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Abstract: Forested catchments in southeast Australia play an important role in supplying 

water to major cities. Over the past decades, vegetation cover in this area has been affected 

by major bushfires that in return influence water yield. This study tests methods for 

forecasting water yield after bushfire, in a forested catchment in southeast Australia. 

Precipitation and remotely sensed Normalized Difference Vegetation Index (NDVI) were 

selected as the main predictor variables. Cross-correlation results show that water yield 

with time lag equal to 1 can be used as an additional predictor variable. Input variables 

and water yield observations were set based on 16-day time series, from 20 January 2003 

to 20 January 2012. Four data-driven models namely Non-Linear Multivariate Regression 

(NLMR), K-Nearest Neighbor (KNN), non-linear Autoregressive with External Input based 

Artificial Neural Networks (NARX-ANN), and Symbolic Regression (SR) were employed 

for this study. Results showed that NARX-ANN outperforms other models across all 

goodness-of-fit criteria. The Nash-Sutcliffe efficiency (NSE) of 0.90 and correlation 

coefficient of 0.96 at the training-validation stage, as well as NSE of 0.89 and correlation 

coefficient of 0.95 at the testing stage, are indicative of potentials of this model for capturing 

ecological dynamics in predicting catchment hydrology, at an operational level. 
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1. Introduction 

Forested catchments of southeast Australia supply most of the water for at least 25% of Australia’s 

population, as well as for nationally significant industries including agriculture [1,2]. Underlying 

interactions between soil-plant-atmosphere make the relationship between rainfall and runoff non-linear 

and complex to model in forested catchments. In addition, catchment vegetation cover is continuously 

affected by activities such as logging, long-term land use and changes, and major disturbances  

(e.g., bushfires) that in return influence the catchment water yield [3,4]. Bushfires affect catchment 

hydrology through changes in the structure and density of the vegetation cover, leading to changes in 

evapotranspiration and water yield over the regeneration period that last sometimes for several decades. 

For example a 5% change in forest evapotranspiration due to changes in the vegetation cover affects 

mean water yield by 20% in southeast Australia [5]. In the state of Victoria, the impact of the 1939 

bushfires on water yield from mountain ash forests peaked around 20 years after the fire following the 

relationship that exists between changes in the leaf area index [6] and catchment water yield [3,6]. 

Climate and vegetation cover characteristics have commonly been used as key predictors of post-fire 

runoff from forested catchments in Australia [3,7–10]. Previously, short-term estimation and forecast 

of catchment water yield were based on a range of methods, from purely empirical simple models to 

highly sophisticated distributed process-based models defined by partial differential equations (e.g., 

the Systeme Hydrologique Europeen model [11] or the Macaque model [9]). Over the past decades,  

data-driven models have become increasingly useful in hydrological forecasting on the basis that they 

avoid having to address the problems of the spatial and temporal variability, and the uncertainty of the 

inputs and the parameters, as opposed to the physically-based models that require a wide range of 

catchment and climate information [12–14]. 

The most commonly applied data-driven methods in short-term estimating and forecasting of 

catchment water yield are the parametric regressions such as the multivariate regressions [15–17], 

nonparametric regressions such as the K-nearest neighbor method [18–20], symbolic regressions such as 

genetic programming [21–23], and artificial intelligence based methods such as neural networks [24–26]. 

Hydrological processes contain non-linearities that are commonly modeled with data-driven techniques 

as an alternative to linear regression methods. Numerous studies have compared data-driven techniques 

with regression models (linear or non-linear) and have underlined the interest in using data-driven 

methods (see for example [27–29]). In this study, we employ four data-driven techniques, namely 

Nonlinear Multivariate Regression (NLMR), K-Nearest Neighbor (KNN), Nonlinear Autoregressive 

with External Input based Artificial Neural Networks (NARX-ANN), and Symbolic Regression (SR) 

to explore their potential for capturing ecological dynamics in predicting catchment hydrology at an 

operational level. 
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2. Materials and Methods 

2.1. Case Study and Data Sources  

The Corin catchment is located in the Namadgi National Park and is part of the Cotter river 

catchment in the Australian Capital Territory (ACT). The catchment lies about 50 km west of 

Canberra, at the northern end of the Australian Alps (35°39'25" S, 148°49'53" E), and encompasses an 

area of 148 km2 (Figure 1). The catchment is covered by native eucalypt forests and soils of the area 

are derived from highly weathered Ordovician sediments and are acidic and duplex in structure [30]. 

The underlying rock types are granite, limestone and shale, and the topography is mountainous (steep 

with rocky outcrops). Summers are characterized as warm and often hot, with dry periods of between six 

and eight weeks. In winter (July), mean daily maximum and minimum temperatures in sheltered 

locations (mid-slope) are 14 and −1 °C respectively, while in summer (January) the respective 

temperatures are 24 °C and 10 °C. Mean annual rainfall is approximately 1150 mm. Annual evaporation 

and seepage losses from the catchment are estimated to be 630 mm and stream discharge typically peaks 

between August and September and reaches a minimum between March and May [31] (Figure 2). 

 

Figure 1. Study area and location of hydrometry station and the precipitation gauge. 

Identification and documentation of fires within the Australian Capital Territory (ACT) date back to 

1730. In the past 100 years, there has been major bushfires in the catchment and surrounding areas in 

the summers of 1920, 1926, 1939, 1983 and 2003. With the exception of the 1920 fire, all have followed 

severe droughts where rainfall in the months preceding the fire was well below average [32]. Most 

recently, bushfire in January 2003 affected nearly 100% of the catchment.  

We used Normalized Difference Vegetation Index (NDVI) as a proxy for vegetation cover [33].  

Our time series data encompass a period between the latest bushfire in the catchment of study  

(January 2003) and January 2012. Daily time series of water yield and rainfall (verified for gaps and 

aggregated from hourly measurements) were provided by Actew-AGL (the utility that supplies water 

to Canberra). Water yield was measured at a gauging station upstream of the Corin reservoir, and rainfall 
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was measured at a weather station in the middle of the catchment (Figure 1). An annual hydrograph of 

the inflow to the Corin Dam and a hyetograph at the Mount Ginini weather station (closest synoptic 

station to Corin dam) are presented in Figure 2. 

 
(a) (b) 

Figure 2. Annual hydrograph at the inflow of the Corin dam provided by the Bureau of 

Meteorology of Australia (a); and hyetograph at of the Mount Ginini automatic weather 

station (b). 

Time series of MODIS NDVI version 5 derived from red (0.62–0.67 µm) and near-infrared  

(0.841–0.876 µm) reflectance data were extracted and used directly. MODIS NDVI was selected 

because: (1) it provides an estimate of vegetation ecological changes over time [34] and fire damage [35], 

and is directly related to leaf area index (LAI) [36,37]; (2) remotely sensed NDVI is available at a higher 

spatial resolution than LAI (250 m instead of 1 km); (3) there is less uncertainty associated with 

estimation of NDVI by satellite data, compared to LAI of eucalypt forests in Australia [38]. Data 

obtained from the MODIS-TERRA sensor (MOD13Q1 product version 5) has a 250 m spatial 

resolution and is a composited output over 16 days. Version-5 MODIS/Terra NDVI is validated over 

a widely distributed set of locations and time periods [37]. We downloaded scene h30v12 of the 

product, from the NASA Land Processes Distribution Active Archive Centre Data Pool. Using the 

MODIS reprojection tool (Version 4.1; USGS Earth Resources Observation and Science Center, 

Sioux Falls, SD, USA) NDVI scenes were cut to the study area and average values for the catchment 

were used. Average NDVI for the catchment was used since the catchment of study has a relatively 

homogenous forest cover in the sense that the native eucalypt forests that cover the catchment did not 

differ widely in their canopy characteristics. 

A short-term forecast (intra-month) of water yield is worthwhile information for water allocation as 

well as water stress assessments, especially since immediate bushfire impacts on water yield are 

relatively unknown. NDVI is only available every 16 days, therefore water yield and precipitation 

variables were reformed to 16-day intervals by accumulating their daily values.  
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2.2. Standardization and Goodness of Fit Criteria 

Data standardization adjusts all data so that they fall within a prescribed range and have common 

basic statistical characteristics. The result of standardization is a data space without the bias, which 

appears usually as a result of scale, and consequently all input variables are treated equally. Given the 

natural range of the dependent and independent variables being equal to or greater than 0, the most 

simple and efficient method for standardizing variables was: 

ystan
)(yMax

y=  (1)

where ystan is the amount of variable y after standardization; and Max(y) is the maximum value of y 

within the time series. Following goodness of fit criteria were used for comparing the results of 

different data driven methods: 

• Root Mean Square Error (RMSE) 

n

forobs

RMSE

n

i
ii −

=

2)(
 (2)

where obsi and fori are observed and forecasted value of the dependent variable at time step i, 

respectively; and n is the total number of time steps. 
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• Correlation (Corr) 
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where ),( forobsCov  is the covariance between observed and forecasted values; and obsσ  and estσ  are 

standard deviation of observed and estimated values, respectively. 

• Nash-Sutcliffe Efficiency (NSE) 

NSE is used to evaluate the estimative power of hydrological models [39]: 
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where obs  is the average of observed values from i = 1:n. NSE can range from −∞ to 1. NSE = 1 

corresponds to a perfect match of modeled discharge to the observed data. NSE = 0 indicates that the 

model forecasts are as accurate as the mean of the observed data, and NSE < 0 is an indication that 

observed mean is a better predictor than the model or in other words, when the residual variance is 

larger than the data variance. 
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2.3. Data-Driven Methods 

Data-driven methods that were applied in this study were: 

• Non-Linear Multivariate Regression (NLMR) 

NLMR estimates unknown coefficients of predictors based on a non-linear optimization approach in 

the following form: 
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where m is the number of samples used for calibration; k is the number of samples used for both 

calibration and validation; Qobs(i) and Qfor(i) are observed and forecasted water yields at time i; x1 to xn 

are n predictor variables; cj and bj are coefficients of predictors and cn+1 is the constant of the model. 

Here we used “Lingo optimization package” [40] to optimize the model for coefficients and constant 

values. 

• K-Nearest Neighbor (K-NN) 

The K-NN method develops a distribution function of estimated values using a nonparametric 

kernel distribution function. The concept is based on observing estimator variable values at a given 

time and searching for similar conditions in the past, within the time series. These similar conditions 

can be considered as possible solutions depending on the degree of similarity between estimator 

variables at current and past time points [18,20]. General algorithm for K-NN would be: 

(1) setting a matrix with m columns (number of predictors) and n + 1 rows (length of time series). 

(2) last row of the above-mentioned matrix is assumed as a vector of predictors at current time  

(xj,t j = 1:m). 

(3) remaining rows are assumed as a matrix of predictors at historical time series (xj,t-i j = 1:m  

i = 1:n). 

(4) vector Q is defined with n rows of independent variable values from t − n to t − 1. 

(5) using a distance function, distances between xj,t and xj,(t-i) are calculated. 

),,()( )(, jtitjj xxwfitDist −=−  (7)

where wj are weights of predictor variables at the distance function. We chose the Euclidean 

function as the distance function with equal weights to predictor variables. 

(6) distance vector (Dist) is sorted from minimum to maximum (SDist) and vector Q is assorted 

based on SDist. 
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(7) best number of neighbors (k) are specified based on a variety of methods. Here we have used 
the empirical equation nK =  in which n is the length of the time series which is used as 

historical data for calibration and validation stages [41]. 

(8) a discrete Kernel function is used to give weights to k neighbors [42]. 
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(9) forecast value at current time is calculated as: 
TQSForecast ×=  (9)

where T is the transpose operation. 

• Nonlinear Autoregressive with External Input Based Artificial Neural Networks (NARX-ANN) 

NARX-ANN is able to model nonlinear autoregressive time series and it is quite appropriate to 

identify nonlinear dependencies among dependent and estimator variables [43,44]. This model is a 

recurrent dynamic network, with feedback connections compassing several layers of the network. The 

defining equation for the NARX-ANN model is [45]: 

)()](),...,1(),(),...,1([)( tedtxtxdtytyfty +−−−−=  (10)

where y(t) is dependent time series at time t; f is a set of nonlinear functions; x is matrix of independent 

variables; e(t) is the white noise residuals; and d is number of delays. NARX-ANN was coded and run 

in “MATLAB R2013a” programming package. 

• Symbolic Regression (SR) 

SR searches the space of mathematical equations to find an equation, which appropriately fits the 

data, by changing both the type of mathematical functions as well as the value of the parameters. This 

process starts with choosing initial expressions that randomly couple mathematical building blocks. Then, 

latter equations are shaped by reincorporating previous equations and altering their sub-expressions via an 

evolutionary algorithm similar to genetic programming; and ultimately final mathematical equations 

are ranked using a ratio of accuracy and equation complexity [46]. In this study we used “Eureqa 

Formulize” software [47] to form SRs. Recently this software has been increasingly applied by 

researchers in different environmental studies as a reliable tool for analyzing SR-based issues [48–51]. 

3. Results and Discussion 

Cross-correlation (based on Pearson Correlation) with 95% confidence interval was undertaken on 

standardized time series to find the most appropriate time lags (TL) between all independent and 

dependent variables. Results shows that TL = 1 has the highest correlations in all cases with the 

exception of zero. This means for forecasting standardized water yield at time t + 1 by three methods 

of NLMR, K-NN and SR, the values of standardized precipitation, standardized NDVI and 

standardized water yield at time t should be used; however in NARX-ANN best TL would be derived 

based on a trial-error process which will be explained.  
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At the next step, data were split into three blocks of (1) calibration including 70% of data;  

(2) validation including 15% of data; and (3) verification including 15% of data. While data were 

randomly distributed into three blocks, we ensured that each block included extreme events, in 

addition to more normal values. During the calibration stage (also known as training) 70% of our total 

data is calibrated for the model parameters. The model is then tested during the validation stage with an 

unused 15% of the total data. This process is repeated until total error for the calibration/validation 

stages is minimum. Once the optimum model is selected, an independent 15% of the data set that has 

not been used in the modeling process is used to examine model’s accuracy. This is called the 

verification stage. 

As for the K-NN method, best number of neighbors was 13 based on the number of data, which 

were located in the calibration and validation blocks. The NLMR model for short-term forecasting of 

water yield was derived as following (all used variables in Equation (11) are standardized by Equation (1), 

and therefore are dimensionless): 
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Based on the recommendations of previous studies [44,52], here in the three-layer NARX-ANNs 

model, “Levenberg–Marquardt” algorithm function was used as back-propagation calibration-

validation algorithm, and “Tangent sigmoid” function was applied for the hidden layer neurons, and 

finally “Linear Transfer” function was employed in the output layer neuron. Further, a range of 1 to 5 

for number of delays as well as 1 to 20 for number of neurons in the hidden layer were examined to 

reach the best neural network’s architecture. Considering the results of the objective function of mean 

square error, the best number of neurons was found to be 10; moreover, the best number of delays for 

precipitation and NDVI (“inputDelays”) equals 1 and (“feedbackDelays”) equals 2 for the water yield. 

As for SR, five main mathematical operators, exponential and trigonometry functions were considered 

for building the mathematical blocks. Figure 3 shows the mathematical solution’s accuracy vs. its 

complexity. Here we considered the solution with a mean absolute error 0.08 and complexity of 33 as 

the optimum point on the frontier. After this point by increasing the complexity the amount of errors 

had ignorable discrepancies. The stability and maturity of final solutions after 4.7 × 107 generations 

were 0.77% and 98.6%, respectively. Ultimately based on the optimum point, the proposed 

mathematical solution can be presented as (all used variables in Equation (12) are standardized by 

Equation (1), and therefore are dimensionless): 
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where i is time step; WY is water yield; and Prec is precipitation. 

Table 1 presents a sensitivity analysis over Equation (12). Here, sensitivity means the relative 

impact that a predictor has on the target variable (streamflow). In Table 1 “%Positive” is the likelihood 

that increasing this variable will increase the target variable; “Positive Magnitude” is when increase in 

this variable lead to increase in the target variable, this is generally how big the positive impact is. 

“%Negative” is the likelihood that increasing this variable will decrease the target variable, and finally 

“Negative Magnitude” is when increase in this variable leads to decrease in the target variable and this is 

generally how big the negative impact is. According to Table 1, the model is most sensitive to NDVI 

(sensitivity = 1.31) even more than to precipitation (sensitivity = 0.08). Results show that at 31% of 
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times, NDVI will have positive impact with magnitude of 3.81, and at 55% of times, streamflow with 

time lag 1 will have positive impact on forecasting streamflow with a magnitude of 0.7. 

 

Figure 3. Mathematical solution accuracy vs. model complexity in the SR method. Y-axis 

shows mean absolute error of the forecast vs. observations for the entire data. 

Table 1. Sensitivity analysis of the optimum solution derived from SR. 

Variable Sensitivity % Positive Positive Magnitude % Negative Negative Magnitude

NDVIi-1 1.31 31% 3.81 69% 0.21 
WYi-1 0.70 55% 1.16 45% 0.14 
Precii-1 0.08 99% 0.08 0% 0 

Table 2 summarizes final results of the goodness of fit criteria for all models, at three stages of 

Calibration-Validation, Verification, and the Entire Data. NARX-ANN produced the best correlation 

coefficient (at the Calibration-Validation, 0.91) and K-NN the worst (at the entire data, 0.63). Using the 

RMSE criterion, NARX-ANN had the best performance at the Calibration-Validation stage (0.07) and 

K-NN had the worst performance at the Verification stage (0.21). As for VE, SR performed the best 

(Calibration-Validation stage, 1.09) and K-NN the worst (Verification stage, 3.57), and finally 

considering the NSE criterion, NARX-ANN showed the best performance (Verification stage, 0.80) and 

K-NN the worst performance (Verification stage, −3.54). In a pair-wise comparison between different 

methods, the ranking of performances is: (1) NARX-ANN; (2) SR; (3) NLMR; and (4) K-NN. 

Table 2. Performance statistics for the tested data-driven methods. 

Methods 
Calibration-Validation (85% of Data) Verification (15% of Data) Entire Data 

Corr RMSE VE % NSE Corr RMSE VE % NSE Corr RMSE VE % NSE 

K-NN 0.64 0.16 3.42 −0.10 0.74 0.21 3.57 −3.54 0.63 0.17 3.44 −0.33 

NLMR 0.79 0.10 1.51 0.60 0.78 0.20 1.50 0.40 0.76 0.12 1.51 0.55 

NARX-ANN 0.91 0.07 1.20 0.80 0.90 0.11 1.50 0.80 0.90 0.08 1.24 0.80 

SR 0.82 0.09 1.09 0.67 0.80 0.16 1.20 0.63 0.82 0.10 1.16 0.67 

According to Figure 4, K-NN has overestimated the low streamflows, and underestimated the  

high streamflow values while with NLMR (Figure 5) only underestimation of high streamflow values 
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is remarkable. NARX-ANN by far has forecasted a wide range of streamflows much more accurately 

in comparison with other three models (Figure 6). Finally, considering Figure 7 the forecast errors of 

low, moderate and high streamflows at SR are rationally similar, and it is hard to distinguish the 

advantages of this model in forecasting a specific range of streamflow values. For comparison 

purposes we also parameterized a conventional linear regression model of form y = a + bx1 + cx2 + dx3 

and found its performance very poor (Corr = 0.45) and the technique inappropriate compared to the  

data-driven models. 

 

Figure 4. Final results of standardized forecasts vs. standardized observations using the  

K-NN method. 

 

Figure 5. Final results of standardized forecasts vs. standardized observations using the 

NLMR method. 
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Figure 6. Final results of standardized forecasts vs. standardized observations using the 

NARX-ANN method. 

 

Figure 7. Final results of standardized forecasts vs. standardized observations using the SR method. 

An encouraging aspect of the NLMR and SR models was that they presented mathematical 

equations to be used in short-term forecasting of water yield. Of these two models, SR outperformed 

NLMR especially in extreme events. Obviously, models presented here could further be improved by 

using longer periods of continuous data in the analysis. 

In case top priority is given to forecasting extreme events, the NARX-ANN model can be improved 

by including new performance function networks [53], and the SR model may be improved by 

dividing the data into extreme and normal groups first, and then modeling each group separately, as 

proposed by Charhate et al. [54]. In this study, a 16-day interval was considered due to limited NDVI 
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data availability. In case NDVI values are available with a higher temporal resolution, a shorter time 

interval (e.g., daily) might provide a more realistic short term forecast of the stream flow, because 

flood events that occur during this time interval will not be smoothed anymore, and because 

precipitation and discharge data generally have more heterogeneity than NDVI values.  

Concluding, this study shows that in this catchment in southeast Australia, different data-driven 

models perform differently. The NARX-ANN model is superior to the rest of the techniques and 

would be a suitable tool for catchment managers and water utilities in the absence of extensive climate, 

soil and vegetation data. 

4. Conclusions 

Hydrological processes contain non-linearities that are commonly modeled with data-driven 

techniques as an alternative to conventional regression and process-based methods. Nevertheless, the 

lumped data-driven models have limitations in delivering hydrological insights. An underlying 

justification for the variability in the fit metric values in this study could be the physical processes that 

are under-presented with the current inputs. For example, hydrological processes such as snowmelt at 

higher elevations within the catchment impact the timing of the discharge and are inadequately 

presented via precipitation inputs. When limited data is available, uncertainties associated with 

hydrological data exert even larger limitations on the model (e.g., rainfall uncertainties driven by spatial 

scale or discharge uncertainties dominated by flow condition and gauging method [55]). While a 

varied mix of data-driven techniques have emerged for modeling hydrological time series, limitations 

to the mechanistic and physical rationale that can be afforded to the internal structure and behaviors of 

such models still need to be considered. 
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