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Abstract: Water quality data may not be collected at a high frequency, nor over the range 

of streamflow data. For instance, water quality data are often collected monthly, biweekly, 

or weekly, since collecting and analyzing water quality samples are costly compared to 

streamflow data. Regression models are often used to interpolate pollutant loads from 

measurements made intermittently. Web-based Load Interpolation Tool (LOADIN) was 

developed to provide user-friendly interfaces and to allow use of streamflow and water 

quality data from U.S. Geological Survey (USGS) via web access. LOADIN has a regression 

model assuming that instantaneous load is comprised of the pollutant load based on 

streamflow and the pollutant load variation within the period. The regression model has eight 

coefficients determined by a genetic algorithm with measured water quality data. LOADIN 

was applied to eleven water quality datasets from USGS gage stations located in Illinois, 

Indiana, Michigan, Minnesota, and Wisconsin states with drainage areas from 44 km2 to 

1,847,170 km2. Measured loads were calculated by multiplying nitrogen data by streamflow 

data associated with measured nitrogen data. The estimated nitrogen loads and measured loads 

were evaluated using Nash-Sutcliffe Efficiency (NSE) and coefficient of determination (R2). 

NSE ranged from 0.45 to 0.91, and R2 ranged from 0.51 to 0.91 for nitrogen load estimation.  

Keywords: Genetic Algorithm; Web-based Load Interpolation Tool (LOADIN); Pollutant 

load estimation; Regression model; Water quality data  
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1. Introduction 

Nutrients in streams or rivers are products from natural phenomenon of not only the stream but also 

watershed characteristics [1,2]. However, excessive nutrient inputs to a stream leads to the eutrophication 

or over-enrichment of waters, and destroys aquatic ecosystems [3,4]. The US Clean Water Act was 

established to regulate pollutants and manage watersheds, and to improve surface water quality to meet 

its water quality standards. The Act charges state and federal agencies with developing total maximum 

daily loads (TMDLs) for waterbodies for each pollutant [5,6]. In addition, the Act indicates that 

jurisdictions, which have significantly contaminated water need to establish priority rankings for waters 

on the lists and to develop TMDLs for those waters. Flow duration curves (FDC) and load duration 

curves (LDC) are one fundamental analysis approach for development of TMDLs, which requires 

streamflow and water quality data for the concerned watershed [7]. FDC and LDC are used for pollutant 

load reduction strategies for point and nonpoint source pollutants to meet TMDL targets. To develop 

LDC, water quality data associated with streamflow needs to have an identical temporal resolution to 

the streamflow data. However, water quality data are typically intermittent, since collecting water quality 

data typically requires more effort and expense than collecting streamflow data.  

Therefore, regression models are often used to interpolate pollutant loads from measurements made 

intermittently for a certain period of time [8], and provide acceptable pollutant load estimates [9–11]. 

Typically, regression models determine the relationship between streamflow and water quality data and 

are often simple linear forms using logarithmic transformations [12–14]. Load Estimator (LOADEST) [15] 

is used to estimate pollutant loads from streamflow and decimal time, which is a fraction representing 

date and time. LOADEST has 11 regression models and determines the model coefficients based on 

three statistical methods. Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood 

Estimation (MLE) allow use of water quality datasets containing censored data, and assume that the 

model residual (or error) follows a normal distribution [15]. The regression models in LOADEST have 

two types of terms; one is logarithm streamflow, and the other is decimal time. Logarithmic streamflow 

is used to identify the relationship between instantaneous pollutant load and streamflow, and decimal 

time is used to consider temporal variances of pollutant loads. LOADEST has been used to estimate 

suspended sediment and total phosphorus to evaluate water quality and biological responses to the 

implementation of best management practice [16–21] and provided reasonable load estimates.  

However, LOADEST overestimated loads by up to 500% compared to measured annual total nitrogen 

load estimates [22]. Moreover, LOADEST requires only streamflow and water quality data, though 

significant effort is often required to prepare the inputs (i.e., streamflow and water quality data) and to 

handle data format for LOADEST runs. Thus, a web-based tool using a regression model was developed 

to estimate nitrogen loads associated with streamflow and to provide ready access to water quality data. 

The web-based tool was applied at eleven U.S. Geological Survey (USGS) gage station locations with 

nitrogen data to determine regression model behavior. 
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2. Materials and Methods  

2.1. Web Interface Development  

A web-based tool for pollutant load interpolation (LOADIN) [23] was developed in this study, 

providing features including automated, simple access of measured streamflow and water quality data 

via web access and no requirement for installation or updates of the tool on a desktop computer. LOADIN 

requires two inputs; one is streamflow data to calibrate the regression model coefficients and to estimate 

pollutant loads associated with streamflow. The other is water quality data. Therefore, the interface 

consists of two tables for the two inputs (Figure 1). The input data can be prepared by the user, or data 

can be prepared through web access to the U.S. Geological Survey (USGS). USGS allows web-access [24] 

to retrieve water quality; only USGS station number is required to request water quality data. LOADIN 

provides a map interface for the USGS gage stations for the entire U.S., using a database for the locations 

for streamflow water quality data built and stored in the web server (Figure 2). LOADIN displays the 

locations of USGS gage stations, requests water quality data from the USGS server as the user finds and 

selects the USGS station of interest on the map, and parses the data in the water quality data table. 

Figure 1. LOADIN interface for streamflow and water quality data inputs. 
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Figure 2. Schematic depicting web-based tool access of water quality data from USGS server. 

 

2.2. Regression Model to Estimate Loads 

LOADIN uses a regression model (Equation (1)) to estimate instantaneous load using streamflow, 

decimal time, and eight coefficients. The regression model is composed of three parts; the first part 

includes streamflow and model coefficients to represent pollutant loads for streamflow variation. The 

second part is comprised of streamflow, model coefficients, and decimal time with sine function. The 

third part is comprised of streamflow, model coefficients, and decimal time with cosine function. The 

second and third terms represent pollutant loads for time (or seasonal) variation. LOADIN, similar to 

LOADEST, uses a regression model to estimate pollutant loads. However, the regression model in 

LOADIN assumes that instantaneous load is comprised of the pollutant load from streamflow (i.e., Qi in 

the Equation (1)) and the pollutant load variability for the given period as decimal time (i.e., Ti in the 

Equation (1)), whereas the regression models in LOADEST assume that instantaneous load is an 

exponential function of streamflow and pollutant load variability for the given period. 

Park and Engel [22] and Park [25] applied the regression models in LOADIN and LOADEST to 

annual nitrogen, phosphorus, and sediment load estimation. Phosphorus and sediment data (mg/L) were 

related to streamflow data (m3/s), while nitrogen data (mg/L) displayed seasonal variance and generally 

poor relationships with streamflow data. The relationships between water quality and streamflow data 

led to different regression model behaviors. The regression model in LOADIN did not provide 

reasonable annual phosphorus and sediment load estimates, whereas the regression models in 

LOADEST did. In other words, the phosphorus and sediment loads followed the assumption of the 

regression models in LOADEST that pollutant loads are function of streamflow data. On the other hand, 

LOADEST provided poorer load estimates than LOADIN in annual nitrogen load estimation, since the 

nitrogen data displayed generally poor relationships with streamflow data. Thus it was concluded that 

streamflow and water quality datasets need to match the assumptions of regression models and that 

regression models need to be selected based on water quality parameters [20,21]. Load C ∙ 	C ∙ 1 sin C ∙ C ∙ C ∙ 1 cos C ∙ C ∙  (1)

where, Loadi is pollutant load at time step; i, C0-7 are coefficients determined by an optimization 

algorithm; Qi is streamflow at time step I; and Ti is decimal time streamflow measured. 
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LOADIN determines the eight coefficients that minimize differences between estimated and 

measured loads using a genetic algorithm. Developed by Holland [26], the genetic algorithm has solved 

sophisticated problems and has been applied for various areas, such as business, engineering, and  

science [27,28]. To determine the coefficients, three operators work through 500 generations, which are 

the selection operator to reproduce population with fitter individuals, the crossover operator to create 

offspring with combined strong individuals, and the mutation operator to alter partial characteristics of 

offspring at random. LOADIN calculates measured loads by multiplying water quality data by 

streamflow data associated with measured water quality data, and determines the regression model 

coefficients using a genetic algorithm that compares estimated loads from the regression model to 

measured loads on days measured loads are available. 

3. Application of LOADIN 

Since the regression model in LOADIN provided reasonable total nitrogen estimates, LOADN was 

applied to nitrogen data (USGS Water Quality Parameter Name: Nitrate plus nitrite, water, filtered, 

milligrams per liter as nitrogen, USGS Water Quality Parameter Code: 00631) from 11 USGS gage 

stations (Figure 3). The USGS gage stations are located in Illinois, Indiana, Michigan, Minnesota, and 

Wisconsin, and have drainage areas from 44 km2 to 1,847,180 km2 (Table 1). Since the drainage areas 

are different, the statistics of streamflow differed, with mean streamflow ranging from 0.6 m3/s (USGS 

Station Number 03353637) to 6772.4 m3/s (USGS Station Number 07022000). 

Figure 3. Location of USGS stations for streamflow and nitrogen data. 
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Table 1. USGS locations and streamflow data statistics. 

Station 

number 
USGS station name 

Drainage 

area (km2) 
Data period 

Streamflow (m3/s) 

Min. Max. Mean 
Standard 

deviation 

03353637 
Little Buck Creek near 

Indianapolis, IN 
44 

17/05/1990 

–07/09/2004 
0.01 39.36 0.60 1.54 

05427948 
Pheasant Branch at 

Middleton, WI 
47 

26/05/2009 

–17/06/2014 
0.02 7.96 0.21 0.42 

04063700 
Popple river near 

 Fence, WI 
360 

24/10/1979 

–10/06/2014 
0.28 42.48 2.87 3.19 

04087000 
Milwaukee river at 

Milwaukee, WI 
1803 

18/09/1979 

–21/09/2009 
0.23 254.00 15.06 17.77 

04059000 
Escanaba river at  

Cornell, MI 
2253 

26/09/1979 

–08/09/1994 
4.25 294.50 22.65 22.95 

04137500 
Au Sable river near Au 

Sable, MI 
4504 

15/03/2011 

–09/09/2013 
20.98 125.16 37.42 13.55 

04101500 
St. Joseph river at  

Niles, MI 
9495 

09/03/2011 

–16/06/2014 
22.37 399.27 107.29 63.56 

05543500 
Illinois river at  

Marseilles, IL 
21,391 

25/09/1979 

–09/07/1998 
58.62 2537.20 320.30 252.33 

03303280 
Ohio river at Cannelton 

dam at Cannelton, IN 
251,229 

17/01/1996 

–13/08/2013 
72.21 20813.00 3997.84 3500.26 

05587455 
Mississippi river below 

Grafton, IL 
443,665 

16/10/1997 

–11/09/2013 
379.45 12799.28 3665.40 2507.87 

07022000 
Mississippi River at 

Thebes, IL 
1,847,180 

26/07/1977 

–19/05/2014 
1463.99 27694.03 6772.44 4200.45 

Both streamflow and nitrogen data for the eleven USGS stations were retrieved by LOADIN, and the 

periods for nitrogen load estimates were defined based on the measured data. Streamflow were daily 

data, but nitrogen data intervals ranged from eight days (on average, USGS gage station 05427948) to 

fifty-nine days (on average, USGS gage station 04063700) (Table 2). Therefore, measured loads were 

calculated by multiplying nitrogen data by streamflow data associated with measured nitrogen data. The 

estimated nitrogen loads for the days which nitrogen data were measured were evaluated by Nash-Sutcliffe 

Efficiency (NSE) and coefficient of determination (R2) (Table 2; Figure 4). For example, 231 measured 

daily loads were computed by multiplying nitrogen concentration data by streamflow data, since USGS 

gage station 03353637 had 231 measured nitrogen data. The corresponding 231 estimated daily loads 

from 5228 estimated daily loads (i.e., same as the number of streamflow data) were extracted to compare 

estimated nitrogen loads to measured nitrogen loads on these days. The NSE of estimated nitrogen 

loads to measured nitrogen loads ranged from 0.45 (USGS gage station 05427948) to 0.91 (USGS 

gage station 04101500), and the R2 ranged from 0.51 (USGS gage station 05427948) to 0.91 (USGS 

gage station 04101500) (Table 2; Figure 4b,g). More frequent nitrogen data (or large numbers of 

nitrogen data points) did not necessarily lead to higher NSE or R2. For instance, the NSE and R2 for 

USGS gage station 04101500 (63 nitrogen data points) were 0.91 and 0.91, respectively, however, the 



Water 2014, 6 2776 

 

 

NSE and R2 for USGS gage station 05427948 (218 nitrogen data points) were 0.45 and 0.51, respectively. 

In addition, drainage area was not related to the regression model behavior (Table 2; Figure 4b,g).  

Table 2. Nash-Sutcliffe Efficiency (NSE) and coefficient of determination (R2) of estimated 

loads to measured load.  

Station 

number 

Number of data  

(Nitrogen/Streamflow) 

Mean intervals  

of Nitrogen Data (days) 
NSE R2 

03353637 231/5228 23 0.83 0.84 

05427948 218/1850 8 0.45 0.51 

04063700 215/12,597 59 0.52 0.58 

04087000 253/10,963 43 0.84 0.84 

04059000 98/5462 56 0.89 0.90 

04137500 102/911 9 0.60 0.64 

04101500 63/1193 19 0.91 0.91 

05543500 154/6863 45 0.85 0.86 

03303280 233/6421 28 0.88 0.88 

05587455 210/5810 28 0.87 0.87 

07022000 413/13,505 33 0.79 0.79 

Figure 4. Scatter plots of measured and estimated nitrogen loads; (a) USGS station number 

03353637; (b) USGS station number 05427948; (c) USGS station number 04063700;  

(d) USGS station number 04087000; (e) USGS station number 04059000; (f) USGS station 

number 04137500; (g) USGS station number 04101500; (h) USGS station number 

05543500; (i) USGS station number 03303280; (j) USGS station number 05587455;  

(k) USGS station number 07022000. 

(a) (b)
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Figure 4. Cont. 

(c) (d)

(e) (f)

(g) (h)
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Figure 4. Cont. 

(i) (j)

(k)

The regression model in LOADIN contains terms for time variation, and therefore the time 

distribution of nitrogen data collected was explored (Table 3). Sixty percent of nitrogen data in USGS 

gage station 05427948 was collected from March to June, and twenty percent of nitrogen data were 

collected in March. LOADIN provided poor load estimates for USGS gage station 05427948. 

Similar to USGS gage station 05427948, forty-nine percent of nitrogen data were collected from 

March to June in USGS gage station 03303280, but the percentage for any month did not exceed thirteen 

percent. Therefore, the quantity of nitrogen data was not biased toward a certain month. Twenty-one 

percent of nitrogen data were collected in December for USGS gage station 04101500, but there were 

no consecutive months in which extensive nitrogen data were collected like USGS gage station 05427948. 

LOADIN provided reasonable load estimates for USGS gage stations 03303280 and 04101500. 

If a water quality dataset is biased toward a certain period, LOADIN may provide poor load estimates. 

Since ten NSEs of the estimated loads to the measured loads, excluding for the nitrogen data from USGS 

station 05427948, were greater than 0.5, it was concluded that the LOADIN performed well in nitrogen 

load estimation [29], as long as the water quality dataset is not biased toward a certain period. For 
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example, if nitrogen and streamflow datasets were collected only during summer, estimating nitrogen 

loads for winter using LOADIN should be avoided.  

Table 3. Percentage of nitrogen data collected in each month. 

Station 

Number 

Percentage of nitrogen data collected (%) 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

03353637 6 4 6 6 15 16 14 14 7 3 4 5 

05427948 6 9 20 14 14 12 4 3 4 3 5 6 

04063700 6 7 8 10 8 11 6 12 9 7 10 8 

04087000 5 6 9 8 11 13 11 9 9 7 7 6 

04059000 12 3 10 9 8 10 7 7 11 6 10 5 

04137500 8 2 15 19 8 7 4 3 4 11 6 15 

04101500 8 8 8 19 6 6 6 5 3 3 6 21 

05543500 6 8 8 9 11 6 8 13 7 6 10 7 

03303280 11 9 12 12 12 13 4 8 3 2 6 7 

05587455 6 8 10 10 9 11 8 8 7 8 8 7 

07022000 5 6 10 12 14 11 11 8 7 7 4 5 

4. Conclusions  

Although streamflow and water quality data associated with streamflow are required for pollutant 

load computations, collecting and analyzing water quality samples are costly and requires significant 

effort compared to streamflow data. Therefore, water quality data are often collected less frequently than 

streamflow data. Regression models are often used to estimate (or interpolate) pollutant loads from 

limited water quality and streamflow data.  

A web-based tool, LOADIN, to interpolate pollutant loads was developed in the study. LOADIN has 

several benefits in pollutant load estimation. The first is that it is easy to operate and use the tool as no 

installation or update by the users is required since it is a web-based tool. The second is that LOADIN 

accesses nationwide streamflow and water quality data from the USGS via web access.  

LOADIN uses a regression model assuming that instantaneous load is comprised of the pollutant load 

from streamflow and the pollutant load variability for the period. LOADIN was applied to eleven 

nitrogen datasets from USGS gage stations, and estimated nitrogen load was evaluated using NSE and 

R2 based on measured nitrogen loads. Although LOADIN provided poor load estimation when the water 

quality dataset was biased toward a certain period, NSEs were greater than 0.5 in ten out of eleven USGS 

gage stations. Moreover, NSEs were greater than 0.8 for seven of the USGS gage stations. This indicates 

that LOADIN performance for nitrogen load estimations was satisfactory, unless the water quality 

dataset was biased toward a certain period.  
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