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Abstract: Faulty field sensors cause unreliability in the observed data that needed to calibrate and
assess hydrology models. However, it is illogical to ignore abnormal or missing values if there are
limited data available. This study addressed this problem by applying data imputation to replace
incorrect values and recover missing streamflow information in the dataset of the Samho gauging
station at Taehwa River (TR), Korea from 2004 to 2006. Soil and Water Assessment Tool (SWAT)
and two machine learning techniques, Artificial Neural Network (ANN) and Self Organizing Map
(SOM), were employed to estimate streamflow using reasonable flow datasets of Samho station from
2004 to 2009. The machine learning models were generally better at capturing high flows, while
SWAT was better at simulating low flows.

Keywords: data imputation; streamflow; soil and water assessment tool (SWAT); artificial neural
network (ANN); self organizing map (SOM)

1. Introduction

A stream-gaging network in a watershed provides the necessary data for withdrawal uses,
hydropower production, flood forecast and risk assessment, and hydrological and water quality
modeling [1,2]. In addition, it is essential to have a better understanding on the spatiotemporal
variations of water resources and to create effective management schemes for water resources [3].
However, streamflow records suffer from missing observations, mostly resulting from unexpected
causes including records loss, sensor problems, or disruption of the data collection [2]. In the United
States, Wallis et al. [4] found that at least 5% of streamflow records were missing from 1009 United
States Geological Survey stream-gauges for the period from 1948 to 1988 [4]. These data would result
in an incorrect response of hydrological models, but it is illogical to ignore abnormal or missing values
if there is limited data available; substantial uncertainty in hydrologic and water quality modeling can
be driven by these missing records.

Various data imputation methods (i.e., statistical- or physical-based methods) have been
suggested to resolve missing observations [5–8]. Traditional statistical methods range from
simple (e.g., listwise deletions or pairwise deletions) to advanced techniques (e.g., moving
average and regression) [2]. Adopting an adequate statistical method depends on the number
of missing observations, seasonal characteristics of missing observations, and available data from
neighboring stations [5,9–11]. One drawback of statistical methods is the assumption of linearity
between predictors and streamflow [10], resulting in a simplification of streamflow variation and
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underestimation of uncertainty. In addition, Adeloye [12] reported that regression methods could
only be applicable when all predictors exist.

A physical-based model (e.g., the hydrological model) can also recover missing records when
calibrated with all available data [11]. Hydrological models, however, are not only difficult to
construct, but also have a site-specific limitation. Essential data for the calibration of hydrological
models may be inaccessible, resulting in relative inaccuracies when calibration parameters are
determined without the application of specific data from a target station [13].

Therefore, more complex nonlinear models such as artificial neural networks (ANNs) have
been applied for better estimation in recovering streamflow [14–16]. Previous studies [9,17,18] have
reported as well that the self-organizing map (SOM), an unsupervised ANN, showed satisfactory
imputation results. These nonlinear models have demonstrated their performances by showing better
imputation results than the traditional statistical methods [19].

For the purpose of streamflow imputation, comparison among the Soil and Water Assessment
Tool (SWAT), Artificial Neural Network (ANN), and Self Organizing Map (SOM) has not been made
yet. The objectives of this study were (1) to recover missing observations from the Taehwa River (TR),
Korea using the Soil Water Assessment Tool model, ANN, and SOM; (2) to compare their performance
in terms of streamflow imputation; and (3) to propose superior imputation methods.

2. Methods

2.1. Study Area and Data Acquisition

This study explored the Taehwa River watershed, which is located in the southeastern part of
Korea (129�01 E–129�251 E, 35�271 N–35�451 N). The area of the watershed is 643.96 km2 and it includes
most of Ulsan city and a small portion of Gyeongju city. The watershed consists of forest (62%), rice
paddy (14%), and urban (10%) areas, as illustrated in Figure 1. Most of the urban areas are located
downstream, while forest and rice paddies dominate the upstream. It has a moderate climate with
average temperatures of 2 and 25.92 �C in January and August, respectively, and intense rainfall
events during summer. The mean annual temperature of the Taehwa River watershed is 13.8 �C and
the mean annual precipitation is 1274.6 mm based on the climatological normal. The TR watershed
has eight flow gauging stations and Samho station, one of eight stations, is located in the middle part
of the river (Figure 1). The station is not affected by tidal action.
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Figure 1. Land use and location of Samho station in Taehwa River watershed. Figure 1. Land use and location of Samho station in Taehwa River watershed.
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We obtained the Digital Elevation Model (DEM), land use information, and flow rate data of
Samho station from the Water Management Information System, and the soil properties from the
Korean Soil information System. Weather data was obtained from Meteorological Information Portal
Service System-Disaster Prevention. Additionally, we considered the discharge and water quality
from Eonyang and Gulhwa Waste Water Treatment Plants (WWTPs) as point sources of Ulsan city.

2.2. Data Imputation Methods

The Soil and Water Assessment Tool (SWAT) and two machine learning techniques, Artificial
Neural Network [20] and Self Organizing Map (SOM), were applied to restore 350 flow rates in the
Samho station from 2004 to 2006. The 350 flow rates had constant values caused by a faulty sensor
and were regarded as missing data in this study. Figure 2 illustrates a brief framework of this study,
showing calibration (2007–2009) and validation periods (2004–2006) of the SWAT model as well as
the input data of the ANN and SOM models. For the ANN and SOM models, data from 2004 to 2009
were used for cross-validation.
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Figure 2. Flow chart of the Data Imputation methodology of the three models: Soil and Water
Assessment Tool (SWAT), Artificial Neural Network (ANN), and Self Organizing Map (SOM).

2.2.1. Soil and Water Assessment Tool

SWAT is a physically distributed hydrological model developed by Jeff Arnold in the United
States Department of Agriculture-Agricultural Research Service [21]. It simulates the hydrologic
cycle including surface runoff, evapotranspiration, and infiltration with the consideration of water
contaminations in terms of sediment, pesticides, and nutrients in a watershed. To set up the model
with the Geographic Information System interface, it requires watershed characteristics including
slope, land use, soil type, stream, point sources, and meteorological data including precipitation,
temperature, solar intensity, relative humidity, and wind speed. SWAT divides a watershed into
multiple subbasins, which consist of smaller hydrologic response units (HRU), defined by the
combination of land use, slope, and soil type. The model simulates both hydrologic responses
and water quality in subbasin, HRU, and reach levels by governing equations. For instance, the
hydrologic process is simulated based on the water balance equation [21]:

SWt � SW0 �
ţ

i�1

pRday �Qsur f � Ea �wseep �Qgwq (1)
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where SWt is the final soil water content (mm H2O), SW0 is the initial soil water content (mm H2O),
t is the time (days), Rday is the amount of precipitation on day i (mm H2O), Qsur f is the amount of
surface runoff on day i (mm H2O), Ea is the amount of evapotranspiration on day i (mm H2O), wseep

is the amount of percolation and bypass flow exiting the soil profile bottom on day i (mm H2O), and
Qgw is the amount of return flow on day i (mm H2O).

In this study, the TR watershed was divided into 85 subbasins including 1413 HRUs. We
calibrated the model using the SWAT Calibration and Uncertainty Programs (SWAT-CUP), which
allows us to conduct sensitivity analysis, calibration, and parameterization [22]. This study used
the SUFI-2 algorithm to calibrate 25 hydrological parameters, as tabulated in Table 1. After model
calibration, we validated the model from 2004 to 2006 without the missing data.

Table 1. SWAT calibration results for 25 hydrologic parameters.

Parameter Method Min Max Rank Value Definition

CH_N2.rte Replace 0.0001 0.3 1 0.0015 Manning‘s n value for
the main channel length

SLSUBBSN.hru Replace 10 150 2 18.39 Slope length (m)

CN2.mgt Relative �0.2 0.2 3 0.035 Moisture condition II
curve number

SOL_K.sol Relative �0.8 0.8 4 0.19 Saturated hydraulic
conductivity (mm/h)

ALPHA_BF.gw Replace 0 1 5 0.61 Base flow recession constant

CH_K2.rte Replace 0 150 6 77.42 Effective hydraulic conductivity
of channel (mm/h)

CANMX.hru Replace 0 15 7 0.49 Maximum canopy
storage (mm H2O)

SOL_AWC.sol Relative �0.5 0.5 8 �0.32 Available water capacity of the soil
layer (mm H2O/mm soil)

EPCO.hru Replace 0 1 9 0.077 Plant uptake compensation factor

RCHRG_DP.gw Replace 0 1 10 0.19 Deep aquifer percolation fraction

ESCO.hru Replace 0 1 11 0.37 Soil evaporation
compensation factor

SFTMP.bsn Replace 0 5 12 2.55 Snowfall temperature (�C)

SURLAG.bsn Replace 0.05 24 13 0.15 Surface runoff lag coefficient

SMFMN.bsn Replace 0 10 14 4.85 Melt factor for snow on December
21 (mm H2O/day-�C)

TLAPS.sub Replace �10 10 15 �8.83 Temperature lapse rate (�C/km)

SOL_ALB.sol Relative 0 1 16 0.58 Moist soil albedo

GWQMN.gw Replace 0 50 17 25.95
Threshold depth of water in the
shallow aquifer for return flow

(mm H2O)

GW_DELAY.gw Replace 0 100 18 94.50 Groundwater delay time (days)

TIMP.bsn Replace 0 1 19 0.95 Snow peak temperature lag factor

REVAPMN.gw Replace 0 500 20 324.54
Threshold depth of water in the

shallow aquifer for percolation to
the deep aquifer (mm H2O)

SMTMP.bsn Replace 0 5 21 0.045 Snow melt base temperature (�C)

BIOMIX.mgt Replace 0 1 22 0.12 Biological mixing efficiency

EPCO.bsn Replace 0 1 23 0.55 Plant uptake compensation factor

SMFMX.bsn Replace 0 10 24 4.91 Melt factor for snow on June 21
(mm H2O/day-�C)

ESCO.bsn Replace 0 1 25 0.17 Soil evaporation
compensation factor
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2.2.2. Artificial Neural Network

ANN, inspired by the human brain, is a functional method for pattern classification of
multi-variable datasets as well as the prediction of complex processes [23–25]. Many researchers
have applied the ANN model to predict streamflows using input variables including rainfall,
temperature, past flows, past rainfall, water levels, and so on [26,27]. For example, Bonafe et al. [28]
chose the previous discharge, daily precipitation, daily mean temperature, total rainfall of the
previous five days, and mean temperature over the previous ten days as input variables, and
yielded a good performance in determining the daily mean flow in the upper Tiber River basin,
Italy [27,28]. In this regard, ANN could be applicable for generalizing a nonlinear relationship
between environmental variables and streamflows. This study selected 4 input variables to estimate
daily flow, including daily precipitation, daily temperature, total precipitation of the previous 5 days,
and mean temperature over the previous 10 days by reviewing the previous studies related with the
data imputation of streamflows. This is because daily precipitation has a strong positive correlation
with flow rate, while total precipitation of previous 5 days has a moderate positive correlation.
In addition, daily mean temperature and mean temperature over previous 10 days have weak positive
correlation with flow rate.

Similar to interconnected neurons in the human brain, ANN has a structure consisting of an
input layer, hidden layer, output layer, and neurons (nodes) in each layer, which is connected by
weights. The input layer accepts an input vector and transfers it to the network where the hidden
layer determines the complexity of training, while the output layer presents the final output of the
model [29,30]. Before training, weights and biases in each neuron are randomly initialized and
updated by the back-propagation step [31]. In this step, signals from input vectors are transferred to
the next neurons in the network where they are multiplied by weights. Finally, the transfer function
in each neuron utilizes the multiplied signal as an input. This study decided to apply the Tansig
function as a transfer function because it was empirically the most efficient:

y � f
Ņ

i�1

wi � xi � b (2)

where xi is the input in the network, y is the output in the network, N is the number of neurons in
the input vector, wi is the connection weight between input and output, f is the transfer function, and
b is the bias term.

To update the weight and bias in each neuron, ANN utilizes the back-propagation algorithm
where the objective function is the error between output and observation [26]. This algorithm updates
weights by moving along the gradient descent of the error function, which allows the steepest
decreasing change. The advantages of this algorithm are its ability to adjust the learning rate by
updating the learning rate parameter and it also guarantees less oscillation with the momentum
constant [32]. Equations (3) and (4) explain the back-propagation step using gradient descent with
momentum algorithm:

∆wj�1
i � �c� BE

Bwj
i

pwj
iq � a� ∆wj

i (3)

wj�1
i � wj

i � ∆wj�1
i (4)

where j is the iteration number, c is the learning rate, and a is the momentum constant.
ANN repeats the above process until the error is less than the desired goal or the number of

iterations is greater than the maximum iteration. In addition, the performance of ANN models is
significantly affected by parameters including number of hidden layers, number of neurons in each
layer, learning rate, and momentum constant. We built the structure with one hidden layer because
using one hidden layer is common in hydrologic studies [33]. For the rest of the parameters, this study
employed the pattern search algorithm to find optimal parameters that maximize the model efficiency.
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2.2.3. Self-Organizing Map

Kohonen was the first to propose SOM, an unsupervised machine learning technique, that
clusters similar samples into a smaller dimension map while preserving the topological structure [34].
At the initial step, SOM defines the map size in an output layer by considering the number of
input data. The number of map units (hexagonal lattice) is generally determined by 5

?
n, where

n represents the number of samples [35]. After setting the network size, SOM normalizes the input
data and initializes weight vectors in each unit. One sample vector is randomly picked in the training
step and then used to estimate the Euclidean distance with weight vectors in all the map units [36].
Then, SOM identifies the Best Matching Unit (BMU) as the map unit that has the shortest distance to
the sample vector:

cj � arg mini
 

||wi � xj||
(

(5)

where cj is the winner unit, xj is the input vector (j = 1, 2, � � � , n), wi is the weight vector (i = 1, 2, � � � , m),
m is the number of map units, and || || is the distance measure, Euclidean distance.

SOM iteratively updates weight vectors of BMU and its neighboring units by using a
neighborhood function to minimize the distance between them. The Gaussian distribution is applied
to update the weights, as follows [34]:

wnew
i �

°n
j�1 hcj ,i � xj°n

j�1 hcj ,i
(6)

where hcj ,i is the neighborhood function around the winner cj.
Iteration of SOM is repeated until it converges. We selected the same input variables used in the

ANN model to compare the SOM performance with ANN.

2.2.4. Cross-Validation and Evaluation

Cross-validation was performed for ANN and SOM models to increase the model training
efficiency. For this step, we randomly shuffled the datasets and divided them into the six subsets.
Five subsets out of six were drawn for training and the remaining subset was assigned for validation.
While storing the training network of the iterations, we repeated the cross validation step and selected
the network with the best performance in terms of Nash–Sutcliffe efficiency coefficient (NSE). The
datasets used in calibration and validation of the ANN and SOM were different because they were
randomly shuffled in this step.

We evaluated model results based on the three statistics including NSE, coefficient of
determination (R2), and Root Mean Square Error (RMSE). At first, NSE is a normalized statistic,
indicating the fitness of a 1:1 line between observed and simulated data, and it varies from �8 to 1.
It is considered to be acceptable when values are greater than 0.5. Next, R2 measures the degree of
collinearity between observed and simulated data, and it varies from 0 to 1. A higher R2 value means
less error variance and it is considered to be acceptable when values are greater than 0.5. Last, RMSE
is the error index, and a lower RMSE indicates a better model. These statistics are calculated by the
equations below [37]:

NSE � 1�
°n

i�1 pOi � Siq2°n
i�1

�
Oi �Oavg

�2 (7)

R2 �

$'&
'%

°n
i�1

�
Oi �Oavg

�� �
Si � Savg

�
�°n

i�1
�
Oi �Oavg

�2
�0.5 �

�°n
i�1

�
Si � Savg

�2
�0.5

,/.
/-

2

(8)

RMSE �
gffe 1

n

ņ

i�1

pOi � Siq2 (9)
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where Oi and Si are the observed and simulated data, respectively; Oavg and Savg are the means of
the observed and simulated data, respectively; and n is the number of datum.

3. Results and Discussion

3.1. Parameter Estimation

This study calibrated 25 hydrologic parameters in SWAT as shown in Table 1, which includes
the ranges of parameters, sensitivity rank, and the final values used in the calibration. CH_N2
(Manning’s n value for the main channel length) was the most sensitive parameter, followed by
SLSUBBSN (Average slope length), CN2 (Moisture condition II curve number), SOL_K (Saturated
hydraulic conductivity), and ALPHA_BF (Base flow recession constant). Most of the top sensitive
parameters were related with channel or overland routing. This result is in agreement with previous
calibration works, showing that CN2, ALPHA_BF, and SLSUBBSN were highly ranked in the
sensitivity analysis [38–40].

Table 2 shows the ANN-associated parameters including learning rate, momentum constant, and
number of neurons optimized by the pattern search method and SOM-related errors: quantization
and topographic errors. The momentum constant (0.5) is less than the learning rate (0.75), implying
that previous weights have more influence in updating the weights in the ANN model compared to
new weights. In SOM, the quantization error measures the resolution of SOM while the topographic
error does the topology preservation of SOM. The quantization (0.335) and topographic (0.039) errors
in this study were within the reasonable ranges of a previous application [41].

Table 2. ANN optimized parameters and SOM related errors.

Model Model Parameters/Error Value

ANN (Tansig)
Learning rate 0.75

Momentum constant 0.5
Number of neuron 9

SOM
Quantization error 0.335
Topographic error 0.039

3.2. Comparison of Model Performance

The performances of SWAT, ANN, and SOM models were compared after calibration and
training. Figure 3 illustrates observed and simulated flow rates in the calibration, training, and
validation periods of each model, while Table 3 shows the statistical analysis with NSE and R2. SWAT,
ANN, and SOM had NSE values of 0.55, 0.71, and 0.79 during the calibration periods, and 0.54, 0.61,
and 0.63 for the validation periods, respectively. Based on the NSE value, the three models produced
acceptable results for both periods [37]. SOM showed the best performance while SWAT had the
worst among them. In the case of the R2, SWAT, ANN, and SOM had R2 values of 0.55, 0.71, and
0.83 during the calibration periods, and 0.59, 0.63, and 0.65 for the validation periods, respectively.
The values of the R2 are similar with NSE or slightly greater than NSE, and SOM showed the best
performance in terms of the R2.

For the SWAT model, NSE values during the calibration and validation were similar. However,
for the other two models the NSE values were lower in the validation period compared to the
calibration period. These discrepancies were mainly due to the different datasets used in the models.
SWAT had continuous time series data for both the calibration and validation periods as 2007–2009
and 2004–2006 without incorrect values, respectively. However, for the ANN and SOM, the data used
for the calibration and validation periods were selected by the cross validation step. In this step,
models tended to select the data with a bigger value for the calibration period to reduce the error in
an efficient way. In short, the calibration period could be concentrated with the bigger value, while
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the rest of the data with relatively lower values went to the validation period. Therefore, NSE values
were not similar during the calibration and validation for the ANN and SOM. Though NSE values
were lower in the validation step for two models, they are still acceptable values.

Table 3. Calibration (training) and validation statistics for daily streamflow. NSE: Nash–Sutcliffe
efficiency; R2: regression coefficient.

Method
NSE R2

Calibration Validation Calibration Validation

SWAT 0.55 0.54 0.55 0.59
ANN 0.71 0.61 0.71 0.63
SOM 0.79 0.63 0.83 0.65
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Figure 4 shows the results of data imputation by the three models for 350 missing streamflows.
The imputed flow rates of the ANN and SOM models showed similar trends; for example, they are
both sensitive to precipitation events with comparable times and magnitudes of peaks, and the R2

between them is 0.73. In contrast, SWAT generally underestimated the discharges. Based on the
statistical index, SOM was considered the best model at simulating streamflow of the TR watershed.
However, NSE and R2 are only substantially sensitive to the high flow and they do not reflect low
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Figure 4. Data imputation results of 350 missing flow data for the SWAT, ANN, and SOM models.
Four line graphs represent the observation (red), SWAT (blue), ANN (purple), and SOM (green), while
the bar graph at the top is the daily precipitation amount of the missing flow data.

3.3. Comparison of Flow Duration Curve

Q95, Q185, Q275, and Q355 from FDC indicate the criteria for averaged-wet flow, normal flow,
low flow, and drought flow, respectively [42]. This study separated FDC into five sections based on
the flow indices in an attempt to compare the model performances during low-flow and high-flow
separately. Figure 5 portrays the FDC of Samho station from 2007 to 2009 and shows the streamflow
simulated by SWAT and SOM (dotted blue and green lines) with the observation. Table 4 shows the
RMSE of SWAT and SOM in each section from 2007 to 2009. SWAT had lower RMSE than SOM
for Sections II–V, which have relatively low discharges. This implies that SWAT could simulate
relatively low flows better than SOM despite having smaller NSE and R2 values during calibration
and validation.
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Figure 5. Flow duration curves (FDC) of Samho station in (a) 2007, (b) 2008, and (c) 2009. The plots are
divided into five sections: I, flows over averaged-wet flow standard; II, flows between averaged-wet
and normal flow standard; III, flows between normal and low flow standard; IV, flows between low
and drought flow standard; and V, flows under drought flow standard.

Table 4. RMSE values of SWAT and SOM in each section of FDC from 2007 to 2009.

Section
2007 2008 2009

SWAT SOM SWAT SOM SWAT SOM

I 24.85 12.86 22.49 11.48 3.73 4.03
II 3.76 3.81 2.33 3.38 1.66 1.91
III 1.73 2.56 1.49 2.04 1.19 1.31
IV 1 1.32 1.04 1.74 0.86 1.25
V 0.9 1.26 1.41 1.95 0.79 1.32

Better model in a section is in bold.

Section I, however, showed inconsistent results from 2007 to 2009. SOM has lower RMSE in
2007 and 2008, while SWAT has the lower value in 2009. This is due to the different rainfall pattern
from 2007 to 2009. As shown in the blue box of Figure 6, dry and low intensity rainfall periods were
found in 2009 before high intensity rainfall period. Soil moisture was low during the dry period
(i.e., the blue box), thereby water infiltration throughout soil layers was enhanced and surface runoff
reduced. Therefore, the magnitude of peak streamflow in 2009 was the lowest compared to 2007 and
2008 (Figure 6). In a previous work, SWAT tends to underestimate high peak flows, which is one
of the limitations of the model [38,43–45]. This is analogous to the results in Table 5, showing that
SWAT performed better in 2009 while SOM was better in 2007 and 2008. We found that the model
performances in Section I substantially influenced the overall model performance as reflected in NSE
or R2. With the exception of 2009, wherein SWAT performed better than SOM, the machine learning
technique usually shows better performance in high flow; therefore, it is recommended to use an
ANN or SOM model for imputing high flow events. Otherwise, applying the SWAT model for low
flow events would be more desirable. Here, the Q95 was used as a critical value to determine high
flows from the whole observation. The rest of flows, which belong to Sections II–V, are considered as
low flows in this study.
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Figure 6. Comparison of daily performances between SWAT and SOM from 2007 to 2009 with regard
to precipitation.

Table 5. R2 of SWAT and SOM from 2007 to 2009.

Year SWAT SOM

2007 0.46 0.86
2008 0.55 0.89
2009 0.78 0.73

Better model in a section is in bold.

3.4. Data Imputation Result

Figure 7 summarizes the proposed data imputation algorithm using SOM and the SWAT model.
The first step is to make FDC results to determine the Q95 value, which is used to separate low and
high flow events. Then, it is required to first simulate the flow, using both SOM and SWAT, and
compare two simulated streamflows with the Q95. If two simulated streamflows are greater than
the Q95 value, the missing streamflow belongs to Section I and is substituted by the SOM output;
otherwise it is categorized by Sections II–V and is substituted by the SWAT model. If two simulated
streamflows belong to different sections, it is recommended to follow what SOM brings since SOM
has higher accuracy of performance than SWAT.
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In this study, we adopted the proposed data imputation algorithm to find out the best
representative model output for 350 missing streamflows. We determined Q95 values from 2004
to 2006 to separate high-flow (Section I) and low-flow (Sections II–V) events; Q95 in 2004, 2005, and
2006 were 16.88, 6.99, and 10.38 cm, respectively. Two simulated streamflows were lower than the
Q95 in both 2004 and 2006, while only SOM simulated streamflows were greater than Q95 in 2005.
Considering the algorithm, we selected SWAT for the missing streamflows in 2004 and 2006, and SOM
results were taken in 2005 for data imputation.

4. Conclusions

This study compared the performance of SWAT and two machine learning models (i.e., ANN
and SOM) to recover missing streamflow in the Taehwa River watershed, Korea. Major findings from
this study are as follows:

(1). Based on the statistical index, SOM was considered the best model at simulating streamflow in
the TR watershed. It demonstrated that the machine learning model is usually better at capturing
high flow than SWAT.

(2). SWAT, however, could simulate low-flows better than SOM, although it had smaller NSE and
R2 values.

(3). Using an ANN or SOM model for the data imputation of high-flow events is recommended,
while the SWAT model would be desirable for low-flow events.

In conclusion, using different imputation techniques according to flow characteristics is
recommended and this can be explored further with different methodologies and datasets.
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