation Time/Second 

S0 9.13 723.73 
S1 25.68 294.37.2 
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Under the same number of function evaluations (ܰܧܨ = 10,000), though larger differences of 

average required computation time exist in different scenarios, average objective function value decreases 

from 25.68 in the DDS algorithm to 9.13 in the HDDS-S algorithm, which improve obviously. 

Average guaranteed water-supply rates for all water supply area under the same number of function 

evaluations (ܰܧܨ = 10,000) through 30 random optimization trials in different scenarios are shown in 

Table 6. Under the same number of function evaluations (ܰܧܨ = 10,000), though few differences of 

average guaranteed rate for industrial water demand exist in different scenarios, i.e., the guaranteed rate 

for industrial water demand in all three subsystems exceed 95%, the average guaranteed rates for 

agricultural water demand in all three subsystems increase from 67.52%, 64.78% and 50.94% in the 

DDS algorithm to 75.35%, 75.46% and 62.54% in the HDDS-S algorithm in Sub A, Sub B and Sub C 

respectively, which improved obviously. 

Table 6. Average guaranteed water-supply rate under the same iteration number  

ܧܨܰ) = 10,000) through 30 random optimization trials in different scenarios. 

Water Supply Area 

Guaranteed Water-Supply Rate (%) 

Industry Agriculture 

S0 S1 S0 S1 

Sub-system 
Sub A (DHF subsystem) 95.10 95.06 75.35 67.52 

Sub B (GYG-SW subsystem) 95.81 96.00 75.46 64.78 
Sub C (SCH-DLHK subsystem) 96.08 96.25 62.54 50.94 

Optimal operation of DHF-GYG-SW multi-reservoir results show that the derived operational rule 

curves of DHF reservoir and XN-2 reservoir and the scheduling results from one random optimization 

trial are reasonable in the case of the HDDS-S algorithm, while average guaranteed water-supply rates 

in all subsystems could be improved in the HDDS-S algorithm under the same number of function 

evaluations (ܰܧܨ = 10,000) through 30 random optimization trials compared to the DDS algorithm. 

Therefore, the HDDS-S algorithm is able to derive good solutions and thus is effective in the specific 

large multi-reservoir optimal operation. 

5. Discussions and Conclusions 

The DDS algorithm could automatically refine and update optimal search space, i.e., searches 

globally at the start of the search and conducts a more localized search as the number of iterations 

approaches the maximum allowable number of function evaluations, and automatically adjust and 

exhibit good performance within the user’s timeframe for calibration to obtain a quick and approximate 

result, which is achieved by dynamically and probabilistically reducing the number of dimensions in the 

neighborhood and the reducing probability is distributed to each decision variable equally [45,46]. With 

multiple optimization test functions as well as real and synthetic SWAT2000 model automatic calibration 

formulations, Tolson and Shoemaker [32] have proved that the DDS algorithm could return good 

solutions faster than the SCE algorithm within the maximum allowable number of function evaluations. 

In this paper, the DDS algorithm is improved with reference to the changing sensitivity information 

of multi-dimension decision variables, and the HDDS-S algorithm is proposed based on the sensitivity 

analysis. The HDDS-S algorithm consists of three steps: firstly, the changing sensitivity matrix of 
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multi-dimension parameters and cumulative sensitivity of each parameter are updated dynamically 

during the process of optimization according to the relationship between dimension selection and 

optimizing efficiency; secondly, the probability of choosing each parameter is calculated during the 

process of optimization according to its cumulative sensitivity; finally, the optimization strategy with 

non-uniform probability of choosing parameters during the process of parameter optimization is realized 

to improve convergence rate and optimizing efficiency. The HDDS-S algorithm is tested extensively 

against the DDS algorithm on the river basin model calibration problem for Tang-Wang River Basin in 

Jilin province, China, and the optimal operation problem for DHF-GYG-SW multi-reservoir in the 

northeast of China. 

In the river basin model calibration problem for Tang-Wang River Basin, although there is little 

difference of model performances between the DDS algorithm and the HDDS-S algorithm because the 

simulation results will approximate their optimal values after 1000 function evaluations to a large 

extent, the average required computation time reduces from 115.74 h (ܰܧܨ = 796) in the case of the 

DDS algorithm, to 69.90 h (ܰܧܨ = 408) in the HDDS-S algorithm, through 30 optimization trials 

under the same simulation accuracy (ܵܵܧ = 370,000). Meanwhile, due to the consideration of the 

changing sensitivity information of each dimension decision variable, under the same iteration number, 

the convergence rate of the objective function is improved in the HDDS-S algorithm compared to the 

DDS algorithm, and there are few differences of the HDDS-S algorithm convergence processes among 

different optimization trials, which indicate the reliability and stability of the HDDS-S algorithm in 

solving the model auto-calibration problem. Additionally, in the optimal operation problem for the 

DHF-GYG-SW multi-reservoir, under the same number of function evaluations (ܰܧܨ = 10,000), 

though few differences of average guaranteed rate for industrial water demand exist in different 

scenarios, i.e., the guaranteed rate for industrial water demand in all three subsystems exceed 95%, the 

average guaranteed rates for agricultural water demand in all three subsystems increase from 67.52%, 

64.78% and 50.94% in the DDS algorithm to 75.35%, 75.46% and 62.54% in the HDDS-S algorithm in 

Sub A, Sub B and Sub C respectively. Overall, results show that the HDDS-S algorithm could be more 

efficient and effective than the DDS algorithm in the two specific problems. 

Since one algorithm may be better for calibration of the river basin model for only one catchment or 

one specific multi-reservoir optimal operation, we will choose other catchments and multi-reservoir 

operation systems with different characteristics including climate, topography and human activities, to 

examine the performance of the HDDS-S algorithm under different conditions in future studies. 
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Appendix 

Pseudo-Code of HDDS-S 

The complete HDDS-S algorithm pseudo-code for minimization is provided in the following: 

STEP 1. Define HDDS-S inputs as follows: 

 maximum number of objective function evaluations, ܰ, 

 neighborhood perturbation size parameter, ݎ (0.2 is default), 

 vectors of lower, ݔ௠௜௡, and upper, ݔ௠௔௫, bounds for all ܦ decision variables, 

 Set initial solution within the bond of each decision variable randomly, ݔ଴ = ሾݔଵ,⋯ ,  ,஽ሿݔ
 Initial decision variable changing sensitivity matrix, ൫ݏ௜௝൯ே×஽ = (0)ே×஽. 

STEP 2. Set objective function evaluation counter ݅ to 1, i.e., ݅ = 1, and evaluate objective function ܨ at initial solution, ܨ(ݔ଴): 
 ܨ௕௘௦௧ = ௕௘௦௧ݔ and ,(଴ݔ)ܨ =  .଴ݔ

STEP 3. Referred to all decision variables, according to their cumulative sensitivities from 

beginning, select ܭ of the ܦ decision variables to search, i.e., to be included in neighborhood, ሼܯሽ, 
take decision variable ݔ௜(݅ = 1,⋯  :as an example to illustrate the process (ܦ,

 Calculate the sensitivity on iteration ݆: ݏ௜,௝. 
 Calculate the cumulative sensitivity from beginning to iteration ݆: ܿݏ௜,௝. 
 Calculate the probability of choosing ݔ௜ to search based on its cumulative sensitivity ܿݏ௜,௝ 

from beginning to iteration ݆:	ܲ(݅, ݆ + 1). 
 Add ݔ௜ to ሼܯሽ with probability ܲ(݅, ݆ + 1). 
 If ሼܯሽ empty, select all decision variables to ሼܯሽ. 

STEP 4. Referred to each decision variable in ሼܯሽ, perturb ݔ௞௕௘௦௧	(݇ = 1,⋯  using a standard (ܯ,

normal random variable, ܰ(0,1), reflecting at decision variable bounds if necessary: 

 ݔ௞௡௘௪ = ௞௕௘௦௧ݔ + ௞ߪ ௞ܰ(0,1), whereߪ = ௞௠௔௫ݔ൫ݎ −  .௞௠௜௡൯ݔ
 If ݔ௞௡௘௪ <  :௞௠௜௡, reflect perturbationݔ

 ݔ௞௡௘௪ = ௞௠௜௡ݔ + ൫ݔ௞௠௜௡ −  ,௞௡௘௪൯ݔ
 If ݔ௞௡௘௪ > ௞௡௘௪ݔ ௞௠௔௫, setݔ =  .௞௠௜௡ݔ

 If ݔ௞௡௘௪ >  :௞௠௔௫, reflect perturbationݔ

 ݔ௞௡௘௪ = ௞௠௔௫ݔ − ௞௡௘௪ݔ) −  ,(௞௠௔௫ݔ
 If ݔ௞௡௘௪ < ௞௡௘௪ݔ ௞௠௜௡, setݔ =  .௞௠௔௫ݔ

STEP 5. Evaluate ܨ(ݔ௡௘௪) and update current best solution if necessary: 

 If ܨ(ݔ௡௘௪) ≤  :௕௘௦௧, update new best solutionܨ
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 ܨ௕௘௦௧ = ௕௘௦௧ݔ and (௡௘௪ݔ)ܨ =  .௡௘௪ݔ

STEP 6. Update objective function iteration counter, ݅ = ݅ + 1, and check stopping criterion: 

 If ݅ = ܰ, STOP, save (e.g., ܨ௕௘௦௧	&	ݔ௕௘௦௧). 
 Else, go to STEP 3. 
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