
Water 2014, 6, 2195-2211; doi:10.3390/w6082195 
 

water 
ISSN 2073-4441 

www.mdpi.com/journal/water 

Article 

Flow Forecasting using Deterministic Updating of Water Levels 
in Distributed Hydrodynamic Urban Drainage Models 

Lisbet Sneftrup Hansen 1,2, Morten Borup 1, Arne Møller 3 and Peter Steen Mikkelsen 1,* 

1 Department of Environmental Engineering (DTU Environment), Technical University of Denmark, 

Miljøvej, Building 113, Lyngby DK-2800, Denmark; E-Mail: morb@env.dtu.dk 
2 Krüger A/S, Veolia Water Solutions and Technologies, Søborg DK-2860, Denmark;  

E-Mail: lsh@kruger.dk 
3 DHI, Agern Allé 5, Hørsholm DK-2970, Denmark; E-Mail: arm@dhigroup.com 

* Author to whom correspondence should be addressed; E-Mail: psmi@env.dtu.dk;  

Tel.: +45-4525-1605; Fax: +45-4593-2850. 

Received: 20 April 2014; in revised form: 10 July 2014 / Accepted: 16 July 2014 /  

Published: 25 July 2014 

 

Abstract: There is a growing requirement to generate more precise model simulations and 

forecasts of flows in urban drainage systems in both offline and online situations. Data 

assimilation tools are hence needed to make it possible to include system measurements in 

distributed, physically-based urban drainage models and reduce a number of unavoidable 

discrepancies between the model and reality. The latter can be achieved partly by inserting 

measured water levels from the sewer system into the model. This article describes how 

deterministic updating of model states in this manner affects a simulation, and then evaluates 

and documents the performance of this particular updating procedure for flow forecasting.  

A hypothetical case study and synthetic observations are used to illustrate how the Update 

method works and affects downstream nodes. A real case study in a 544 ha urban catchment 

furthermore shows that it is possible to improve the 20-min forecast of water levels in an 

updated node and the three-hour forecast of flow through a downstream node, compared to 

simulations without updating. Deterministic water level updating produces better forecasts 

when implemented in large networks with slow flow dynamics and with measurements from 

upstream basins that contribute significantly to the flow at the forecast location. 

Keywords: data assimilation; deterministic hydraulic model; flow measurements;  

level measurements; St. Venant equations; updating; urban drainage systems 
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1. Introduction 

The increasing richness of hydrological data from cities leads to an increasing use of spatially 

distributed continuous hydrologic simulation models [1]. Another driver for this development will be the 

need for online versions of models referred to as “models of everywhere” [2]: models even providing 

predictions for ungauged parts of the system. Recent examples of such models can be found in studies 

discussed by [3,4]. In the latter example, a distributed hydrodynamic urban runoff model with a water 

quality module is used to model the concentrations of pollutants and pathogens in urban floodwater for 

the city of Dhaka, Bangladesh. An online version of such a model could be used to give precise and 

proper warnings about the health risks involved in being exposed to flood water, as well as forecasting 

the hydraulic load on a downstream wastewater treatment plant. 

For any online model that is used for real-time decision-making it is crucial to keep the model in 

touch with reality, e.g., by assimilating measurements into the model. For simple, linear models this can 

be achieved using a version of the Kalman Filter [5]; recent examples, using a lumped conceptual urban 

runoff model and an Extended Kalman filter, are provided by [6,7]. For large or very non-linear models 

ensemble-based data assimilation methods, such as the Ensemble Kalman Filter [8,9] or the Particle 

Filter [10,11], would usually be required to obtain satisfactory results. These methods require large 

ensembles of model runs, for which reason the models have to be rather fast for the updating scheme to 

work in real-time applications. The commercially available physically based, distributed, hydrodynamic 

urban drainage models such as SWMM (US EPA, NW, Washington, DC, USA) [12], MIKE URBAN 

(DHI, Hørsholm, Denmark) [13], and InfoWorks CS (Innovyze, Broomfield, CO, USA) [14] are, 

however, neither simple nor fast. Even though their description of surface runoff processes is 

lumped-conceptual at the sub-catchment scale and computationally fast, the distributed-physical part 

describing the hydrodynamics of pipe flows solves partial differential equations that are computationally 

more demanding. For instance, a physically based, distributed urban drainage model was recently 

developed for a part of the drainage system of Copenhagen (Denmark) that discharge wastewater from 

more than half a million people to the Lynetten wastewater treatment plant. The model covers an area of 

76 km2 and includes 5000 nodes [15]. Even though the model mainly includes the largest pipes and most 

important detention basins and overflow structures (corresponding to about 20% of the nodes in the real 

pipe system), it runs rather slowly - in close to real time on powerful desktop computers available by the 

year 2013 [16]. Therefore, ensemble based assimilation methods and forecast runs are currently 

computationally unfeasible. Filtering data assimilation methods based on a steady Kalman gain have 

been applied with success for computationally burdensome distributed river models [17], but this 

method requires that the distribution of the model error can be assumed constant in time, which is not a 

reasonable assumption for an urban drainage model [18]. The branched nature of urban drainage systems 

with a mixture of fast and slow response times and large differences in local gradients makes successful 

implementation of classical data assimilation tools in distributed hydrodynamic urban drainage models 

complicated and very computationally expensive. 

Perhaps due to the limitations mentioned above there are no references in the open literature to 

applications of data assimilation methods applied to the hydrodynamic part of distributed urban drainage 

models. The only available data assimilation tool for this kind of model that the authors have come 

across is MOUSE UPDATE; a pragmatic tool that inserts measured water levels or flows directly into 
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the hydrodynamic module of the MIKE URBAN software. This alternative updating method (in the 

following referred to as “deterministic updating”, or the “Update” method) ensures that the simulations 

are in accordance with the available measurements, and it should thereby result in an improvement in 

model forecasting performance. The Update method has been used in a few practical urban drainage 

projects, but their results are not publically accessible. The authors have presented initial studies of the 

Update method in conference contributions [19,20] but this paper is the first to present and document the 

performance of this deterministic updating method in the open literature. The work focuses on water 

level updating for increasing flow forecasting performance, as water levels are the most widespread type 

of measurements available in urban drainage systems. 

The article is divided into six sections: 1: Introduction; 2: Update Procedure; 3: Evaluation Procedure;  

4: Case Studies; 5: Discussion; and 6: Conclusions. Section 2 presents the theory behind the updating 

procedure along with a short description of how to use the tool, and Section 3 describes how the 

efficiency of the update is evaluated in this article. Section 4 is divided into two parts. First a hypothetical 

example is presented, which illustrates how Updating can make use of level measurements with a limited 

range, how it can compensate for an inflow to the system that is not accounted for by the model or the 

applied boundary conditions and that the water balance of the model fits when updating is active. Then 

the update procedure is tested on a real model implementation for the city of Kolding (Denmark). Here 

the model is updated using water level measurements from eight different locations, and the resulting 

simulated outflow is compared with both the measured outflow and the outflow simulated without 

updating. The results also include a presentation of the increased forecast potential using updating. 

Section 5 discusses the catchment features that affect the updating performance and section 6 draws 

conclusions on the general applicability of the investigated Update method.  

2. Update Procedure 

2.1. Overall Structure of the MIKE URBAN Model 

Physically based, distributed hydrodynamic urban drainage models, such as the MIKE URBAN 

model, are the most detailed type of models available for urban drainage systems. They are divided into 

two main components: a surface module and a hydrodynamic model. The surface module converts 

precipitation data into inflow to the pipe system for each sub-catchment in the system, while the 

hydrodynamic model calculates the flow in the pipe system using the flow from the surface module as 

model forcing. Additional model forcing components can furthermore be defined, such as 

infiltration-inflow or pumped flows. The surface module is lumped-conceptual on the sub-catchment 

scale but since these are distributed in space the surface module itself can be regarded as a distributed 

model. Several types of surface modules are available; the one used here is based on a time-area 

principle. The hydrodynamic model is physically distributed and like for the surface module several 

version are also available; the one used here is the MOUSE hydrodynamic engine. 

There are several examples in the literature of updating the lumped-conceptual part of MOUSE 

models. In [21] a MOUSE model is e.g., auto-calibrated for a 0.8 km2 suburban catchment at  

30 min time-intervals by adjusting an overall system scaling factor, the surface concentration time and 

the dry weather flow, and in [22] the lumped-conceptual hydrological states of the Rainfall Dependent 
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Infiltration and Inflow module (RDII) are updated (DHI, 2009). This is however fundamentally different 

from updating the states of the hydrodynamic part of the model, as done in this paper. 

2.2. Theoretical Basis for the Update Procedure 

The computation technique applied in the MOUSE hydrodynamic (HD) engine for solving the Saint 

Venant Equations uses a double sweep algorithm, which solves two sets of equations that are set up 

using a “branch” and a “nodal” matrix [23,24]. In short, the “branch” matrix is applied for computing 

flows and water levels in the pipes as a function of the water levels in the nodes at the end of each pipe, 

whereas the “nodal” matrix is used for computing water levels in the nodes at the new time step. 

Equation (1) gives the finite difference approximation of the continuity equation for a node:  

 (1)

where the terms of the equation are: the sum of inflows (qin) and outflows (qout); the time step (Δt); the 

water level (H); the wetted cross-section area (Acr); the current and next time steps (n and n+1) and the 

intermediate time steps (n−½ and n+½). Figure 1a illustrates how the water level at the next time step 

(Hn+1) is estimated.  

Figure 1. Normal (a) HD node computation and (b) Update node computation. In this 

example, the correction flow extracts the volume of water necessary to lower the water  

level from the level corresponding to the dashed circle to the level corresponding to the 

dotted circle. 

 

The idea behind the Update procedure is that the new water level in the node is known from a 

measurement produced by a level sensor located in the node. This means that the so far unknown 

variable in Equation (1), Hn+1, is now given by data taken from a measurement. A new unknown 

variable, Qcorrection, is then introduced on the right-hand side of Equation (1): 
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Figure 1 illustrates the difference between Equations (1) and (2). In the figure to the left Hn+1 is 

illustrated by the dashed circle, while in the figure to right it is illustrated by the dotted circle, which 

equals the measured water level. The difference between the simulated water level without updating 

and the updated water level (which is equal to the measured level) is the result of updating with the 

correction flow, Qcorrection. This correction can generally either add or extract water, which is illustrated 

by the dotted vertical double arrow in Figure 1b, but in the example shown it extracts water as 

evidenced by a lowering of Hn+1 compared with Figure 1a. The deterministic updating method is 

computationally efficient compared with updating schemes using the classical filtering techniques 

mentioned in the introduction, because corrections to the simulation are done only at the point where 

the level sensor is located and because distribution of the correction flow is ensured by the ordinary 

HD computations.  

A similar method has been implemented for the use of measured flow data for updating in 

computational grid points in the pipes where flow gauges are located. To make the computation match the 

measured flow, a correction flow is introduced that adds or extracts water from the pipe at the location of 

the flow gauge. In this case, another set of equations is rearranged to make the update computation, but the 

basic principle is the same as in the water level updating procedure described above.  

When using a model in real time, measured data can only be available until the present time t from 

whereon any further simulation creates a forecast. It is possible to compute the update correction flow as 

described above only as long as measured values are available (up to time t). From this point in time, 

updating (Equation (2)) is switched off and the continuity equation is solved in the standard way 

(Equation (1)).  

2.3. Water Balance  

The flow added or extracted in the computation in order to make the resulting water level match the 

measured water level is fully reported to the results as a correction flow time series and as the accumulated 

volume of the correction flow, together with a logging of the periods where the update function has been 

active. This means that updating does not ruin or violate the water balance of the simulation. 

2.4. Controlling the Update Procedure 

The updating feature can be configured to work only when the applied sensor signal is within a 

specified range. This is relevant when using sensors with known maximum or minimum limits. 

Pressure-based water level gauges can, for instance, only measure levels that are above the level of the 

sensor, while an ultrasonic water level gauge only measures correctly when the water level is below 

the sensor. 

An adjustment factor that is multiplied with the calculated correction flow before this enters the 

model can furthermore be specified for each location where the update feature is applied. This is useful 

in situations with noisy measurements or when big and sudden corrections are prone to create problems 

for the model. An adjustment factor less than one will make the corrections smoother and thus limit the 

risk of introducing large gradients between the state value in the updated node and its neighbors; 

however, it will also make updating react slower. Since the purpose of the presented work has been to 
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study the maximum effect of the update feature, the adjustment factor is set to one in all examples 

presented in the paper. 

3. Evaluation Procedure 

3.1. Downstream Flow Evaluation 

When a model’s upstream water levels are updated to more true-to-life values, the impact will 

propagate with the flow down through the system, in which case downstream flow simulations are likely 

to improve as well, given that the behavior of the physical system is described correctly by the model. In 

the following examples, water levels are updated in one or several nodes at a time. The effect of each 

update is examined by comparing measured downstream flows with the corresponding flows simulated 

with and without updating in upstream nodes. The forecast potential from updating is also examined. 

This is achieved by comparing the simulation results tf minutes after updating has ceased with the 

simulation results from a model run completely without updating. 

3.2. Rainfall Input 

Good rainfall forecasts up to a few hours into the future (nowcasts) are likely to become available 

within the next few years as a result of utilizing improvements within radar forecasting in combination 

with numerical weather prediction models [25–29]. A major assumption in our work, however, is that 

future rainfall input is known during all simulations, i.e., we use measured rainfall (“perfect forecasts”) 

as a surrogate for rainfall forecast time series. Besides being convenient from a computational  

point of view, this also has the benefit of isolating the impact of the update from errors related to  

rainfall forecasting. 

3.3. Generating Forecast Time Series for Testing the Algorithm 

The tf minute forecasts shown in the paper are made by assimilating water levels in one or more nodes 

until time t, at which point updating is turned off and the simulation continues without updating until the 

time when the forecast is required (t + tf), as shown in Figure 2 for two different forecast time horizons  

(tf1 and tf2).  

After updating stops, the change to state variables incurred by the updating algorithm will gradually 

loose its importance and the simulated values will converge towards the simulation run without 

updating, as illustrated by the dashed lines on Figure 2. To generate, for example, a 60-min forecast  

(tf = 60 min) the HD model is run with updating until time t, and thereafter it is run without updating for 

another 60 min until time t + 60 min. The result after 60 min is then part of the 60-min forecast time 

series. To make a 60-min forecast time series with a temporal resolution (ti) of 2 min the forecast states at 

2 min intervals (generated with updating) are used to initialize the 60-min forecasts, i.e., the computer 

workload increases by a factor of 30 compared to a single model run in the same period. In this work, a 

10-min temporal resolution is used when generating the forecast time series, in order to keep the 

computational burden at an acceptable level.  
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Figure 2. Sketch of how the forecasting time series is produced. The black and red solid 

curves represent simulation results when the model is run without and with updating, 

respectively. The dashed curves represent simulation results from a model run with updating 

(red solid curve) until the dot, after which the simulation continues without updating. The 

time between these dots (ti) is the time step of the forecast time series, and the squares 

connected with thin lines represent points in the tf hour forecast time series. Two examples of 

forecast time series are shown, for a short (tf1, green squares) and a long (tf2, blue squares) 

forecast horizon. 

 

The process of generating the forecast time series for the purpose of testing the Update algorithm, as 

illustrated in Figure 2, is automated in our work by using a Visual Basic program that runs all the 

forecast simulations, extracts the required results and then adds them to the forecast time series. The 

workflow’s first step is to produce model states for the updated model for the time steps that are going to 

be used as offset for each forecast. This is done by running a single simulation with updating enabled for 

the entire period of interest. The state values from this simulation for all relevant time steps are saved to 

a single “hotstart” result file, which is used to initialize the model before each forecast simulation. 

During forecast simulations, updating is disabled.  

4. Application Examples 

4.1. A Simple Hypothetical Example 

A simple hypothetical urban drainage system and a case of defined “unknown input” is set up to 

illustrate the impact of updating, how level measurements with a limited range can be utilized and that 

the water balance of the model fits when updating is active. The system consists of six nodes with a 

storage pipe section in the middle, as illustrated in Figure 3. The storage pipe is horizontal, with invert 

level at 2.0 m, while the remaining pipes have a 2.5‰ slope. The diameters of the upstream pipe, storage 

pipe, throttle pipe below the storage pipe and the downstream pipe are 1.5 m, 2 m, 0.35 m and 1 m, 

respectively, while the total length of the pipe system is 1900 m. Two virtual flow and water level meters 



Water 2014, 6   2202 

 

 

are placed within the system – one at the outlet (O) of the system and the other at the outlet of the storage 

pipe (S). The level meter in the storage pipe (S) records properly when the water level is more than  

1.45 m above the bottom of the node (corresponding to a level of 3.45 m), which illustrates a commonly 

occurring situation when pressure transducers are used for level measurements; these only measure 

when the water level exceeds the level the gauge has been installed in. The upstream node receives 

runoff from a catchment with a total impermeable area of 25 hectares, and the outlet of the system has a 

fixed water level boundary of 0.25 m above the bottom of the outlet.  

Figure 3. Illustration of the model setup for the hypothetical example along with input and 

output locations.  

 

To generate artificial observations at S and O a rain event measured by a rain gauge is used along with 

an inserted flow located in the pipe just before the storage pipe, as shown in Figure 3.  

The rainfall-runoff process is modelled using a simple time area method, and the inserted flow 

represents water unaccounted for in the model due to, for example, infiltration inflow or deviations 

between actual and measured rainfall. Rain input and additional inflow, which can be seen in Figure 4, 

generate a set of synthetic water level observations for nodes S and O, where the observations at node S 

are used for updating the modelled water levels in node S when the observed water level is above 3.45 m.  

Figure 4. Rain input and the additional inflow inserted upstream from node S in the 

hypothetical example, also referred to as the “unknown flow input”. 
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Figure 5 shows the correction flow and the accumulated correction volumes in node S (top panel), the 

observed and simulated water level in node S with and without updating in node S (middle panel) and the 

observed and simulated flow in node O with and without updating in node S (bottom panel). The results 

are generated using the method described in Section 3.3. The grey-shaded areas indicate periods where 

updating is active, i.e., where the observed water level is above 3.45 m. The middle panel shows that the 

simulated water level in node S is equal to the measured level as long as updating is active, and that the 

water level converges slowly towards the simulated level without update as soon as updating is turned 

off. A similar pattern can be seen for the downstream flow in node O. As soon as the updating becomes 

active, the modelled flow quickly resembles the observed flow, and when updating is turned off, the 

modelled flow converges slowly towards the modelled flow from a normal model run. Hence, the 

simulation with updating is far better than the simulation entirely without updating.  

Figure 5. Three graphs are joined into one in this figure. The top panel shows the correction 

flow (Qcorrection, solid curve) as well as the accumulated volumes inserted and extracted 

(dotted curves) in node S by updating. In the middle panel, the water level in node S is 

shown. Both the observed and simulated water levels with and without updating are shown. 

Rain input can also be seen in the middle panel. The bottom panel shows the observed and 

the simulated flow with and without updating in node O. In all three graphs the shaded 

background indicates when updating is activated. 

 

The accumulated correction flow in the top panel in Figure 5 shows that a large amount of water is 

inserted into the model as a result of updating (about 4000 m3 in total), which is expected because the 
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update algorithm has to compensate for the additional inflow representing unaccounted water, as 

highlighted in Figure 4. The correction flow from updating (Figure 5) shows large variations each time 

the measured water level rises above 3.45 m and the updating becomes active. This is due to the fact that 

all compensating water is inserted by the updating algorithm during a single time step, which leads to 

sudden changes in the water level in one end of the storage pipe and initiates a wave that moves back and 

forth a couple of times through the pipe. This wave affects the updating algorithm, which attempts to 

keep the water level at the measured value, and this explains the oscillations in the correction flow seen 

in Figure 5 as well as the small accumulated volume of water that is extracted during updating. The 

oscillations only appear as a response to the large and sudden changes in water level caused by the 

criterion of only updating when the water level is above 3.45 m. After an initial lag-phase, there are no 

further oscillations in the periods where updating is active. When the updating is continuous, oscillations 

will thus not appear, and nor will they if the updating happens in an ordinary basin. The oscillations do 

not seem to have any noticeable downstream impact, and for this simple model they do not give  

rise to model instability either. For larger models with possible instability issues it might be wise to  

use an adjustment factor of less than one to ensure a less rapid transition when updating is 

instantaneously turned on.  

The volumes inserted and extracted by the updating illustrated in Figure 5 are 4071 m3 and 652 m3, 

respectively, resulting in a net volume of 3419 m3 being inserted into the model. The total modelled 

inflow volume from the rain event without updating is 2430 m3. The ‘unknown’ flow input in this 

experiment simulation is actually 3450 m3 until the last point in time with active “update”. This 

magnitude matches the net volume generated by the update method.  

4.2. A Real Full-Scale Example 

A model of the urban drainage system in the city of Kolding, Denmark, is used to examine the effects 

of updating water levels in multiple upstream nodes on the simulation result and the forecast quality at the 

catchment outlet. All data and model details were provided by the consultancy currently investigating the 

feasibility of using advanced real time control in the catchment (see Acknowledgements). The model 

consists of 2303 nodes, 76 pumps, 94 weirs and 1223 sub-catchments with a total impermeable area 

of 544 ha.  

Water levels are updated using measured data in eight different locations, namely six basins and two 

manholes, as illustrated in Figure 6, and the simulation outputs are compared with the measured flow at 

the outlet, which is placed near the city center. Most of the water level meters are located close to pumps, 

which causes the dry weather flow to be dominated by frequent fluctuations. Updating is therefore 

activated only when the water level is higher than the maximum daily dry weather water level. Data from 

a single rain gauge located in the city center is used as rain input.  

The event used in the simulations is from December 2009 (00:00 25 December to 12:00 26 December), 

and it represents events that occur very commonly, with a return period below 0.3 years for durations 

between 1 and 360 min (cf. the national Danish intensity-duration frequency relationship in e.g., [30]). It 

lasts about a day and a half and has a rain depth of 18 mm. Figure 7 shows the rainfall and the observed 

and simulated flow at the catchment outlet with and without updating in the upstream basins and 

manholes. The simulation without updating corresponds well with the measured flow for the first couple 
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of hours of the event, i.e., here updating does not improve the simulations, but then the simulated values 

without updating drop far below the measured values for the remaining time. 

Figure 6. Overview of the distributed urban drainage model for Kolding. The squares, dots 

and triangles indicate where the observations from the six basins, two manholes and the 

outlet are located. The green and red areas indicate whether stormwater and wastewater flow 

in the same pipe (green, the system is combined) or in different pipes (red, the system is 

separated). Small villages that contribute to the flow are not included on the map. 

 

The fact that the measured flow continues to be rather high for at least half a day after the rain has 

stopped indicates that the model error is due to a slow-changing process, such as infiltration or 

snowmelt, which are processes that are not included in the model. The graph for the updated simulation 

is much closer to the measured values for a large part of the event, showing that updating in eight 

upstream locations (6 basins and two manholes, as indicated on Figure 6) to some degree is capable of 

compensating for the model’s inadequacies. In this case, updating adds about 60% of the water volume 

that is missing (compare measured and simulated flows ion Figure 7). 
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Figure 7. Rainfall (from the top, black curve) and observed flow (grey curve) at the outlet in 

Kolding on 25 and 26 December 2009, along with the simulated flow with (red curve, 

Update) and without (black curve, No Update) updating in the upstream nodes.  

 

The period where updating improves the result is between 11:00, 25 December and 03:00, 26 December 

(Figure 7). The simulation with updating can be used as a reference when evaluating the forecast quality 

and Figure 8 shows this together with the 30 min (top) and 3 h (bottom) forecasts within this period 

calculated using the method describes in Section 3.3. The result for the 30 min forecast is very similar to the 

result for a simulation run with updating. The result for the 3 h forecast is closer to the simulation run without 

updating until approximately 14:00, 25 December; subsequently, and until around 03:00, 26 December, the 

forecasted flow is very similar to the simulated flow when updating. This means that for an almost 12-h 

period the 3 h forecast (with updating prior to the forecast period) provides results that are closer to the 

observations than a forecast made without updating. Some discrepancy between the forecasted and 

observed are however visible, especially for peak flows. 

Figure 8. Rainfall (from the top, black curve) and observed flows (grey curves) at the outlet 

on 25 and 26 December 2009 (part of the hydrograph shown in Figure 7), along with the 

simulated flow with (red curve, Update) and without (black curves, No Update) updating. 

The green (a) and blue (b) squares represent the 30 min and 3 h forecast time series, 

respectively. See Figure 2 for further explanations. 
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The results show that updating the water level in eight upstream nodes first improves the simulation 

results for the tail of the hydrograph (Figure 8), while any improvement for the peak flow is rather 

limited. For updating to have an effect on a simulated flow from a particular part of the system, the water 

from this area has to run past an updated node. The outlet in Kolding is located near the city center, 

however, and a lot of the fastest runoff therefore runs directly to the outlet without passing a point with a 

water level meter. This explains why updating has a very limited effect on peak flow. The total 

impermeable area upstream of the water level meters is 182 ha, i.e., one-third of the total area, and it is 

thus the effect of updating only 33% of the flow from the total area that gives this noticeable effect on the 

outlet flow.  

The simulation of both the peak and tail could most likely be improved further by updating in more 

nodes, but there is a limitation to how much the forecasting of the peak flow can be improved by 

employing this method. This is due to a lack of basins near the outlet and because the majority of the 

impermeable area in Kolding is close to the outlet. However, updating in more basins over the entire 

model area should improve the tail of the hydrograph for the model simulation and the forecast  

time series.  

5. Discussion  

The investigated update algorithm is a fairly simple data assimilation tool and has the advantage of 

being easy to use and being computationally efficient. Since measured water levels are assimilated 

directly into the model, measurement uncertainties are however transferred to the model. This means 

that the measurements have to be of good quality, and the use of updating should thus preferably be 

combined with automated quality control of the measurements, where the raw data from routine 

monitoring programs are filtered using heuristic or statistical methods e.g., [31] prior to insertion into the 

Update scheme. Even when the measurements are perfect, direct updating of water levels should be used 

with care. If the relationship between flow and water level (Q/H-relation) at the update location is not 

exactly the same in reality as in the model, the consequence of updating the water level in the model will 

be an erroneous flow into or out of the system.  Therefore, updating is best suited for setting the water 

level in basins where the Q/H-relation in the discharge pipe is well known. In ordinary manholes, the 

Q/H-relation is much more complex and uncertain, which makes it very likely that updating in these 

places will cause problems. As an example, a change in water level of 10 cm in a pipe can make a huge 

difference to the flow through the pipe while the same change in water level in a basin hardly will affect 

the outflow. Furthermore, the fact that basins store relatively large amounts of water, and empty 

relatively slowly, makes the effect of updating in these areas significant when producing forecasts. This 

means that updating generally has a greater potential in catchments with large amounts of storage than in 

catchments without storage. 

The fact that the updating method only updates in the few selected points can give rise to some 

curious and undesirable effects, due to the possible introduction of large local gradients. If the update 

scheme is to be used in pipes or storage pipes, care must be taken not to induce oscillations into the 

system, though this can be handled by setting the adjustment factor to a sufficiently small value.  

If the reported correction flows and volumes are large compared to the results from normal 

simulations, this may be due to a poor calibration of the model or to errors in applied input or 
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measurement data. Updating is thus not a shortcut to bypassing the work on creating a well-calibrated 

model. If, for instance, the response time of the model upstream of the updating point is far from reality, 

it will affect the updated model in a way similar to using time-displaced rain data (see e.g., [32]). In this 

case, the model and the measured values are not synchronized in time and the updating can actually end 

up worsening the forecasts of the model.  

Deterministic updating as investigated here is intended to improve the accuracy of model forecasts in 

online applications. The success of the method depends on the quality of the model, including its 

calibration, on the quality of data from the applied level and flow sensors and on the characteristics of the 

system under consideration. The method introduces changes to the calculations compared with a normal 

simulation, but all modifications are reported to the results as correction flows and accumulated 

correction volumes, thus ensuring that water balance validation of the model can still be performed. The 

only difference is that part of the inflow (or outflow) is not accounted for by physical process description 

in the model. Nonetheless, this is not a major concern when using a model online, in which case the main 

priority is to make the model fit to reality. 

The proposed updating method is not in any way optimal—but it is feasible and easy to use. A 

state-of-the-art updating procedure would be capable of weighing up the uncertainty of the 

measurements against the uncertainty of the modelled values and instantaneously make a system-wide 

correction to the entire model while producing corresponding uncertainty estimates. Ensemble-based 

data assimilation methods, such as variants of the Ensemble Kalman Filter, are capable of doing this for 

non-linear models, but these depend on running large ensembles of models that ideally represent all 

uncertainty in model and input data. It will presumably take many years before ensemble-based data 

assimilation methods can be applied successfully to large operational distributed urban drainage models, 

which are inherently slow and furthermore tend to grow in complexity with the increase in computer 

power. Until then, the deterministic updating method described in this paper seems like a reasonable 

compromise. Analysis of further case studies with different characteristics (size, flow time, type and 

location of measurements) as well as rain storms of varying type (intensity, duration, return period) will 

contribute to further understanding the method as well as the potentials and disadvantage of using data 

assimilation in connection with distributed hydrodynamic urban drainage models. 

6. Conclusions 

The deterministic updating of water levels, as implemented in the MOUSE UPDATE tool 

investigated here, is a simple tool that works by inserting or extracting enough water at every 

computational time step into the point of update in the model, to make the modelled values fit the 

measured value at this specific location. Updating can improve simulation results for the updated node 

as well as for downstream nodes, as exemplified here by both a hypothetical and a real case study.  

The results from a hypothetical test catchment with an unknown infiltration inflow illustrated how the 

updating works and affects downstream nodes. The results from a real 544 ha catchment showed 

improved forecasts when updating water levels in six basins and two nodes, even though these represent 

only flow from 33% of the impermeable catchment area. Our main conclusions are that: 

• Point-wise deterministic updating of water levels in a distributed hydraulic urban drainage model 

improves model simulations, even in locations where measurements are unavailable, and can 
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thus be used to give a better evaluation of the state of the system than traditional simulations 

without updating; 

• Updating works best in systems with slow flow dynamics and where updating occurs in multiple 

upstream basins with slow water level variations, which represent a dominant part of the 

contributing area; 

• Updating improves forecasts compared to not updating, and there is hence some potential for 

using updated models in model-based warning and control systems; 

• An example, based on a real full-scale system, shows that a 3 hr forecast with updating provides 

flow predictions closer to the measured flow than a traditional simulation without updating; 

• Updating of water levels is a pragmatic tool that can help to compensate for the ever-present 

deviations between model simulations and measured data. 

In the future, when computer power has hopefully increased manifold, a simplified data assimilation 

tool like the one examined in this paper may be replaced by ensemble-based data assimilation methods 

that additionally produce uncertainty estimates for the entire system. Until then, the investigated Update 

method may be sufficient for many online applications. 
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Nomenclature 

Acr  Wetted horizontal cross-sectional area of a model node (m3); 

Qin  Sum of flows into a node (m3/s); 

Qout
  Sum of flows out of a node (m3/s); 

Qcorrection  Correction flow in or out of a node (m3/s); 

H  Water level in a node (m); 

n  Time step index of hydrodynamic computations (-); 

Δt   Time step size of the hydrodynamic computations (s); 

tf  Forecast horizon (min); 

ti  Time step size of the forecast time series (min). 
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