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Abstract: Surface water quality has been identified as potentially vulnerable to climate 

change. This study assesses the impacts of climate change on the water quality of Hsinshan 

Reservoir, Taiwan, through CE-QUAL-W2 simulations. The model parameters were 

calibrated by field data collected during 2004–2008, and verified against observations 

made during 2009–2012. The projected temperature and precipitation data for the near- and  

long-term future were downscaled to regional and daily scales, and used to simulate the 

projected changes in water quality through the validated model. The simulation results 

were reported as probability-based cumulative distribution functions to access the impacts 

of climate change on water quality. The results indicated that the intensified thermal 

stratification caused by the rising temperature is the primary driver of water quality 

decline, which increases the probability of deep-layer oxygen depletion and the flux of 

limiting nutrients for algae growth, resulting in a higher risk of algal blooms and 

eutrophication. The adaptation strategies of multilevel-intake operations and increasing 

bottom-layer dissolved oxygen without destratification are recommended. 
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1. Introduction 

The warming of the global climate system is now unequivocal and will continue to grow due to 

increased anthropogenic greenhouse gas emissions [1], which can induce a variety of changes in 

freshwater resources [2]. Changes in the temperature and radiation balance under a warmer climate are 

consistently associated with changes in essential components of the hydrological cycle and hydrological 

systems, e.g., changing precipitation patterns (extreme) and increasing atmospheric water vapor and 

evaporation [1,3,4]. As a result, large-scale artificial water storage facilities, such as dam reservoirs, are 

predicted to play a more important role as a buffer against rainfall variability in support of economic 

development [5]. In addition, a warmer climate is generally projected to have adverse impacts on water 

quality and intensify many forms of water pollution [6–8]. Therefore, to ensure the safety and security of 

storage water, it is important to assess the impacts of climate change on water quality. 

Despite the fact that a number of studies have evaluated the impacts of climate change on the water 

quality of freshwater ecosystems [9–12], e.g., natural lakes and streams, limited information is 

available for man-made ecosystems, such as reservoirs. Reservoirs represent hybrid systems of rivers 

and lakes [6], and their water quality is not only influenced by human activities, but also by natural 

factors, such as climate change. Closed water basins, like lakes and reservoirs, are especially sensitive 

to climate change [13], and many studies indicate that increases in water temperature are consistently 

associated with the increased thermal stratification of such water bodies. For example, it has been 

shown that the warmer climate intensifies the thermal stratification and stability of Lake Tahoe in the 

USA [12]. Similarly, the duration of thermal stratification is projected to be prolonged in the Grafham 

Reservoir in the UK [14], due to the increased air temperature. Under these conditions, the periods of 

overturn that bring a fresh supply of oxygen to the deeper layers would also be prolonged, resulting in 

an increased level of nutrients after thermal stratification [15]. Regional studies in Lake Ringsjön 

(Sweden) and in Lake Okareka (New Zealand) both indicate that the projected increases in air 

temperature and precipitation are very likely to increase the level of total phosphorus (TP), total 

nitrogen (TN) and chlorophyll-a (Chl-a) [16,17]. However, similar climate change patterns may not 

always lead to consistent changes in lake water quality parameters. For example, increases in air 

temperature and precipitation since the 1980s have not caused any obvious changes in TP and Chl-a in 

Loch Leven in the UK [18]. Furthermore, in a climate zone that is warmer but has decreased 

precipitation, TN was observed to increase, while TP and Chl-a declined, in an experimental lakes area 

in Northwestern Ontario [19]. The varied conclusions of these works are related to site-specific 

conditions and different patterns of climate change. Moreover, the sensitivities of reservoirs of 

different ages to climate change can vary markedly when a reservoir changes from an abiotic to a 

biotic ecosystem, like a lake [13]. Therefore, empirical studies which assess the impacts on reservoirs 

on a regional or climate-specific scale are needed to help determine the appropriate adaptation 

strategies for the water industry [20].  
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The temperate zones in Asia are generally experiencing more severe temperature increases than 

other temperate zones around the world [21]. The main island of Taiwan is located in the Western 

Pacific and is crossed by the Tropic of Cancer, where the rate of increase in the near-ground average 

air temperature has been shown to be twice the global average (0.6–0.7 °C) [22], and the precipitation 

intensity, seasonal variability, and extremes have generally increased over the past 50 years [23]. 

Because of the significant variations in seasonal precipitation, Taiwan is a region that is water-stressed, 

although the country has a high density of about 60 artificial reservoirs with a total area of around 

360,000 km2 that are used for various purposes. Hsinshan Reservoir (HSR) is a small, deep, off-channel 

drinking water reservoir located in Northern Taiwan. As the area is highly vulnerable to climate 

change [24], this type of reservoir deserves particular attention, and is the focus of the current work. 

One effective way to evaluate the effects of climate change on ecosystems and water quality  

is to use numerical models. Several simulation models have been widely used to study freshwater 

ecosystems [16,17,25–27], such as the integration of one-dimensional Dynamic Reservoir Simulation 

Model and Computational Aquatic Ecosystem Dynamics Model (DYRESM-CAEDYM), the 

applications of two-dimensional water quality and hydrodynamic model supported by the U.S. Army 

Corps of Engineers (CE-QUAL-W2), and the three-dimensional Hydrodynamic Model Water 

Modeling System (MOHID) developed by Technical University of Lisbon, Portugal. The projected 

changes in future climate, especially those on a regional scale, are the most important information that 

is needed to predict the effects of climate change on reservoir water quality. However, changes in 

climate on in the local scale are generally difficult to reliably predict. Therefore, most related studies 

use climate data, which was downscaled to the scale of interest from the outputs of Atmosphere–Ocean 

Global Circulation Models (AOGCMs). Although a considerable amount of research on the impacts of 

climate change on reservoirs has been undertaken, due to significant uncertainties with regard to the 

climate data [28,29] and the inconsistent modeling approaches applied, these impacts on water quality 

are still poorly understood [1]. In addition, there is a need to develop methods to adapt the projected 

climate change data to a scale and format that is both meaningful and compatible with impact 

assessment models [30]. 

This study focused on HSR and used the CE-QUAL-W2 model to study the impacts of climate 

change on risks to water quality under A1B and A2 scenarios for the near- (2020–2039) and long-term 

future (2080–2099). Compared with other reservoir/climate studies, the research in this work focuses 

on three particular aspects. First, we assess the impacts of climate change on the water quality for an 

artificial dam reservoir, which differs from natural lakes in geometric shape and the method of water 

recharge. Second, this work performs in a vulnerable region where the site- and climate-specific 

information is limited and hence needed. Third, the climate-reservoir modeling results utilize 

probability-based cumulative distribution functions, which are different from common statistical 

approaches, such as averages and correlations [14,31]. Specifically, the intent was to (1) calibrate and 

validate the CE-QUAL-W2 model; (2) investigate the risks to water quality under A1B and A2 

scenarios for the near- and long-term future; and (3) put forward risk-based adaptation and planning 

strategies for improving water quality and ensuring the safety of drinking water. 
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2. Materials and Methods 

2.1. Study Area 

The Hsinshan Reservoir (121°42'08''–121°42'42'' E, 25°07'23''–25°08'04'' N) is located on a branch 

of Keelung River in the northern part of Taiwan (Figure 1). As one of the major drinking water 

reservoirs in Northern Taiwan, HSR serves a population of more than 400,000 residents in Keelung 

City and New Taipei City. The reservoir was constructed in 1980, with a maximum capacity of  

9.7 × 106 m3 at 86 m above sea surface level. 

 

Figure 1. The geographic location of Hsinshan reservoir. 

As shown on Figure 1, the water pumped from Keelung River through Badu Pumping Station was 

designed for Hsinshan water treatment plant (WTP) as the primary source of raw water. The catchment 

of Badu Pumping Station is a designated Drinking Water Source Protection Area, where natural forest 

land are mostly conserved and high pollution activities in this area are prohibited. Sources of pollution 

affecting the quality of the pumped water entering HSR include untreated municipal wastewater, 

polluted runoff from urban area, and natural nonpoint source pollution. Because the pumped water is 

less stable in quantity and quality than that from a reservoir, the WTP takes water stored in HSR as an 

alternative when the primary source (Keelung River) is not sufficient to meet demand with regard to 

quantity (mostly in the dry season) and quality (in both the dry and wet seasons). Therefore, water in 

the reservoir is recharged occasionally by diverting additional/bypassed “raw water” from the WTP to 

HSR. As a result of multi-source operation in the WTP, HSR is an indirect, off-channel reservoir of 

Keelung River in which 35% of the storage water is contributed by the 1.6 km2 natural catchment  

(4.5 × 106 m3/year) through direct precipitation and runoff (hereafter referred as “direct water”), and 
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another 65% (7.0 × 106 m3/year) comes from the recharged water from Hsinshan WTP (hereafter 

referred as “recharged water”). Note that there is no standard operation procedure indicating the 

timing, quality or amount of recharge. 

The climate is warm and humid in Taiwan because of the surrounding low-latitudes within the Pacific 

Ocean. The average daily maximum air temperature in HSR ranges from 18 °C in January to 33 °C in 

July. HSR receives abundant rainfall throughout the year, with an average annual precipitation of over 

3700 mm. There are no distinct dry and wet seasons, but higher precipitation is expected during the fall 

monsoon season (September to November) and winter months (December to February). 

HSR has a temperature profile typical for subtropical lakes, which ranges from 16 to 32 °C at the 

surface layer, and 14 to 24 °C at the bottom layer. Generally, there is only one annual thermal 

stratification period, which starts in late spring and ends in early fall for HSR. The water column is 

well mixed and is in contact with oxygen from the atmosphere from fall to spring. The levels of 

nutrients at the hypolimnion layer were significantly higher during the stratification period [32].  

The seasonal Carlson Trophic State Index (CTSI) obtained from 2004–2012 indicated that HSR is 

between a mesotrophic state and a eutrophic state. Seasonal CTSI and the frequency of algal bloom 

events are higher during the springtime (April to June) [32].  

2.2. CE-QUAL-W2 Model 

The CE-QUAL-W2 (W2) is a two-dimensional, hydrodynamic, and water quality simulation  

model [33], which was developed by the Environmental and Hydraulics Laboratory of the US Army 

Engineer Water-ways Experiment Station. The W2 model uses finite-difference method to 

approximate the solution for laterally averaged equations of fluid motion. The model has the 

capabilities of simulating free surface elevation, pressure, density, vertical and horizontal velocities, 

and constituent concentration and transport [34]. W2 has been under continuous development since 

1975 [33], and was particularly popular in simulating basic eutrophication processes in stratified water 

systems [25,26,33,35,36], such as the relationships between temperature, dissolved oxygen and algae 

in a natural lake [26]; and the association between organic matter and sediment in a man-made  

reservoir [35]. In recent years, this model has been used to evaluate the impacts of climate change on 

reservoir water quality to make adaptation and planning decisions for optimized water treatment plant 

operations [14,24]. The W2 model version 3.6 released in 2012 was used in this work, which is 

currently maintained and continually updated by the Water Quality Research Group (WQRG) at 

Portland State University [33], USA. Because the model assumes lateral homogeneity, it is most suited 

to narrow and deep-water bodies where lateral variations in both hydrodynamic and water quality 

variables are minimal [33,34]. In this study, the long, deep and narrow shape of the HSR reservoir 

justifies the choice of the W2 model to predict the hydrodynamic and water quality variables.  

According to the physical layout of HSR (Figure 1), there are no significant tributaries in the 

catchment; it is assumed that one computational branch grid is sufficient to represent the entire 

waterbody. The horizontal and vertical spacing of 100–10,000 m and 0.2–5 m was suggested, 

respectively, by Cole and Scott [33] to define the geometry of the single branch grid in W2 for 

capturing the water quality gradients efficiently and maintaining the numerical stability. Based on 

these recommended range of branch grid dimensions and a topographic map, we divided the main 
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branch into 11 longitudinal segments (two for boundary conditions, zero length) having the length of 

80–220 m, and 25 to 38 one-meter thick vertical layers. Note that the nine divided segments were 

identified from the topographic map. Initially it was assumed that each segment layer (cell) has a 

relatively constant width. The best-fitting width for each cell was then determined through multiple 

iterations with the help of a volume-area-elevation table provided by the Taiwan Water Corporation 

(TWC). As the result, the x–z computational grids representing the waterbody of HSR are shown in 

Figure 2. The water quality sampling station (Station 1) and the water inlet/outlet of HSR are located 

in segments 1 and 3, respectively. 

 

Figure 2. Model segmentations of HSR. (a) Longitudinal segments; (b) Vertical layers. 

The quantity and quality of direct flows were estimated by the amount of precipitation and 

rainwater quality observed in the Keelung City, and the event mean concentrations of runoff from 

different land use areas in Taiwan [37,38]. Note that the catchment runoff was obtained from the  

water balance of observed water level, recharged flow, evaporation, outflow and precipitation.  

The volumetric mass loading of recharged flow was calculated by using the recharged flow rate, and 

Keelung River’s water quality was measured at the Hsinshan WTP and the Badu pumping station.  

The validated model was then employed to evaluate the impacts of climate change (i.e., changes in 

temperature and direct precipitation) on the direct inflow quantity and reservoir water quality in the 

near- and long-term future scenarios. It is assumed that the quality of catchment runoff, rainwater and 

recharged water, as well as the patterns of water recharge and outflow, remain unchanged in the future 

and hence these are set to the same conditions as those of 2004–2012. 

2.3. Climate Change Data 

The climate change dataset used in this study was provided by Taiwan Climate Change Projection 

and Information Platform Project (TCCIP) [39], which consists of 24 spatially downscaled AOGCM 



Water 2015, 7 1693 

 

outputs of projected changes in precipitation and temperature for the near- (2020–2039) and long-term 

(2080–2099) under different greenhouse gas emission scenarios. Note that the 24 AOGCMs  

selected by TCCIP were the same set of models described in the Fourth Assessment Report of 

Intergovernmental Panel on Climate Change (IPCC AR4). The downscaled outputs of AOGCMs can 

be seen as the outputs from 24 regional climate models (RCMs), with a resolution of 0.25° × 0.25° and 

0.5° × 0.5° for precipitation and temperature, respectively.  

In order to run the W2 model for HSR on a daily basis, an additional downscaling step from RCM 

was performed in this study using a pattern scaling method [40]. This is performed by mapping the 

cumulative distribution function (CDF) of daily climate observations (2004–2012, Keelung Weather 

Station) to that interpolated from the ensemble of 24 RCM outputs using an empirical CDF. Three 

kinds of statistical techniques are commonly employed to condition the RCM output [41]:  

quantile-quantile mapping (QM), distribution-based scaling (DBS) and simple direct method. 

Although data conditioned by DBS has been shown to perform better than other methods for 

precipitation from RCMs [41], it is also suggested that QM can improve systematic biases throughout 

the probability distribution of climate differences, and hence improves the adjustments of extremes. 

Studies for the assessment of the impacts of climate change on water resources in South Australia 

indicate that the QM method is appropriate for daily climate data production, due to its higher forecast 

accuracy compared to other model-output-statistics analysis approaches [40,42]. In order to condition 

for extremes in the output of RCM data in this study, the QM method was utilized. The CDF patterns 

learned from the QM procedure were then applied to extrapolate the 24 RCM outputs of future climate 

data on a daily basis. 

In addition, the A1B and A2 emission scenarios were chosen as they were the most commonly used 

scenarios for planning climate adaptation strategies in Taiwan [43]. The A1B scenario assumes a 

balanced mix of technologies and supply sources, with technology improvements and resource 

assumptions such that no single source of energy is overly dominant. The A2 scenario assumes 

relatively slow demographic transition and slow convergence in regional fertility patterns, with slow 

end-use and supply-side energy efficiency improvements, such that there is delayed development of 

renewable energy and no barriers to the use of nuclear energy [44]. 

With 24 AOGCM outputs, two emission scenarios and two time projected periods evaluated in this 

study, there are a total of 96 sets of future climate data that will be produced for the assessment of the 

impacts of climate change on water quality using the W2 model. Because of the similarity in trends 

and distribution patterns between climate outputs from 24 AOGCMs, it is impractical to run each of 

the 96 sets of climate data. First, the averaged value of 24 AOGCM outputs was selected to represent 

the multi-model ensemble forecast. Second, we analyzed the CDFs of 24 AOGCM outputs under each 

scenario and period, and selected the models located at the lower limit of 10% (LL 10%), lower limit 

of 25% (LL 25%), upper limit of 75% (UL 75%), and upper limit of 90% (UL 90%) tiles to efficiently 

cover the range of multi-model outputs. The selected climate models for each percentage tile are listed 

in Table 1. 
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Table 1. Selected AOGCM climate outputs for the simulation of the impacts of climate 

change on water quality. 

Climate Variable 

Selected Climate Model 

2020–2039 2080–2099 

A1B A2 A1B A2 

Temperature LL 10% MRI-CGCM 2.3.2 CGCM 3.1 (T47) AOM 4x3 ECHAM 4.6 

Temperature LL 25% AOM 4 × 3 ECHAM 5/MPI-OM AOM 4x3 PCM 1.0 

Temperature UL 75% CCSM 3.0 CCSM 3.0 MIROC 3.2 MIROC 3.2 

Temperature UL 90% MIROC 3.2 CCSM 3.0 MIROC 3.2 MIROC 3.2 

Rainfall LL 10% BCM 2.0 BCM 2.0 BCM 2.0 BCM 2.0 

Rainfall LL 25% BCM 2.0 BCM 2.0 GISS Model ER GISS Model ER 

Rainfall UL 75% BCM 2.0 BCM 2.0 CM 2.0 BCM 2.0 

Rainfall UL 90% CSIRO Mark 3.0 CGCM 3.1 (T47) MRI-CGCM 2.3.2 BCM 2.0 

Note: AOM 4 × 3: Atmosphere–Ocean Model (4° longitude by 3° latitude resolution), NASA, USA;  

BCM: Bergen Climate Model, University of Bergen, Norway; CCSM: Community Climate System  

Model, NCAR, USA; CGCM (T47): Coupled Global Model (T47: spatial resolution is roughly 3.75° 

latitude/longitude and 31 levels in the vertical), Canadian Centre for Climate Modelling and Analysis; 

CSIRO: Commonwealth Scientific and Industrial Research Organization, Australia; ECHAM5/MPI-OM: 

Coupling of atmospheric general circulation model version 5 and the Max Planck Institute ocean model, 

Germany; GISS Model ER: the Goddard Institute for Space Studies (GISS) ModelE atmospheric code and 

Russell ocean model, USA; MIROC: Model for Interdisciplinary Research on Climate, jointly developed in 

Japan by the Center for Climate System Research (CCSR), the National Institute for Environmental Studies 

(NIES), the Frontier Research Center for Global Chance (FRCGC), and the Japan Agency for Marine-Earth 

Science and Technology (JAMSTEC); MRI-CGCM: Codelist for Global Circulation Models, Meteorological 

Research Institute, Japan; and PCM: Parallel Climate Model, NASA, USA. 

2.4. Data Collection 

The hydrodynamic data for model calibration and validation, which includes daily water level, 

storage capacity and inflow/outflow rates of HSR, were provided by TWC. The water quality data of 

HSR were obtained from the Environmental Water Quality Information System [45] of the 

Environmental Protection Administration (EPA), Taiwan. In general, water quality in drinking water 

reservoirs is monitored seasonally by the EPA. In addition, some daily or monthly observed surface 

water temperature data provided by TWC were also used in this study. The water samples were taken 

at approximately 9:00 a.m., at 0.5–1 m below water surface. Only water temperature, pH and dissolved 

oxygen (DO) were measured in situ; other water quality parameters were measured in the laboratory. 

The analytical methods used for determining water quality parameters included: (1) water temp 

determined by thermometer; (2) DO measured using the ion-selective-electrode method; (3) nitrate–N 

(NO3–N) measured with the cadmium reduction flow injection method; (4) ammonia–N (NH3–N) 

measured with the indophenol flow injection method; (5) the ortho-P (PO4
3−) and TP concentrations 

were determined by the ascorbic acid method; and (6) the chlorophyll extraction method (in 90% 

acetone) was applied to measure Chl-a. For further details on analytical methods used in this study, 

please refer to the Standard Methods for the Examination of Water and Wastewater issued by Taiwan 

Environmental Analysis Laboratory [46]. 
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2.5. Model Calibration and Validation Procedure 

The occurrence of thermal stratification can be the most important cause of water quality problems 

in HSR [47], which not only causes a DO deficit and nutrient-enriched hypolimnion water, but also 

leads to the overgrowth of blue-green algae when the water column overturns and becomes warmer 

during spring. First, observations of daily water level, monthly surface temperature and temperature 

profile were used to calibrate hydrological parameters governing the simulation of hydrodynamic 

variables, as well as to ensure the water budgets are consistent with grid settings. The hydrological 

parameters governing horizontal dispersion and bottom friction were set to default values for the 

Chezy friction model. Second, based on the number of water quality parameters that have been 

observed and are available for model calibration, six major water quality state variables associated 

with stratification were simulated, including DO, Chl-a, PO4
3−, NH3–N, NO3–N, and TP. The kinetic 

coefficients associated with the simulated water quality variables were calibrated within the range of 

values reported in the literature [33], as shown in Table 2. The default settings of the W2 model 

(version 3.6) were applied for the other related coefficients, which are not listed in Table 2. 

Table 2. The calibrated values of W2 water quality model kinetics parameters in HSR. 

Model Parameter Parameter Range HSR 

Light extinction for pure water (m−1) 0.25 or 0.45 0.45 
Light extinction due to suspended solids (m−1) 0–0.1 0.01 

Suspended solids settling rate (m·d−1) - 1.0 
Sediment release rate of phosphorus (fraction of SOD) 0.001–0.015 0.023 
Sediment release rate of ammonium (fraction of SOD) 0.001–0.03 0.03 

Ammonia decay rate (d−1) 0.001–0.95 0.5 
Nitrate decay rate (d−1) 0.03–0.15 0.03 

Maximum algal growth rate (d−1) 0.17–11.0 1.3 
Algal settling rate (m·d−1) 0.0–30.2 0.05 

Light saturation intensity at max. photosynthetic rate (W·m−2) 10–170 55 
Algal half-saturation for phosphorus limited growth (g·m−3) 0.001–1.52 0.0038

Algal half-saturation for nitrogen limited growth (g·m−3) 0.001–4.34 0.022 

Both the hydrological parameters and kinetic coefficients were calibrated by Station 1 observation 

data provided by the Environmental Protection Administration of Taiwan, and Taiwan Water 

Corporation for the period 2004–2008, and verified against to those collected for 2009–2012. These 

calibration and simulation results were statistically evaluated to measure for deviations between 

simulated and observed data, e.g., the absolute mean error (AME) and root mean square error (RMSE); 

and the goodness-of-fit of model, e.g., the coefficient of determination (R2). 

2.6. Risk Analysis 

The simulation results for the projected water quality concentrations are organized as probability-based 

CDFs to identify the risks of the various impacts of climate change on water quality, i.e., the 

probability exceeding a specific threshold value. The thresholds (low, medium, and high) represent 

different levels of a water quality variable that, if attained or exceeded, indicate a problem with the 
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water quality. For example, a threshold of 25 °C water surface temperature was used to denote the 

possible occurrence of algal bloom events in HSR based on historical observations [47], and 10 μg/L 

of Chl-a was used to indicate the threshold of eutrophication [48]. The risk exceedance probability is 

defined by: 

Risk of exceedance for x = 1 − CDF(x) (1)

where x is the threshold value of a water quality variable. Figure 3 shows an example of CDF curves 

for W2 simulated bottom-layer TP concentrations, from which the risk of TP exceeding 0.04 mg/L is 

64% based on the upper 90 percentile climate model outputs. 

 

Figure 3. An example of CDF curves for bottom-layer TP concentrations simulated by W2 

model and selected AOGCM climate outputs of the long-term future under A1B scenario. 

3. Results and Discussion 

3.1. Calibration and Validation 

3.1.1. Hydrodynamic Variables 

A comparison between the observed and simulated hydrodynamic variables, e.g., water level and 

surface temperature, at the calibration and verification periods, is shown in Figure 4. The related model 

performance indicators, i.e., AME, RMSE and R2, for simulation of hydrodynamic variables are listed 

in Table 3. Generally, the calibrated hydrological parameters resulted in good agreement between the 

observations and W2 simulations. The simulation results of hydrodynamic variables in HSR using W2 

model, e.g., water level and temperature, showed lower errors (RMSE and AME) and much higher R2 

values than the simulation of water quality parameters. Hydrodynamic modeling in this study was 

successful because of proper development of a best-fitting computational grid. The grid was developed 

because of the availability of both sizable amounts of HSR inflow and outflow measurements and a 

measured volume-area-elevation table. Hence, the accurate simulation of water levels shows that the 

water temperature and temperature profile can be well simulated without additional effort for  

model calibration.  
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Figure 4. The calibration and validation results of W2 simulated hydrodynamic parameters 

at surface layer of segment 3. Sub-figures show the comparisons between W2 simulation 

results to: measured water level during (a) calibration and (b) validation periods; and 

measured water temperature during (c) calibration and (d) validation periods. 

Table 3. Summary of the performance indicators for the W2 modeling of hydrodynamic 

and water quality variables during calibration and validation periods. 

Simulated Variables 
Calibration Validation 

N AME RMSE R2 N AME RMSE R2 
Water level (m) 1827 0.14 0.20 0.98 1460 0.13 0.15 0.99 

Surface temperature (°C) 50 0.59 - 0.98 154 0.68 - 0.97 
DO (mg/L) 27 0.72 0.94 0.49 30 1.12 1.49 0.26 

NH3–N (mg/L) 22 0.019 0.025 0.51 16 0.021 0.026 0.25 
NO3–N (mg/L) 22 0.172 0.212 0.32 16 0.348 0.371 0.37 
Ortho–P (mg/L) 22 0.009 0.011 0.38 16 0.007 0.008 0.41 

TP (mg/L) 22 0.009 0.012 0.49 16 0.01 0.012 0.49 
Chl-a (μg/L) 22 2.752 3.689 0.32 16 2.186 2.919 0.36 

Notes: the number of observations (N); the value of absolute mean error (AME); the value of root mean 

square error (RMSE); and the value of determination coefficient (R2). 

The water budget simulation shows that the water level decreased rapidly and reached its lowest 

level in summer due to lower precipitation and higher demand, when HSR was commonly thermal 

stratified. During the period of early winter to spring, the water level gradually increased and reached a 

relatively stable level because of abundant precipitation and recharge water from Hsinshan WTP, 

while the HSR is well mixed. 
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As shown in Figure 4c,d, the surface water temperature is governed directly by the variation of 

atmospheric temperature, and hence its simulation is straightforward when the given air temperature is 

representative of the reservoir area. Although a successful simulation of surface water temperature is 

not difficult, it plays an essential role in accurately deriving the thermal stratification and determining 

the vertical distribution of water quality variables in the reservoir. 

The comparison between model-derived and observed temperature profiles shows that the thermal 

structure of the water column can also be well reproduced by the calibrated hydrological parameters 

(Figure 5). The simulated temperature profiles show that the thermal stratification in HSR developed 

gradually from April and became the strongest during August and September, with a 4 to 10 °C 

temperature difference between the surface and bottom layers. Generally, no significant thermal 

stratification was found with either the observations or the modeling results during October to March. 

Overall, the hydrodynamics simulation successfully captured the periodic process of thermal 

stratification and turnover in HSR. 

 

Figure 5. Comparisons between W2 simulated and observed water temperature  

profiles (°C) in HSR. 

3.1.2. Water Quality State Variables 

To assess the reliability and validity of this water quality model, multiple statistical analyses  

were used; these included R2, mean prediction errors, and Pearson’s coefficient of correlation (r).  

The calibration and simulation results for water quality state variables are shown in Figures 6 and 7. 

Clearly, the model predicted values do not match the observed data, this is reflected by higher errors 
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and much lower R2 values (ranging from 0.3 to 0.5 in Table 3) than the simulation of hydrodynamic 

parameters. Note that the mean prediction error values for DO, NH3–N, NO3–N, Ortho–P, TP and Chl-a, 

are 0.42, −0.002, −0.085, −0.003, 0.003, and 0.003 mg/L, respectively. Yet despite having only a 

moderate R2, the r values showed that the observed results compared to those simulated were still in 

fact significantly correlated (0.5 < r < 0.7, p-value < 0.05). This suggests that the simulated results can 

indeed capture seasonal differences relatively well. Because of this, the model used in this study 

should be particularly valid and useful for instances where there is great seasonal variation and hence 

the reservoir water quality is significantly influenced by thermal stratification. 

 

Figure 6. The calibration and validation results of W2 simulated water quality parameters 

at surface layer of segment 3. Sub-figures show the comparisons between W2 simulation 

results to: observed DO concentrations during (a) calibration and (b) validation periods; 

observed ortho-P concentrations during (c) calibration and (d) validation periods; and 

observed TP concentrations during (e) calibration and (f) validation periods. 
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Figure 7. The calibration and validation results of W2 simulated water quality parameters 

at surface layer of segment 3. Sub-figures show the comparisons between W2 simulation 

results to: observed NO3–N concentrations during (a) calibration and (b) validation 

periods; observed NH3–N concentrations during (c) calibration and (d) validation periods; 

and observed Chl-a concentrations during (e) calibration and (f) validation periods. 

Dissolved oxygen is the most important water quality variable determining the health status of an 

aquatic ecosystem [49]. In HSR, the DO concentrations in the surface layer were commonly at a 

saturation level, and this can then become supersaturated (triangles marked in Figure 6a,b and undergo 

higher day and night fluctuations during March and April, because of elevated photosynthetic activity 

of algae. The phenomenon of DO supersaturation was insignificant during summer, when the reservoir 

was experiencing thermal stratification. Significant fluctuations in surface DO were again simulated 

during October to November, due to two simultaneous processes occurring: (1) low-DO from the 

hypolimnion was upwelling towards the reservoir surface; (2) cooler weather tended to raise the 

solubility of DO. Consequently, the surface DO was generally increasing during this “turnover” period, 

but some “oxygen deficit” points were found in the simulation results (circles marked in Figure 6a,b). 
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Low-DO at the hypolimnion would significantly accelerate the release of phosphorus from 

sediment, and thus promote the growth of algae through “turnover” (October to May) [50]. Evidence 

for this “turnover” or the upwelling of nutrient-rich water originating from the hypolimnion is also 

shown in the time series plots of ortho–P and TP (Figure 6c–f)). It is speculated that phosphorus is one 

of indicative factors causing eutrophication [51]. However, the increased ortho–P and TP did not 

immediately trigger a significant growth of algae, because of the lower water temperatures from October to 

December. As shown in Figures 7e,f the overgrowth of algae was significant during February to May 

following the winter overturn, due to the combination of nutrient-rich water and warmer weather. 

Therefore, “oxygen oversaturation” was simulated only in spring and early summer, when algal bloom 

events were also most frequently observed [32,47]. In addition, the results for NH3–N and NO3–N also 

showed a similar consumption pattern to that seen with the growth of algae (Figure 7a–d). 

3.2. Evaluating the Risks to Water Quality due to Climate Change 

Although the uncertainty analysis for W2 model is not provided in this work, the W2 model 

structure and its parameter settings have been tested to be sensitive to climate drivers, and is a suitable 

tool for the prediction of climate change impacts on reservoir/lake hydrodynamic and water quality 

parameters [14,24]. In actuality, there are many sources of uncertainty in evaluating climate change 

impacts on freshwater resources, including parametric uncertainty, model structure uncertainty and the 

selected climate data [52]. Generally, a consensus has been reached among researchers that the climate 

change data and its associated decision procedures, such as the choice of global climate models 

(GCMs), emissions scenario, and downscaling methodology, are commonly the largest source of 

uncertainty when the projected climate data and hydrodynamic/water quality model are integrated for 

the evaluation of climate change impacts [53–55]. Furthermore, uncertainties due to the model 

parameters and structure are concluded to be relatively less important if variation for the climate 

outputs from different GCMs is considered [53,55]. Therefore, the possible variation for the future 

prediction of water quality parameters are estimated in this study by evaluating the uncertainty induced 

by the selection of climate outputs from 24 AOGCM outputs (as described in Section 2.3). As a result, 

the exceedance probability estimated from the climate ensemble, and the 95% confidence interval for the 

average value computed by all selected climate outputs (Table 1), are both reported in this section. The 

uncertainty ranges can represent the possible variations of hydrodynamic and water quality state 

variables for future predictions. 

3.2.1. Water Temperature 

Temperature is regarded as an important factor that can induce algal blooms [13,56]. There will thus 

be a higher risk of algal blooms if the projected surface water exceeds a temperature threshold. In this 

study, temperature thresholds of 18, 25, and 32 °C were used to assess the risk to water quality.  

The risk exceedance probabilities for the water surface temperature are listed in Table 4. The results 

indicate that the projected changes in climate will significantly raise the water temperature (relative to 

the 2004–2012 period), and increase the risk of developing associated water quality problems in HSR. 

The probability that surface water temperature would exceed 32 °C is projected to increase by 2.6% 

and 10.6% for the short- and long-term future under the A2 scenario (a better-than-worst case), 
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respectively. Compared with the water temperature in the 2004–2012 period, the increased exceedance 

probabilities in extremes (low and high) are greater than that seen in a medium temperature range  

(25 °C) (Table 4). For example, the probabilities that surface water temperature would exceed 32, 25, 

and 18 °C are projected to increase by 9.2%, 7.7%, and 11.7% for the long-term future under the A1B 

scenario (a balanced case), respectively. 

Table 4. Risk exceedance probability for the surface water temperature and DO. 

Parameter Value Ranking 

Risk Exceedance Probability (%) 

2004–2012 
2020–2039 2080–2099 

A1B A2 A1B A2 

Temperature 

(°C) 

18 Low 79.2 82.7 (81.1–84.2) 81.8 (79.9–83.7) 90.9 (89.6–92.1) 90.8 (87.3–94.4) 

25 Medium 43.2 45.2 (43.9–46.6) 44.8 (43.4–46.2) 50.9 (49.4–52.5) 51.5 (49.0–54.0) 

32 High 9.4 11.8 (9.9–13.6) 12.0 (11.1–12.9) 18.6 (17.4–19.7) 20.0 (16.7–23.2) 

DO (mg/L) 

6 Low 98.7 98.7 (98.6–98.8) 98.7 (98.6–98.7) 98.8 (98.7–98.8) 98.8 (98.6–98.8) 

8.5 Medium 45.9 44.6 (43.5–45.6) 45.2 (44.1–46.3) 39.9 (38.1–41.7) 39.8 (37.8–41.8) 

11 High 6.3 6.3 (6.2–6.4) 6.4 (6.2–6.5) 5.9 (5.7–6.2) 5.9 (5.5–6.3) 

Note: The values in brackets (left to right) are confidence interval lower and upper bounds, respectively. 

In addition, we examine the projected differences between surface- and bottom-layer temperatures 

to assess the impacts of climate change on seasonal thermal stratification. As shown in Table 5,  

the differences between water temperature at the surface and bottom layer are estimated to increase  

by 0.01 and 0.75 °C in summer for the short- and long-term future, respectively. Consequently,  

the thermal stratification in summertime will be both longer and stronger, which can enhance anoxia in 

deep layers and may increase the release of phosphorus from sediment [2]. 

Table 5. The projected seasonal temperature and DO differences between surface and 

bottom layers. 

Parameter Period Spring Summer Fall Winter

Temperature (°C) 
2004–2012 3.13 10.84 6.59 0.62 
2020–2039 3.16 10.85 6.62 0.62 
2080–2099 3.53 11.59 7.61 0.94 

DO (mg/L) 
2004–2012 2.67 7.31 7.31 1.47 
2020–2039 2.86 7.44 7.44 1.75 
2080–2099 3.38 7.7 7.7 2.6 

3.2.2. DO 

DO is a temperature-associated parameter. Increased temperature will reduce DO saturation levels 

and increase the risk of oxygen depletion [57]. The projected risks for DO at the surface layer 

exceeding thresholds of 6, 8.5 and 11 mg/L are listed in Table 4. Compared to the significant change in 

water temperature, the change in surface DO is relatively minor. However, the level of surface DO is 

expected to decrease significantly in the long-term future (2080–2099), due to a stronger increase in 

surface water temperature (likely ranging from 1.6 to 1.8 °C). For example, under the A1B scenario, 

the risk exceedance probability for surface DO at a threshold of 8.5 mg/L is projected to decrease by 
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1.3% (95% confidence interval (CI), 0.3 to 2.4) and 6.0% (95% CI, 4.2 to 7.8) for the short- and  

long-term future, respectively. Although the increased temperature decreases the DO content of water, 

the results indicate that the surface DO will still commonly be kept at a saturation level under the 

projected changes in climate. 

The projected divergence between surface- and bottom-layer DO for each season is shown in  

Table 5. The difference between surface- and bottom-layer DO is expected to be stronger during the 

stratification season under the projected changes in climate, which will increase by between 0.1 and  

0.3 mg/L for the near future, and 0.3 to 0.9 mg/L for the long-term future. As a result, the projected 

increase in thermal stratification will lead to a stronger DO stratification in HSR. 

3.2.3. Nutrients 

Table 6 shows the projected risks of ortho–P and TP in the surface and bottom layers exceeding the 

threshold values. The results show that climate change has an obvious impact on risk to ortho–P  

and TP, the limiting nutrient of algal growth in HSR. Relative to the 2004–2012 time period,  

the probability that ortho–P in the surface layer would exceed the medium threshold is projected to 

increase by 6.8% and 13.8% for the short- and long-term future under the A1B scenario, respectively, 

representing 10.0% and 16.9% increases with regard to TP under the same conditions. The exceedance 

probabilities for bottom layer ortho–P and TP at the same threshold value are much greater than that 

within surface layer. For example, the projected changes in the level of ortho–P in the bottom layer are 

approximately five times greater than those in surface layer under the A1B scenario, because of the 

increased oxygen stratification and depletion in HSR. 

The simulation results of water quality state variables during the base-period (2004–2012) indicate 

that ortho–P and TP at the water surface decreased while the temperature and DO were stratified in 

HSR during summer (Figure 6a,b). The peak ortho–P and TP concentrations in surface layer have 

often been simulated during the turnover periods (winter and spring), due to the upwelling of  

nutrient-rich hypolimnion water. Therefore, this suggests that the key source of phosphorus in HSR is 

in fact its release from sediment.  

Table 7 shows the projected risks of NH3–N and NO3–N in surface and bottom layers exceeding the 

threshold values due to changes in climate. The results indicate that NH3–N in the bottom layer is 

expected to increase, but the projected level of NH3–N in the surface layer and NO3–N in the entire 

water column both show a decreasing trend in the future. The lower estimated nitrate concentrations 

might be attributed to the increased rates of algal growth and bacteria denitrification, as well as the 

extended growing period of aquatic plants under the warmer climate [58]. In HSR, the increased 

consumption of phosphorus can be compensated or even exceeded by the projected increase in 

phosphorus flux from sediment. However, according to the decreasing trend of nitrogen, it is evident 

that the supply of nitrogen from different sources is less than the increased consumption due to the 

warmer climate. 
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Table 6. Risk exceedance probability for the levels of phosphorus in surface and bottom layers, and Chl-a at surface. 

Nutrient Layer 
Threshold 

(mg/L) 
Ranking 

Exceedance Probability (%) 

2004–2012 
2020–2039 2080–2099 

A1B A2 A1B A2 

PO4
3− 

Surface 

0.015 Low 24.8 26.4 (26.0–26.8) 26.4 (26.1–26.8) 25.5 (25.1–25.9) 25.1 (25.1–26.3) 

0.020 Medium 13.1 20.4 (19.0–21.7) 20.7 (20.6–20.8) 21.0 (20.5–21.4) 20.8 (20.0–21.4) 

0.025 High 2.6 9.4 (6.7–12.0) 7.9 (6.1–9.7) 16.4 (15.0–17.9) 15.9 (13.8–17.1) 

Bottom 

0.015 Low 99.6 99.8 (99.7–99.8) 99.8 (99.76–99.84) 99.9 (99.8–99.9) 99.9 (99.9–99.9) 

0.020 Medium 92.0 96.2 (94.1–98.3) 95.8 (94.4–97.3) 98.0 (97.0–99.1) 98.4 (98.2–98.5) 

0.025 High 49.8 71.8 (58.5–85.1) 67.4 (58.3–76.5) 89.9 (80.9–98.9) 92.1 (89.8–94.3) 

TP 

Surface 

0.012 Low 81.6 85.7 (83.3–88.0) 85.4 (82.6–88.3) 93.8 (92.5–95.1) 93.0 (91.3–94.7) 

0.024 Medium 38.6 48.6 (45.7–51.5) 47.5 (44.7–50.2) 55.5 (54.3–56.7) 56.0 (53.7–58.4) 

0.035 High 4.7 9.1 (6.2–11.9) 6.9 (5.6–8.2) 22.3 (22.2–22.5) 21.5 (14.8–25.7) 

Bottom 

0.012 Low 100 100 (99.2–100) 100 (98.5–100) 100 (99.4–100) 100 (99.1–100) 

0.024 Medium 96.2 98.7 (97.4–100) 98.3 (97.1–99.4) 100 (99.3–100) 100 (98.6–100) 

0.035 High 19.4 35.2 (23.3–47.0) 29.6 (24.2–35.1) 63.2 (42.4–84.0) 65.4 (53.4–77.3) 

Chl-a Surface 
0.003 Oligotrophic 66.3 71.7 (70.3–73.1) 71.3 (69.2–73.5) 73.8 (72.8–74.7) 75.3 (73.8–76.7) 
0.007 Mesotrophic 14.2 20.3 (17.9–22.6) 18.9 (16.7–21.1) 28.5 (27.9–29.1) 28.4 (26.3–30.5) 
0.010 Eutrophic 2.7 5.4 (4.4–6.4) 4.5 (3.6–5.4) 9.8 (9.5–10.1) 9.0 (7.4–10.6) 

Note: The values in brackets (left to right) are confidence interval lower and upper bounds, respectively. 
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Table 7. Risk exceedance probability for the levels of nitrogen in surface and bottom layers. 

Nutrient Layer Threshold (mg/L) Ranking 

Exceedance Probability (%) 

2004–2012 
2020–2039 2080–2099 

A1B A2 A1B A2 

NH3–N 

Surface 

0.01 Low 92.2 82.5 (81.4–83.5) 82.5 (81.5–83.5) 84.9 (83.8–86.0) 85.7 (84.7–86.7) 

0.03 Medium 29.6 11.8 (9.4–14.3) 10.6 (9.0–12.2) 17.2 (14.2–20.3) 17.6 (15.5–18.9) 

0.04 High 9.3 1.3 (1.1–1.5) 1.2 (1.0–1.4) 1.8 (1.3–2.4) 1.7 (1.5–2.0) 

Bottom 

0.01 Low 31.9 37.1 (33.8–40.4) 36.5 (34.0–39.1) 45.1 (41.3–48.9) 47.3 (45.8–48.8) 

0.03 Medium 6.7 9.1 (7.7–10.4) 8.8 (7.5–10.1) 14.6 (11.5–17.7) 14.8 (12.5–17.1) 

0.04 High 5.1 6.7 (5.7–7.6) 6.3 (5.3–7.4) 10.2 (8.4–11.9) 10.7 (9.5–11.9) 

NO3–N 

Surface 

0.2 Low 94.8 91.4 (89.9–93.0) 91.9 (89.9–93.8) 84.9 (83.3–86.6) 82.8 (79.7–86.0) 

0.5 Medium 41.1 31.3 (29.4–33.2) 31.2 (28.5–34.0) 24.7 (23.1–26.3) 23.9 (21.8–26.0) 

0.7 High 8.9 6.7 (6.3–7.2) 6.8 (6.2–7.4) 5.3 (5.0–5.7) 5.2 (5.1–5.3) 

Bottom 

0.2 Low 98.8 97.4 (96.3–98.5) 97.7 (96.7–98.7) 91.2 (87.9–94.5) 90.6 (87.9–93.3) 

0.5 Medium 61.7 56.7 (53.7–59.7) 56.9 (53.5–60.3) 45.3 (40.7–49.8) 44.0 (39.2–48.9) 

0.7 High 17.3 12.7 (11.5–13.9) 13.3 (11.5–15.1) 10.3 (9.7–11.0) 10.2 (9.5–10.9) 

Note: The values in brackets (left to right) are confidence interval lower and upper bounds, respectively. 
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The overgrowth of algae in natural freshwater ecosystems is often determined by the available 

internal phosphorus flux [59]. In HSR, the predicted thermal stratification may keep phosphorus at the 

bottom and prevent the occurrence of algal blooms in summer, as shown on the observed/simulated 

phosphorus trends during the base period (Figure 6c–f). The upwelling of nutrient-rich water can 

support the overgrowth of algae during periods of non-stratification, although this is limited by the 

unfavorable growing temperature [60] in HSR. Therefore, the frequency of algal bloom events is 

predicted to increase during the springtime, when the temperature is getting warmer and thermal 

stratification has not yet occurred. In addition, the enhanced anoxia in deep layers caused by increased 

thermal stratification will aggravate the release of phosphorus from sediment. The probability of TP in 

the surface layer exceeding 0.024 mg/L, the threshold of eutrophication in Calson’s Trophic State 

Index (CTSI) [48], is more than 47.5% for both the near- and long-term future (Table 6). 

3.2.4. Chlorophyll-a 

The probability that Chl-a will exceed 7.2 μg/L, the threshold of eutrophication in CTSI, is only 

14.2% during the base-period (2004–2012) in HSR (Table 6), indicating that HSR is generally in a 

mesotrophic state. However, changes in climate will significantly increase the concentrations of Chl-a. 

As shown on Table 6, the risks of Chl-a exceeding 7.2 μg/L in the near- and long-term future are 

estimated to increase by 6.1% (95% CI, 3.7 to 8.4) and 14.3% (95% CI, 13.7 to 14.9) under the A1B 

scenario, respectively. The occurrences of extreme temperature (>32 °C) (Table 4) and high 

phosphorus concentrations in the surface layer (>0.025 mg/L) (Table 6) are both predicted to increase, 

resulting in a higher risk of eutrophication and algal events in HSR. For example, the risk of Chl-a 

exceeding 10.0 μg/L in the long-term future will increase by 7.1% (95% CI, 6.8 to 7.4) under the  

A1B scenario. 

Although Chl-a and TP are both projected to increase, there is still a difference between them with 

regard to the risk of exceeding the eutrophication threshold of CTSI. Compared to the use of Chl-a as 

an eutrophication indicator, the surface water is easier to be determined as being in a eutrophic state 

using TP (Table 6). For example, the risk of TP exceeding 0.035 mg/L is 4.7%, 9.1%, and 22.3% for 

the base, near- and long-term periods under the A1B scenario, respectively, which are approximately 

two times greater than the risk of Chl-a exceeding 0.010 mg/L. It is concluded that the presence of 

phosphorus in HSR exceeds the level required by the algae to achieve a eutrophic state [6]. There are 

other factors limiting the growth of algae in certain circumstances, such as the water temperature or 

sunlight. In HSR, the levels of ortho–P or TP are supposed to limit the growth of algae when the 

reservoir is stratified. However, during periods of non-stratification (i.e., when the water is well-mixed), 

the surface water temperature is the limiting factor for the overgrowth of algae [61]. 

4. Conclusions  

This study assessed the impacts of climate change on the risks to water quality of a small deep 

reservoir in a humid-subtropical climatic region under the greenhouse gas emission scenarios of A1B 

and A2. The projected changes in water quality for the near (2020–2039) and long-term (2080–2099) 

future are estimated by CE-QUAL-W2 model with downscaled future climate data. The results 

indicate that rising temperatures will significantly lower the water quality in HSR through greater 
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thermal stability and DO stratification, resulting in reduced DO concentrations in deeper layers of the 

reservoir and increased release of phosphorus from sediments. This flux in phosphorus in the 

hypolimnion may not support algal growth in the epilimnion during summer. However, nutrients are 

projected to increase throughout the reservoir, since it is well-mixed in late fall/winter. However, even 

more critical for reservoir managers is the projected earlier arrival of spring. If the presence of 

nutrients is high, the prolonged growing season will increase the expected frequency of algal blooms. 

In HSR it would be advantageous to inhibit the upwelling of nutrients available to algae during the 

growing season, therefore conventional aeration approaches which involve the breaking up of thermal 

stratification may actually have negative impacts on water quality. Two adaptation strategies are thus 

suggested. First, management strategies that apply hypolimnetic aeration are recommended so as to 

increase bottom-layer DO without destratification [62]. The second suggested strategy involves 

lowering the height of the inlet to the depth of the hypolimnion layer formed during the stratification 

period. This will prevent the overgrowth of algae from the direct supply of nutrient-rich recharge  

water [7,33], and so can be used to address to the issue of anoxia in deeper layers. 

It should be noted, however, that this study did not consider the projected changes in the quantity 

and quality of the recharged water (pumped from the Keelung River), and the modeling results do not 

reflect the impacts of climate change on the Keelung River catchment. Future work that links the 

outputs of catchment hydrology and the water quality model with W2 is thus required to comprehensively 

assess the impacts of climate change on the risks to water quality in HSR. 
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