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Abstract: Hydrologic Simulation Program-Fortran (HSPF) model calibration is typically 

done manually due to the lack of an automated calibration tool as well as the difficulty of 

balancing objective functions to be considered. This paper discusses the development and 

demonstration of an automated calibration tool for HSPF (HSPF-SCE). HSPF-SCE was 

developed using the open source software “R”. The tool employs the Shuffled Complex 

Evolution optimization algorithm (SCE-UA) to produce a pool of qualified calibration 

parameter sets from which the modeler chooses a single set of calibrated parameters. Six 

calibration criteria specified in the Expert System for the Calibration of HSPF (HSPEXP) 

decision support tool were combined to develop a single, composite objective function for 

HSPF-SCE. The HSPF-SCE tool was demonstrated, and automated and manually calibrated 

model performance were compared using three Virginia watersheds, where HSPF models 

had been previously prepared for bacteria total daily maximum load (TMDL) development. 

The example applications demonstrate that HSPF-SCE can be an effective tool for 

calibrating HSPF. 

Keywords: HSPF; calibration; optimization; Shuffled Complex Evolution; R; parallel 

computing 
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1. Introduction 

While some hydrologic model parameters are measurable, others are either difficult to measure or 

represent some system process in such a way that physically determining the parameter value is not 

possible. Often, those parameters that are not directly physically based are calibrated. Calibration is the 

process of adjusting selected model parameters to minimize the difference between the simulated and 

observed variables of interest [1,2]. Parameter calibration is necessary when using spatially-lumped 

hydrologic models like the Hydrological Simulation Program-FORTRAN (HSPF) [3,4]. Model 

calibration may be performed manually, or the processes can be automated using an optimization 

algorithm [5,6]. Manual calibration can be laborious and time consuming. On the other hand, an automatic 

model parameter calibration has the potential to be quicker and less labor intensive [5,7–11]. 

The HSPF model is widely used to simulate hydrological processes and water quality in order to 

better understand and address a variety of water quality issues such as total maximum daily load (TMDL) 

development. In routine HSPF applications, the model is typically manually calibrated with initial 

parameter estimates and thoughtful adjustments [4,5,12,13]. With HSPF, manual calibration assistance 

is provided by decision support software, the Expert System for the Calibration of HSPF (HSPEXP), 

which has been developed to provide guidance for parameter adjustment [1]. However, even when an 

expert system is used, the results of a manual calibration are still often dependent on the modeler’s 

experience and expertise. Thus, use of software like HSPEXP does not ensure calibration consistency 

across all users [5,8,9,14]. 

Several researchers have tried to calibrate HSPF using the Parameter Estimation (PEST) software 

tool [5,14–16]. However, the Gauss-Levenberg-Marquardt (GLM) search algorithm employed in PEST 

is not necessarily capable of locating a global optimum solution, and its performance is dependent upon 

an initial parameter set specified by the user [16,17]. Consequently, there have been few applications of 

PEST in the field of surface water modeling [5]. 

Recent studies have tried to calibrate HSPF using random, sampling-based heuristic algorithms. Iskra 

and Droste [14] found that the random multiple search method (RSM) and the Shuffled Complex 

Evolution method (SCE-UA) could find a parameter set providing better model performance statistics 

than with PEST employing the GLM algorithm. Sahoo et al. [4] calibrated the hydrologic components 

of HSPF using a generic algorithm (GA), but it has been suggested that the GA required greater 

computing resources and time for parameter calibration than SCE-UA, making running the model less 

efficient [18–22]. 

The SCE-UA algorithm developed by Duan et al. [23] has been extensively tested in many hydrologic 

modeling studies, and it is now regarded as one of the most robust and efficient algorithms for parameter 

calibration [14,18–21,24–31]. Despite this, the SCE-UA algorithm has not been widely used in HSPF 

applications presumably because there is no tool developed to link the two together. 

Parameter calibration using a sampling-based method like SCE-UA can benefit directly from the 

recent advances in computing resources and techniques. Particularly, the use of parallel computing has 

become more popular in hydrologic modeling because of its proven capability and potential [32–34]. 

Although there exists a variety of parallel computing options developed for saving computational time, 

most of them are too complicated for use in routine modeling practices. Some computing software 

provides built-in or add-in parallel computing functions that hydrologic modelers can easily adapt for 
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their own uses. Of them, “R”, is an open-source program language and computing environment that 

supports parallel computing [35].  

Previous studies examining auto-calibration for hydrologic models showed that the auto-calibration 

method did not always lead to successful calibration in terms of solution robustness and computational 

efficiency due to the limitations of the algorithm used [4,5,14,36]. In this research, we have linked the 

HSPF model with the SCE-UA algorithm in a parallel computing framework supported by R (HSPF-SCE) 

with the purpose of providing an alternative and efficient tool for automated parameter calibration of 

HSPF. The new tool/approach was used to calibrate the HSPF models developed for three watersheds in 

Virginia. Output from the manual and auto-calibrated models are compared to demonstrate the 

performance of the HSPF-SCE calibration tool/approach. This paper presents a detailed description of 

the newly developed HSPF-SCE tool and exhibits its capability with example applications. 

2. Materials and Methods 

2.1. Hydrological Simulation Program-FORTRAN (HSPF) 

The HSPF model is a process-based, continuous, spatially lumped-parameter model that is capable 

of describing the movement of water and a variety of water quality constituents on pervious and 

impervious surfaces, in soil profiles, and within streams and well-mixed reservoirs [37,38]. Hydrologic 

simulation in the model consists of three modules: impervious land (IMPLND), pervious land 

(PERLND), and reaches, i.e., streams, rivers, and reservoirs (RCHRES). The IMPLND module 

represents impervious surface areas and simulates only surface water components. The PERLND simulates 

hydrologic processes happening on pervious surface areas, including infiltration, evapotranspiration, surface 

detention, interflow, groundwater discharge to stream, and percolation to a deep aquifer. The RCHRES 

module simulates hydraulic behavior of channel flow using the kinematic wave assumption. Details 

about simulation mechanisms of the model can be found in Bicknell et al. [37]. 

2.2. Shuffled Complex Evolution Method (SCE-UA) Algorithm 

Heuristic optimization methods that adapt sampling-based, random-search approaches can be useful 

when an objective function is discontinuous and/or derivative information cannot be obtained since they 

do not require continuity and differentiability of the objective function surface [23]. Many studies have 

demonstrated that heuristic optimization methods can provide answers close to the global optimum of 

the solution space [18,20,21,24–27,29]. Of the available heuristic optimization methods, the SCE-UA 

algorithm developed by Duan et al. [23] combines the simplex direct search method with strengths of 

three evolution algorithms including controlled random search, competitive evolution, and complex 

shuffling. The SCE-UA algorithm has been widely used in hydrologic modeling because of its sampling 

efficiency, which is attributed to combining the strengths of multiple optimization algorithms [23,39]. 

In this study, the SCE-UA optimization algorithm was adapted as a calibration method for the newly 

developed tool, HSPF-SCE, because of its proven efficiency and ability to find the global optimum. 
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2.3. The R Software Package 

R is an open-source software programing language and software environment for statistical 

computing and graphics [35], which was developed and implemented using the General Public License 

(GPL) that facilitates its public access [40]. The capabilities of R are extended through user-created 

packages that develop specialized libraries and techniques [41]. R also provides useful parallel 

computing capabilities which a user can apply to intensive computational tasks [42]. Two existing 

packages in R were adapted for the development of the HSPF-SCE. The Latin Hypercube Sampling 

(LHS) package [43] was used to improve the efficiency of random sampling of the SCE-UA optimization 

algorithm, and the Snowfall package [44] was employed to increase computational efficiency of 

parameter calibration by running the HSPF model with multiple parameter sets at the same time  

in HSPF-SCE. 

2.4. The HSPF-SCE Framework 

In HSPF-SCE, the SCE-UA optimization algorithm is fully coupled with HSPF using R (Figure 1). 

HSPF-SCE transfers a pre-specified number of parameter sets sampled by the SCE-UA algorithm to 

HSPF and then reports objective function values calculated using simulated HSPF output back to the 

SCE-UA algorithm. Each parameter set in the initial population (all parameter sets) includes values for 

the parameters that are being used to calibrate HSPF. Initial calibration parameter values are selected 

from predefined, uniform distributions using a LHS method. The uniform parameter distributions are 

bounded by values provided in the US EPA HSPF guidance document Technical Note 6 [45]. For the 

parameter optimization, the population of parameter sets is partitioned into several sub-groups or 

complexes. As the calibration proceeds, each complex “evolves” independently according to the 

competitive complex evolution (CCE) algorithm [46]. The evolved complexes are combined into the 

next parameter set population. Then that population is re-partitioned, or shuffled, into new complexes 

based on the order of objective function values of each parameter set. The evolution and shuffling 

procedure iterations continue until a pre-defined stopping criterion is met. A more detailed explanation 

of evolution and shuffling procedures can be found in Duan et al. [46]. Once parameter set values are 

determined, each parameter set in a population is incorporated into HSPF by means of changing the 

corresponding parameter values in the HSPF User Control Interface (UCI) file. HSPF is then run using 

each parameter set in the population. When the model runs are completed, HSPF-SCE calculates the 

value of the objective function. Then, the calculated result is fed to the SCE-UA routine as a basis to 

search for the next parameter set. Plots and statistics for evaluating model performance are developed 

outside the model in post-process. 

In the SCE-UA algorithm, size of the population (number of parameter sets in this case) is determined 

as a function of the number of parameters being calibrated (N) and the number of complexes p as defined 

by Duan et al. [46]. As the number of complexes increases, the chance of locating parameter sets 

satisfying the HSPEXP criteria increases, while computational efficiency decreases. In this study, based on 

preliminary analysis of the relationship between the time required to locate optimum and population size, the 

number of HSPF parameters that will be calibrated was set to 10 (N = 10), and the number of complexes p 

was set to 24 (p = 24). This yielded a calibration population size of 504 (population = p × (2N + 1)).  
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Figure 1. Flow chart for HSPF-SCE. Notes: LHS*: Latin Hypercube Sampling;  

CCE**: Competitive Complex Evolution; UCI***: User Control Interface. 

The HSPF-SCE application developed here allows a user to change the criteria to stop the SCE-UA 

optimization iterations. In the application presented here, HSPF-SCE stopped searching parameters 

when the difference between the average of the lowest ten objective function values and the lowest 

objective function value returned for any given population of parameter sets was ≤1.5%. It should be 

noted that a discussion about how one might choose the most appropriate convergence criterion or the 

number of complexes for the purpose of improving the efficiency of the optimization process goes 

beyond the scope of this study.  

As mentioned earlier, HSPF-SCE provides a parallel computing option when multiple processors  

(or cores and threads) are available. In this study, a four-processor Intel(R) Core(TM) i7 CPU 

870@2.93GHz chip was used allowing for parallel computing and parameter calibration. When using 

the HSPF-SCE tool, the parameter sampling and data flow happen in R. The HSPF code is not altered 

when implementing HSPF-SCE. 

2.5. Objective Function 

When calibrating hydrologic models, the calibration objective function(s) are typically goodness-of-fit 

measures (e.g., coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE)), with each assessing 

the degree of agreement between observed and simulated variables. Objective functions and the model 

performance criterion used to evaluate model calibration should be selected considering the objectives of any 

given modeling effort and the characteristics of the candidate objective function(s). Many previous studies 

have shown that using a single objective function may lead to unrealistic calibration results [5,7,8,47]. Using 

multiple objective functions, and thus multiple measures of goodness-of-fit, may allow one to consider 

different aspects of fit between simulated and observed variables [5]. As previously discussed, HSPEXP 
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is a decision-support system that aids users who manually calibrate HSPF by offering expert advice 

about which parameters to adjust and how. HSPEXP guidance suggests the use of multiple objective 

criteria when assessing the adequacy of an HSPF hydrology calibration (Table 1). 

Table 1. HSPEXP model performance criteria for hydrologic calibration of HSPF  

(revised from Kim et al. [5]). 

Variable Description Criteria, % Error 
Total volume Error in total runoff volume for the calibration period ±10 

Fifty-percent lowest flows 
Error in the mean of the lowest 50 percent of the 
daily mean flows 

±10 

Ten-percent highest flows 
Error in the mean of the highest 10 percent of the 
daily mean flows 

±15 

Storm peaks Error in flow volumes for selected storms ±15 

Seasonal volume error 
Seasonal volume error, June-August runoff volume 
error minus December-February runoff volume error 

±10 

Summer storm volume error Error in runoff volume for selected summer storms ±15 

Kim et al. [5], using PEST, applied a single composite objective function that combined six  

sub-objective functions based on the HSPEXP calibration criteria. In this study, we adopted an objective 

function uniformly weighted with six performance measures so that multiple evaluation aspects could 

be considered simultaneously in a single objective optimization framework (Table 2). For the objective 

function formulation used in this study, the objective function value can range from 0% to 600%, with 

0% being perfect agreement between the simulated and observed data. It should be noted that the purpose 

of this study was to develop and demonstrate a reliable and efficient tool for automatic calibration 

tool/approach, not developing and evaluating the most appropriate calibration objective function. 

Table 2. Objective functions used in the HSPF-SCE tool (revised from Kim et al. [5]). 

Description Formula 

Objective function (ߠ)ܨ =෍ ௜݂(ߠ)଺
௜ୀଵ , ߠ ∈  ߆

Absolute error of daily flow  ଵ݂(ߠ) =෍หQ୭ୠୱ,୧ − Qୱ୧୫,୧(θ)ห ∙ ଵேݓ
௜ୀଵ  

Absolute error of 50%  
lowest flows exceedance 

ଶ݂(ߠ) = หܺܧ௢௕௦,ହ଴% ௟௢௪௘௦௧ ௙௟௢௪− %௦௜௠,ହ଴ܺܧ ௟௢௪௘௦௧	௙௟௢௪(ߠ)ห ∙  ଶݓ

Absolute error of 10%  
highest flows exceedance 

ଷ݂(ߠ) = หܺܧ௢௕௦,ଵ଴% ௛௜௚௛௘௦௧ ௙௟௢௪− %௦௜௠,ଵ଴ܺܧ ௛௜௚௛௘௦௧	௙௟௢௪(ߠ)ห ∙  ଷݓ

Absolute error of storm peak ସ݂(ߠ) =෍หP୭ୠୱ,୧ − Pୱ୧୫,୧(θ)ห ∙ ସேೞ೟ݓ
௜ୀଵ  

Absolute error of seasonal volume ହ݂(ߠ) =෍ேೞೞ௝ୀଵ ቌቮ෍Q୭ୠୱ,୧௡ೕ
௜ୀଵ −෍Qୱ୧୫,୧(ߠ)௡ೕ

௜ୀଵ ቮ ∙  ହቍݓ

Absolute error of storm volume ଺݂(ߠ) =෍ேೞ೟௝ୀଵ ቌቮ෍Q୭ୠୱ,୧௠ೕ
௜ୀଵ −෍Qୱ୧୫,୧(ߠ)௠ೕ

௜ୀଵ ቮ ∙  ଺ቍݓ
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In Table 2, ௜݂(ߠ) is the sub-objective function, θ is the parameter set, Θ is the feasible parameter 

range, Q is daily flow, EX is the fraction of time that stream flow equals or exceeds a specific flow rate, ௦ܰ௧ is the number of selected storm events, P is peak flow, ௦ܰ௦ is the number of summer and winter 
months, ௝݊ is the number of time steps in each ݆ month, ௝݉ is the number of time steps in each ݆ storm 

event, and ݓ is a weighting factor.  

2.6. Study Watersheds 

Considering the availability of existing HSPF models that had been manually calibrated for bacteria 

TMDL development [48–50], three watersheds located in the Ridge and Valley Physiographic Province 

of Virginia were selected for this study (Figure 2). The Piney River watershed drains 123 km2 in Amherst 

County and Nelson County, and its predominant land cover is forest (79%), followed by pasture (10%), 

cropland (6%), and residential (4%). A National Weather Service Cooperative Weather station is located 

at the Montebello Fish Hatchery (COOP ID: 445690) within the watershed, and daily streamflow 

discharge has been measured at the watershed outlet (gauging station ID: 02027500) by USGS. Model 

calibration and validation periods were set to 1 January 1991 to 31 December 1995 and 1 January 1996 

to 31 December 2000, in which 21 and 16 storm events were identified, respectively. 

 

Figure 2. Locations of the study watersheds. 

The Reed Creek watershed is 703.5 km2 in size and located in Wythe County of Virginia. The 

watershed mainly consists of forest (52%) and pasture/hay land (38%) with residential (8%) and 

cropland (2%). A National Climatic Data Center’s (NCDC) Cooperative Weather station (Wytheville, 

COOP ID: 449301) is located 15 miles due west of the Reed Creek watershed outlet, where a USGS 

gauging station (ID: 03167000) is found. The hydrologic parameters of the HSPF model developed for 

the Reed Creek watershed were calibrated using streamflow measurements made between 1991 and 
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1998, and then the calibrated model was validated between 2001 and 2005. In the periods, 29 and 31 

storm events were selected for the calibration and validation, respectively. 

The Pigg River watershed, which is mainly located in Franklin County, Virginia, drains 186 km2 

directly into Roanoke River. The dominant land use in the watershed is forest at 72%, followed by 

pasture (23%), cropland (3%) and residential (2%). The watershed has a NCDC Cooperative Weather 

Station (Rocky Mount, COOP ID: 447338) and a USGS gauging station (ID: 02058400) at its outlet. 

The hydrologic simulation of HSPF was calibrated and validated using streamflow measurements made 

at the USGS station between 1 September 1989 and 31 December 1995 and between 1 June 1984 and  

31 August 1989, in which 29 and 23 storm events were identified, respectively. 

2.7. Selection of Calibration Parameters 

HSPF represents hydrologic and hydraulic features of a watershed using fixed and process-related 

parameters [51]. Fixed parameters represent the hydraulic features of the drainage network and physical 

properties of the drainage basin, such as length, slope, width, depth and roughness of a watershed and 

areas covered by different soil types, land covers, and slopes. Process-related parameters are used to 

describe hillslope processes including rainfall interception, infiltration, runoff generation and routing, 

soil moisture storage, groundwater discharge into stream, and evapotranspiration [37,51]. 

Based on the HSPF model manual [45], sensitivity analysis [52], and the authors’ professional 

experience, nine parameters were selected for calibration (Table 3). The value for one of the nine 

parameters, UZSN, was allowed to vary between the winter season and non-winter season. Applying 

different values of UZSN for winter and non-winter periods increased the number of calibration 

parameters (N) to ten. The same value for each calibration parameter was used for all PERLNDs with 

the exception of INFILT. Since INFILT varied by PERLND, INFILT was changed by a multiplier which 

retains differences between INFILT values. 

Table 3. Calibration parameters for hydrologic simulation of HSPF and their ranges [45]. 

Parameter Definition Typical Range 
Possible 
Range 

LZSN Lower zone nominal storage, mm 76.2–203.2 50.8–381 

UZSN * Upper zone nominal storage, mm 2.54–25.4 1.27–50.8 

INFILT Index to infiltration capacity, mm/h 0.25–6.35 0.025–12.7 

BASETP Fraction of potential ET that can be sought from base flow 0–0.05 0–0.2 

AGWETP 
Fraction of remaining potential ET that can be  

satisfied from active groundwater storage 
0–0.05 0–0.2 

INTFW Interflow inflow parameter 1.0–3.0 1.0–10.0 

IRC Interflow recession parameter, per day 0.5–0.7 0.3–0.85 

AGWRC Groundwater recession parameter, per day 0.92–0.99 0.85–0.999 

DEEPFR 
Fraction of groundwater inflow that  

goes to inactive groundwater 
0–0.2 0–0.5 

Note: * Value varied between winter season and non-winter season. 

Possible ranges of parameter values found in the US EPA HSPF guidance document Technical  

Note 6 [45] were used to define the parameter space. For each of the three watershed models used here, 
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the parameters not selected for calibration were fixed and left unchanged from the values that were used 

in the manually calibrated TMDL models.  

2.8. Model Performance Evaluation 

There is no firm consensus when it comes to acceptable hydrologic model performance measures; there 

is no one statistic that can be used to assess all aspects of model performance [38]. Thus, it is often 

recommended that one use multiple performance statistics in conjunction with graphical/visual 

assessments and other qualitative comparisons rather than relying on a single quantitative metric [38,53]. 

Having said that, most decision makers want definitive calibration targets or tolerance ranges [38]. 

Several studies have proposed general target ranges for various metrics to evaluate model performance. 

Donigian et al. [54] provided HSPF model users with general guidance on model evaluation statistics, 

and Duda et al. [38] noted that the tolerance range of percent error should be considered so that the 

modeler and model-results consumer may make a more informed assessment of the model’s performance. 

Moriasi et al. [53] suggested using performance statistics like NSE, percent bias (PBIAS) and  

RMSE-observations standard deviation ratio (RSR) and provided model evaluation guidelines for these 

measures (Table 4). A brief description of each Moriasi-suggested measure is provided below. 

Table 4. General guidance for performance assessment of hydrologic modeling. 

Statistics 
Statistical 

Period 
Very Good Good Satisfactory (Fair) 

Unsatisfactory 

(Poor) 
Ref. 

R2 * Daily 0.80 < R2 ≤ 1 0.70 < R2 ≤ 0.80 0.60 < R2 ≤ 0.70 R2 ≤ 0.60 [38] 

R2 Monthly 0.86 < R2 ≤ 1 0.75 < R2 ≤ 0.86 0.65 < R2 ≤ 0.75 R2 ≤ 0.65 [38] 

NSE Monthly 0.75 < NSE ≤ 1.00 0.65 < NSE ≤ 0.75 0.50 < NSE ≤ 0.65 NSE ≤ 0.50 [53] 

PBIAS Monthly PBIAS < ±10 ±10 ≤ PBIAS < ±15 ±15≤ PBIAS< ±25 PBIAS ≥ ±25 [53] 

RSR Monthly 0.00 ≤ RSR ≤ 0.50 0.50 < RSR ≤ 0.60 0.60< RSR ≤ 0.70 RSR > 0.70 [53] 

Note: * Performance criteria ranges estimated from Figure 4 in Duda et al. [38]. 

R2 describes the degree of collinearity between simulated and measured flow (Nagelkerke, 1991), 

ranging from 0 to 1, and is given by  

ܴଶ = ൭ ∑ (Q୭ୠୱ,୧ − Qഥ୭ୠୱ୒୧ୀଵ )((Qୱ୧୫,୧ − Qഥୱ୧୫ )ൣ∑ (Q୭ୠୱ,୧ − Qഥ୭ୠୱ୒୧ୀଵ )ଶ൧଴.ହൣ∑ (Qୱ୧୫,୧ − Qഥୱ୧୫୒୧ୀଵ )ଶ൧଴.ହ൱ଶ	 (1)

where N is the total number of flow data; Q௢௕௦ is observed flow; Q௦௜௠ is simulated flow; and the over 

bar denotes the mean for the entire evaluation time period. R2 of 1 means a perfect linear relationship 

between two variables, while an R2 of zero represents no linear relationship. 

NSE is a normalized value that assesses the relative magnitude of the residual variance, ranging from 

minus infinity to 1 [55]. NSE values greater than zero imply that the model predictions are more accurate 

than the average of the observed data, and a NSE = 1 indicates the model predictions completely match 

observed data. NSE is one of the most widely used statistics for assessing agreement between two 

variables in hydrologic modeling [53], and its use was recommended by ASCE [56] and Legates and 

McCabe [57]. NSE is defined as  
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ܧܵܰ = 1 − ∑ (Q୭ୠୱ,୧ − Qୱ୧୫,୧୒୧ୀଵ )ଶ∑ (Q୭ୠୱ,୧ − Qഥ୭ୠୱ୒୧ୀଵ )ଶ  (2)

PBIAS represents the overall agreement between two variables [58]. A PBIAS of zero means there is 

no overall bias in the simulated output of interest compared to the observed data. Positive and negative 

PBIAS values indicate over-estimation and under-estimation bias of the model, respectively [58]. PBIAS 

expressed as a percentage is given by ܲܵܣܫܤ = ∑ (Qୱ୧୫,୧ − Q୭ୠୱ,୧୒୧ୀଵ ) × 100∑ (Q୭ୠୱ,୧୒୧ୀଵ )  (3)

Root mean square error (RMSE) is an absolute error measure commonly used in hydrologic modeling. 

Chu and Shirmohammadi [59] and Singh et al. [60] introduced RSR to facilitate relative comparison 

between RMSE values calculated for estimations in different units and scales by normalizing RMSE 

with the standard deviation of the observed data. RSR can vary from 0 to a large positive value, and a 

lower RSR value indicates better model performance [53]. RSR is defined as 

ܴܴܵ = RMSESTDEV୭ୠୱ = 	ට∑ (Q୭ୠୱ,୧ − Qୱ୧୫,୧୒୧ୀଵ )ଶට∑ (Q୭ୠୱ,୧ − Qഥ୭ୠୱ୒୧ୀଵ )ଶ  (4)

In this study, calibrated HSPF hydrologic simulations were evaluated with statistical measures of R2, 

NSE, PBIAS, and RSR as wells as visual comparison of observed and simulated flow time series and 

flow duration curves. 

3. Results and Discussion 

3.1. Assessing Acceptable Estimated Parameter Sets 

In this study, three HSPF hydrologic models were calibrated using the HSPF-SCE auto calibration 

tool. The HSPF-SCE tool was allowed to calibrate nine parameters, with one of those allowed to vary 

seasonally for a total of ten calibration parameters. In the calibration processes, the SCE-UA algorithm 

identified multiple parameter sets that satisfied the six HSPEXP model performance criteria while 

minimizing objective function values. For example, for the Reed Creek watershed, 252 parameter sets 

out of 504 possible parameter sets were found to meet all the six HSPXEP criteria. Figure 3 shows the 

Reed Creek distribution of the objective function values on the left y-axis and the number of HSPEXP 

criteria satisfied by the parameter sets in the last iteration of the optimization process on the right y-axis. 

Parameter sets began meeting all six HSPEXP criteria once the value of the objective function decreased 

to approximately 50%. The minimum objective function value was 11.6%. For the Piney River and Pigg 

River watersheds, 159 and 141 parameter sets satisfied all six HSPEXP criteria, respectively. The parameter 

sets that met all six HSPEXP calibration criteria are referred to herein as “qualified” parameter sets. 
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Figure 3. Objective function values and the number of HSPEXP criteria met by the final 

parameter set population using the SCE-UA algorithm of HSPF-SCE (Reed Creek watershed). 

Performance statistics produced by the qualified parameter sets are shown in Figure 4. For the Reed 

Creek watershed, hydrologic simulation using the 252 qualified parameter sets produced statistics in the 

“very good” ranges for monthly PBIAS, monthly NSE, and monthly RSR with some “good” measures 

for monthly R2 (Table 4). The 159 qualified parameter sets for the Piney River watershed were in the 

ranges of between “good” and “fair” for monthly NSE and monthly RSR, “very good” for monthly 

PBIAS, but monthly R2 values were in between “fair” and “poor”. On the other hand, the 141 qualified 

parameter for the Pigg River watershed yielded relatively unsatisfactory performance statistics, and 

values of monthly NSE, monthly RSR, monthly R2 and daily R2 were classified as “poor”. Karst 

topography including sink holes and springs that frequently appear in the Ridge and Valley 

physiographic region of Virginia [61] could be one possible reason for the poor model performance in 

the Pigg River watershed. HSPF has limited groundwater simulation capabilities, and representing karst 

hydrology using HSPF is challenging. 

Once multiple parameter sets that met all the HSPEXP criteria were identified, a single parameter set 

expected to best represent the hydrologic processes of a study watershed was selected from the pool of 

qualified parameter sets. This selection was based on model performance statistics, visual comparisons 

of various model output graphics (e.g., Figure 5), and best professional judgment. For example, for the 

Reed Creek watershed, 160 parameter sets out of 252 were qualified, meaning they satisfied all six 

HSPEXP criteria for both the calibration and validation period. The 160 qualified parameter sets were 

then classified into groups based on five performance statistics as shown in Tables 5 and 6. Parameter 

sets belonging to the same group were regarded as equal in terms of model performance. In addition to 

the comparison of performance statistics presented in Tables 5 and 6, the qualified parameter sets 

classified into Group 1 were further assessed by visually comparing hydrographs and flow duration curve 

plots simulated using those Group 1 parameter sets.  
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Figure 4. Qualified parameter set model performance plots. Data generated by running 

HSPF with each qualified parameter set, then comparing observed and simulated model 

output using four model performance measures (a) Monthly PBIAS and Monthly NSE; and 

(b) Monthly R2 and Monthly RSR. The square, triangle, and diamond correspond to the 

parameter set selected by the authors for subsequent HSPF simulations and model 

performance evaluation.  



Water 2015, 7 515 

 

 

 

 

 

Figure 5. Comparison of the observed and simulated daily hydrographs with parameter set 

No. 40 (a,c) and No. 179 (b,d) for the Reed Creek watershed; (a,b) are daily log-scale 

hydrographs; and (c,d) are flow duration curves of daily flow. 
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Table 5. Classification of the parameter sets identified by HSPF-SCE in terms of model 

performance statistics (for the Reed Creek watershed). 

Group 
Parameter 

Set ID 
Daily R2 Monthly R2 Monthly RSR Monthly PBIAS Monthly NSE 

Group 1 

35 0.608 

Fair 

0.873 

Very 

good 

0.408 

Very 

good 

−4.130 

Very 

good 

0.834 

Very 

good 

40 * 0.632 0.908 0.435 −6.626 0.811 

95 0.605 0.866 0.401 −4.857 0.839 

98 0.601 0.862 0.444 −6.180 0.803 

142 0.606 0.870 0.361 −3.277 0.870 

171 0.626 0.886 0.477 −4.539 0.772 

179 0.610 0.864 0.345 −3.826 0.881 

196 0.615 0.872 0.414 −5.071 0.828 

256 0.611 0.869 0.432 −4.841 0.814 

278 0.609 0.866 0.386 −4.393 0.851 

Group 2 

192 0.622 

Fair 

0.885 
Very 

good 

0.512 

Good 

−6.954 
Very 

good 

0.737 

Good 221 0.603 0.871 0.534 −7.817 0.715 

242 0.605 0.872 0.502 −3.543 0.748 

Group 3 157 0.601 Fair 0.841 Good 0.549 Good −5.498 
Very 

good 
0.699 Good 

Group 4 

216 0.593 

Poor 

0.868 
Very 

good 

0.484 
Very 

good 

−7.103 
Very 

good 

0.765 
Very 

good 
204 0.592 0.879 0.474 −4.970 0.776 

212 0.598 0.870 0.450 −5.845 0.798 

Note: * A parameter set selected as the most representative at the final selection. 

Table 6. The HSPEXP criteria values of Groups 1 to 4 (for the Reed Creek watershed). 

Group 
Parameter 

set ID 

Total 

Volume 

(±10%) 

50% Lowest 

Flows (±10%)

10% Highest 

Flows (±15%) 

Storm 

Peaks 

(±15%) 

Seasonal 

Volume (±10%) 

Seasonal Storm 

Volume 

(±15%) 

Group 1 

35 −4.77 −6.15 −2.83 2.13 1.44 −1.60 

40 * −4.68 −0.52 −0.70 6.60 6.66 −0.26 

95 −3.97 −7.24 −1.41 5.90 3.49 −1.26 

98 −5.40 −3.49 −4.64 0.84 5.68 −3.23 

142 −6.32 −5.45 −2.91 5.17 3.64 −2.44 

171 −4.07 −9.80 −1.90 2.47 8.08 −0.72 

179 −4.99 −5.09 −5.80 1.49 5.30 −4.55 

196 −4.38 −5.77 −2.76 3.63 9.44 −2.02 

256 −6.61 −9.81 −5.09 3.23 0.85 −4.23 

278 −5.62 −9.65 −3.33 3.47 6.48 −2.73 

Group 2 

192 −3.93 −6.52 −4.83 3.75 4.17 −4.69 

221 −4.94 −1.88 −2.69 6.03 9.71 −3.30 

242 −5.65 −2.48 −4.89 4.17 7.47 −4.67 

Group 3 157 −2.27 −8.62 1.46 7.00 −3.53 3.50 

Group 4 

216 −5.53 1.83 0.66 9.43 9.78 −1.21 

204 −3.92 −2.08 2.83 8.84 8.61 1.87 

212 −5.63 −8.08 0.53 9.59 4.45 −0.12 

Note: * A parameter set selected as the most representative at the final selection. 
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To illustrate the graphical/visual model performance evaluation, the daily flow time-series and flow 

duration curve simulated using two of the qualified parameter sets (i.e., No. 40 and No. 179 in Tables 5 

and 6) are plotted in Figure 5. Although parameter set No. 179 provided better monthly RSR, PBIAS, 

and NSE than did No. 40 (Table 5), the graphical comparison (Figure 5) clearly shows parameter set  

No. 40 yielded a better match to the observed flow. Thus, parameter set No. 40 was selected as the final 

parameter set to simulate the hydrology for the Reed Creek watershed. The same parameter selection 

process was applied to the Pigg and Piney River watersheds. 

3.2. Comparing Automated and Manual Calibration Parameter Sets 

Manually calibrated parameter values were compared with the selected qualified parameter set 

identified by HSPF-SCE. Table 7 presents the comparison for all three watersheds, while Figure 6 

illustrates those comparisons graphically for the Reed Creek watershed. The manual and automated 

approaches provided quite different ranges for some parameters: LZSN, UZSN, INFILT, BASETP, and 

AGWETP. Figure 6 shows box plots for the automated calibrated parameters for the Reed Creek model 

qualified parameter sets. In Figure 6, the interquartile ranges (IQR) of selected parameters (INFILT, 

AGWRC, DEEPFR, BASETP, AGWETP, IRC, INTFW, and UZSN–winter season) do not include the 

manually calibrated values implying that manual calibration is likely to fall in a local optimum in the 

parameter space. This finding does not agree with Kim et al. [5], who found general agreement among 

manually calibrated and PEST calibrated parameter values. The discrepancy between this study and  

Kim et al. [5] might be due to the use of different automated optimization algorithms (SCE-UA vs. 

PEST) and subjectivity in selecting a final parameter set from the pool of qualified parameter sets.  

Table 7. Comparison of parameter values calibrated by HSPF-SCE and manually. 

Parameter 
Piney River Watershed Pigg River Watershed Reed Creek Watershed 

HSPF-SCE Manual HSPF-SCE Manual HSPF-SCE Manual 

LZSN 170.993 165.100 261.493 228.600 58.115 177.800 

UZSN 
31.496 *,  

26.416 ** 
24.130–34.290

20.828 *, 

27.940 ** 
8.890–25.400 

31.750 *, 

29.210 ** 

5.080 *,  

25.400 ** 

INFILT 0.432–3.810 0.229–1.981 1.524–3.912 2.438–6.223 0.711–4.902 0.508–3.505 

BASETP 0.072 0.000 0.091 0.150 0.106 0.050–0.060 

AGWETP 0.007 0.000 0.022 0.100 0.058 0.010 

INTFW 1.999 3.000 1.621 1.000 2.305 2.000 

IRC 0.598 0.810 0.544 0.300 0.698 0.700 

AGWRC 0.959 0.960, 0.965 0.994 0.990 0.992 0.990 

DEEPFR 0.008 0.010 0.165 0.100 0.033 0.050 

Notes: * For Winter (December through February); ** For Spring to Fall (March through November). 
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Figure 6. Comparison of parameter values calibrated by the HSPF-SCE and manually 

calibrated parameter values for the Reed Creek watershed (UZSN_W is for winter season 

and UZSN_N is for non-winter season). 

3.3. Comparison of Model Performance between Automatic and Manual Calibration 

Hydrographs simulated with the selected qualified parameter sets were evaluated in terms of the six 

HSPEXP criteria. As seen in Table 8, both manually and HSPF-SCE calibrated parameters produced 

model output that meet all the criteria. The HSPF-SCE calibrated parameter set consistently  

provided lower bias in simulation of total volume compared to the manually calibrated parameters. 

Goodness-of-fit measures for the selected parameter sets are presented in Table 9. In general, the selected 

parameter values calibrated using HSPF-SCE provided performance statistics better than or equivalent 

to those calibrated manually. The measures of the Piney River watershed indicated “fair” to “very 

good” in the calibration period and “good” to “very good” in the validation period for both calibration 

methods. For the Reed Creek watershed, relatively great differences were found in the performance 

statistics compared to the other watersheds. HSPF-SCE provided statistics in the “very good” range, 

while those of the manual method were in “fair” to “good” in the both the calibration and validation 

periods. The selected parameter set for the Pigg River watershed gave “unsatisfactory” modeling 

results in terms of R2, RSR and NSE in the calibration period. In all the cases, PBIAS values fell in 

the “very good” range.  

Piney River observed and simulated daily and monthly flow and flow exceedance curves are 

compared in Figures 7–9. Overall, flows simulated using the HSPF-SCE calibrated parameters are 

similar to those simulated using the manual calibration method, especially for baseflow and high peaks 

(Figure 7). In the Pigg River watershed, overestimation and underestimation of stream flow are found in 

1992 of the calibration period and the first year of the validation period, respectively. The HSPF-SCE 

calibrated parameter values resulted in better simulation results under the low-flow conditions of 1986 

and 1991 than the manually calibrated parameters. In general, the HSPF-SCE calibrated parameters 
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provided better agreement with the observed flow than did the manually calibrated parameters  

(Figure 8). In the Reed Creek watershed, the simulated and observed flow hydrographs showed better 

agreement in the calibration period than the validation period (Figure 9). The relative difference of the 

model performance for the calibration and validation periods is reflected in the statistics presented  

in Table 9. 

Table 8. Comparison of model performance achieved by the calibrated parameters in terms 

of the six HSPEXP criteria. 

Watershed 
Calibration 

Method 
Periods 

Total 

Volume 

(±10%) 

50% 

Lowest 

Flows 

(±10%) 

10% 

Highest 

Flows 

(±15%) 

Storm 

Peaks 

(±15%) 

Seasonal 

Volume 

(±10%) 

Seasonal 

Storm 

Volume 

(±15%) 

Piney 

River 

HSPF-SCE 
Calibration −0.3 6.9 4.0 2.6 1.1 13.2 

Validation −8.5 −0.5 −6.2 −7.0 −8.6 14. 8 

Manual 
Calibration 0.7 5.9 5.9 6.5 −0.5 10.5 

Validation −7.8 −0.5 −5.3 −5.8 −9.2 12.2 

Pigg 

River 

HSPF-SCE 
Calibration 2.4 −4.3 9.0 −2.7 3.7 14.6 

Validation 0.9 −7.3 3.9 −13.5 9.0 2.6 

Manual 
Calibration 7.8 −3.3 13.2 −0.3 1.5 14.4 

Validation 7.1 2.6 2.4 −10.4 2.8 −2.0 

Reed 

Creek 

HSPF-SCE 
Calibration −4.7 −0.5 −0.7 6.6 6.7 13.7 

Validation −6.8 1.1 −1.8 −14.3 −1.0 −6.4 

Manual 
Calibration −5.9 8.2 −4.0 6.5 5.0 12.4 

Validation −6.8 3.9 −3.5 −6.9 6.9 −6.8 

Table 9. Comparison of the model performance achieved by the calibrated parameters in 

terms of common goodness-of-fit measures. 

Watershed 
Calibration  

Method 
Temporal Scale 

Calibration Validation 

R2 RSR PBIAS NSE R2 RSR PBIAS NSE 

Piney 

River 

HSPF-SCE 
Daily 0.66 0.97 −0.29 0.05 0.79 0.47 −8.52 0.78 

Monthly 0.69 0.59 −0.37 0.66 0.82 0.44 −8.50 0.81 

Manual 
Daily 0.29 1.02 0.58 −0.03 0.79 0.48 −7.81 0.77 

Monthly 0.68 0.60 0.40 0.63 0.82 0.45 −7.79 0.80 

Pigg 

River 

HSPF-SCE 
Daily 0.35 0.88 2.37 0.22 0.55 0.67 0.94 0.55 

Monthly 0.64 0.73 2.26 0.47 0.84 0.42 0.76 0.83 

Manual 
Daily 0.37 0.90 8.01 0.19 0.57 0.66 7.22 0.57 

Monthly 0.65 0.80 8.00 0.36 0.85 0.41 7.07 0.83 

Reed Creek 

HSPF-SCE 
Daily 0.63 0.67 −4.68 0.56 0.65 0.61 −6.79 0.63 

Monthly 0.91 0.43 −6.63 0.81 0.78 0.48 −6.86 0.77 

Manual 
Daily 0.51 0.79 −5.89 0.37 0.57 0.67 −6.79 0.55 

Monthly 0.70 0.56 −6.27 0.69 0.59 0.65 −7.03 0.57 
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Figure 7. Comparison of the observed and simulated daily and monthly hydrographs with 

the selected parameter set for the Piney River watershed. (a,b) daily hydrographs;  

(c,d) monthly hydrographs; and (e,f) flow duration curves of daily flow. 
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Figure 8. Comparison of the observed and simulated daily and monthly hydrographs with 

the selected parameter set for the Pigg River watershed. (a,b) daily hydrographs;  

(c,d) monthly hydrographs; and (e,f) flow duration curves of daily flow. 
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Figure 9. Comparison of the observed and simulated daily and monthly hydrographs with 

the selected parameter set for the Reed Creek watershed. (a,b) daily hydrographs;  

(c,d) monthly hydrographs; and (e,f) flow duration curves of daily flow. 
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The time required to perform the calibration for the study watersheds was compared between the 

automated and manual calibration methods (Table 10). The computational time required by HSPF-SCE 

employing between one and four processors was documented for the Pigg River watershed. Parallel 

computing using two and four processors was 47% and 66% faster than using a single processor, 

respectively, which indicates that parallel processing is indeed more efficient. Comparing the time 

required for the automated and manual calibration, for the Pigg River watershed, manual calibration took 

3.8 times as many hours when compared to the parallel processing time requirement. For the Piney and 

Reed Creek watersheds, manual calibration required 4.3 and 1.5 times longer than the automated 

calibration, respectively. The numbers of model runs required by HSPF-SCE and the manual method 

were relatively small for the Pigg River watershed and larger for the Reed Creek watershed, implying 

that parameter calibration was more difficult for the Reed Creek watershed than the Pigg River watershed. 

The manual calibration time spent was estimated based on data collected during the respective TMDL 

development projects. All calibrations were performed on an Intel 2.93 GHz quad core machine with 4 GB 

of RAM on Windows 8 in a 64-bit environment. The simulation time estimates shown in Table 10 for 

the HSPF-SCE account for computational time only. As presented here, there is an additional step that 

must be completed after HSPF-SCE has identified the pool of qualified parameter sets; this is the 

graphical comparison that must be performed by the modeler to select the final parameter set from the 

qualified parameter sets. The authors estimate that for each of the study watersheds presented here, this 

process of selecting the final parameter set from the qualified parameter sets took about one day (8 h). 

Table 10. Comparison of calibration time spent between automated and manual method.  

Calibration 

Method 
Watershed 

Number of 

Processor 

Total Simulation 

Time (h) 

Total Number of 

Model Runs  

Time Required to  

Complete Calibration (h)  

HSPF-SCE 

Pigg River 

1 25.12 19,656 33.12 

2 13.21 19,656 21.21 

4 8.51 19,656 16.51 

Piney River 4 16.88 20,664 24.88 

Reed Creek 4 62.37 38,304 70.37 

Manual 

Pigg River 

1 

62.72 135 62.72 

Piney River 107.07 280 107.07 

Reed Creek 106.40 310 106.40 

4. Summary and Conclusions 

An automated calibration tool for HSPF was developed, HSPF-SCE, and its capability/applicability was 

examined with existing HSPF models developed for three Virginia watersheds. Utilizing the R software 

environment, the new tool links the HSPF model to the SCE-UA optimization algorithm without any 

modification of the HSPF model. The R software environment also allows HSPF-SCE to utilize parallel 

computing resources, making the tool computationally efficient. HSPF models that had been previously 

assembled for bacteria TMDL development purposes in three watersheds in Virginia were calibrated using 

HSPF-SCE. Model performance for the auto-calibrated and manually-calibrated models was compared.  

HSPF-SCE calibrated parameters outperformed the manually calibrated parameters in terms of model 

performance statistics and in terms of how long it took to calibrate the model (HSPF-SCE was quicker). 

HSPF-SCE identified multiple qualified hydrologic parameter sets satisfying all six HSPEXP criteria, 
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suggesting HSPF-SCE can be an effective tool for hydrologic calibration of HSPF. Manually calibrated 

parameter values often fell outside of the IQRs developed using the qualified parameter set values, 

indicating the manual calibration method may fall in a local optimum in the parameter calibration space. 

It was also demonstrated that satisfying the HSPEXP criteria does not necessarily imply good model 

performance in terms of commonly used statistics such as NSE, R2, RSR, and PBIAS.  
The applicability of the HSPF-SCE tool to efficiently and effectively calibrate the HSPF model  

was successfully demonstrated in this study. However, potential improvements remain. It is worth 
mentioning that since the tool itself could not recognize flaws in the HSPF model setup, e.g., erroneous 
FTABLEs, the model to be calibrated needs to be verified before using the HSPF-SCE tool to prevent 
“best fit” but improper modeling results. It should also be noted that selection of the most representative 
(final) parameter set from among the qualified ones relies on modeler experience and expertise. In 
addition, the optimization algorithm SCE-UA used in this study was developed for aggregated single 
objective function optimization, and there are times when multiple objective function aspects may need 
to be considered in hydrologic model assessment. For example, calibrating a model for bacteria TMDL 
development in Virginia requires a multi-objective optimization algorithm and framework. Although the 
aggregated single object function successfully identified multiple qualified parameter sets in the 
calibration, it could not provide the Pareto optimal surface, thus trade-offs between the sub-objective 
functions could not be examined. The continued development and testing of multi-objective function 
calibration for HSPF presents an interesting next step to study. 
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