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Abstract: The aim of this study is to assess the relationship between rainfall and stream 

flow at Broughton River in Mooroola, Torrance River in Mount Pleasant, and Wakefield 

River near Rhyine, in South Australia, from 1990 to 2010. Initially, we present a short term 

relationship between rainfall and stream flow, in terms of correlations, lagged correlations, 

and estimated variability between wavelet coefficients at each level. A deterministic 

regression based response model is used to detect linear, quadratic and polynomial trends, 

while allowing for seasonality effects. Antecedent rainfall data were considered to predict 

stream flow. The best fitting model was selected based on maximum adjusted R2 values 
( 2

adjR ), minimum sigma square (σ2), and a minimum Akaike Information Criterion (AIC). 

The best performance in the response model is lag rainfall, which indicates at least one day 

and up to 7 days (past) difference in rainfall, including offset cross products of lag rainfall. 

With the inclusion of antecedent stream flow as an input with one day time lag, the result 
shows a significant improvement of the 2

adjR  values from 0.18, 0.26 and 0.14 to 0.35, 0.42 

and 0.21 at Broughton River, Torrance River and Wakefield River, respectively. A 

benchmark comparison was made with an Artificial Neural Network analysis. The 

optimization strategy involved adopting a minimum mean absolute error (MAE).  
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1. Introduction 

A review of rainfall-runoff modeling has been given by [1]. Rainfall and stream flow models can be 

applied to a diverse range of purposes including daily control of reservoirs, projecting future stream 

flows and flood management. Rainfall and stream-flow models can be classified as physically based, 

conceptual and empirical. Physically-based models include the Système Hydrologique Européan with 

sediment and solute transport [2] and Gridded Surface Subsurface Hydrologic Analysis [3] both of 

which require extensive spatial and temporal data and typically are used for small catchments. An 

example of a conceptual based model is the Modèle du Génie Rural à 4 paramètres Journalier (GR4J), 

which has been developed for understanding catchment hydrological behavior [4]. Other examples of 

conceptual rainfall-runoff models are the Sacramento Soil Moisture Accounting Model [5] and the 

SIMulation and HYDrologic model (SIMHYD) [6], which can be applied either as a lumped or 

gridded application. SIMHYD estimates daily stream flows from daily rainfall and areal potential 

evapotranspiration data. The class of empirical models includes time series models [7–13]. An advantage 

of an empirical model is that it can be fitted to situations where the hydrological data are restricted to 

rainfall and stream flow time series. A further advantage is that in a parametric test, a distribution can 

be fitted for assessing the hydrological behavior for any time period in any region. In addition, they 

can represent either linear or non-linear relationships. Time series models perform as well as 

physically-based alternatives [14]. Combined a conceptual model with an artificial neural network 

(ANN) for forecasting inflow into the Daecheong Dam in Korea [15]. Compared the wavelet 

decompositions of rainfall and runoff at four sites in the Tianshan Mountains [16]. They aimed to 

distinguish between errors in timing and errors in magnitude of hydrograph peaks. They used a  

cross-wavelet technique to quantify timing errors and hence provided an empirical adjustment to 

model predictions of stream flow.  

In this study, we have proposed a novel method for assessing short-term rainfall and stream flow 

models. The travel time between rainfall and stream flow gauges using cross-correlation functions [10,17]. 

They reported that the travel time was less than one day for the Onkaparinga catchment in South 

Australia. In this paper, we presume that there is a higher order relationship between rainfall gauge and 

stream flow data. It is, therefore, important in this study to construct the correlation structure. Linear 

regression models are commonly used for time series analysis [18], particularly for assessing evidence 

of trends, higher order changes and variability, including allowing for seasonality. We developed 

deseasonalized and detrended time series rainfall and stream flow models from deterministic 

regression models including linear, quadratic and cubic terms. These models take account of both lag 

rainfall and the influence of stream flow. The results of this study will be useful for water managers 

and policy makers involved in sustainable water resource management and climate change adaptation 

for the catchments used in this study. The approach is capable of modeling the non-linear relationships 

between inputs and outputs using ANNs [19]. The first advantage of ANN is that it only requires a 
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small number of parameters and learns through a number of training iterations involving adjusting the 

parameters (weights) of the network [20]. A second advantage is that it is useful in situations where it 

is complex to build a physical or conceptual model, such as hydrological modeling of rainfall- stream 

flow processes [21–25]. ANN models were useful to find the relationships between rainfall and river 

flow data in a river basin in India [26]. We present a statistical approach that uses the deterministic 

features of a regression model to build many neural networks with a combination of different lagged 

input patterns. A wavelet based regression model for stream flow using the discrete wavelet transform 

(DWT) of the entire time series [27]. They also provided a comparison of their model performance 

with ANN. A chaotic stream flow model using an ensemble wavelet network [28]. Used wavelet 

analyses of rainfall and runoff and wavelet rainfall–runoff cross-analyses to investigate the temporal 

variability of the rainfall-runoff relationship [17,29]. They found that wavelet transforms provide a 

physical explanation of the temporal structure of the catchment response.  

2. Data Collection and Preparation  

The analysis is based on data from three rainfall and stream flow stations in South Australia,  

as presented in Figure 1. The Broughton River (BR) station is at Mooroola, which is located 

approximately 40 km north of Port Broughton and 20 km south west of Port Pirie. Torrance River (TR) 

station is located at Mount Pleasant, and its rivers and tributaries are highly variable in flow and 

together drain an area of 508 km2. Wakefield River (WR) is an ephemeral river near Rhynie, with a 

catchment area of approximately 1913 km2. 

Figure 1. Location of Broughton River (BR), Torrance River (TR), and Wakefield River (WR). 
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The elevation of the river may indicate the hydrological feature, presented in Table 1, Column 4. 

These stations were selected because they had long records of rainfall and stream flow and the  

highest quality control in terms of Australian Bureau of Meteorology, [30] and the Department for 

Environment, Water and Natural Resources [31] quality designations for rainfall and stream flow 

records. Information on these stations and data quality are presented in Table 1. 

Table 1. Weather stations information, data quality and observations. 

Stations name ID 
Location 

Elevation Variables 
Data period % of 

Missing Latitude Longitude Start End 

Broughton River  

at Mooroola 
A5070503 –33.53 138.51 196 m 

Rainfall Jun. 1989 Dec. 2011 0.1 

Stream flow Jun. 1972 Dec. 2011 0.7 

Torrance at  

Mount Pleasant 
A5040512 –34.78 139.02 414.7 m 

Rainfall Jun. 1989 Dec. 2011 0.6 

Stream flow May 1973 Dec. 2011 0.1 

Wakefield river  

near Rhyine 
A5060500 –34.13 138.63 202 m 

Rainfall Sep. 1985 Dec. 2011 0.9 

Stream flow Jun. 1971 Dec. 2011 0.2 

In this paper, there was less than 1% missing data and these were replaced by the mean of the series 

of rainfall and stream flow, to give an unbroken time series for analysis. Methods for replacing periods 

of missing values are discussed [18,32]. In this paper, we propose a dyadic signal time period (i.e., 2n 

where n is an integer and n ≥ 0, for assessing the relationship between daily rainfall and stream flow 

during the period 1990–2012. We observe the discrete sequence of time series {yt} where {yt} is an 

integer ranging in length. We extract multi-level information of observed rainfall and stream flow 

series in three catchments in South Australia using the Haar wavelet decomposition. We split {yt} into 

10 sub-time series of length power two i.e., 2n, where n is the level of the time series, starting from 0. 

We also investigate the correlation between rainfall and stream flow patterns for each sub-series from 

levels 0 to 8.  

3. Statistical Analysis 

3.1. Assessing the Relationship between Rainfall and Stream Flow 

The open source software R [33] was used for the analyses in this paper. We calculate 10 subseries 

of rainfall and stream flow from 1990 to 2012 using the “wavethresh” R routine packages [34,35] for 

assessing the relationship between rainfall and stream flow. The length of time taken into account in  

10 subseries for rainfall and stream flow is a period of 512 days. 

The relationship between rainfall and stream flow within 10 subseries is presented in Figure 2. The 

maximum correlation coefficients are 0.08, 0.23 and 0.31 at Broughton River, Torrance River and 

Wakefield River, respectively. These values are between −1 and +1 in all cases, indicating the degree 

of linear dependence between rainfall and stream flow. For assessing short term spatial variability, a 

correlation coefficient of the sub-series of rainfall and stream flow less than 0.4 indicates a significant 

difference from 0 at each station. For example, in sub-series 2, the correlation coefficient was 0.04, 

0.15 and 0.28 which indicates the independence of rainfall and stream flow at Broughton River, 

Torrance River and Wakefield River, respectively.  
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Figure 2. Correlation pattern subseries of rainfall and stream flow time series. 
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In order to understand stream flow availability under the climatic conditions in South Australia, we 

investigated the characteristics of rainfall and stream flow patterns, as categorized by climatic 

phenomena. A statistical measure of the dispersion of rainfall and stream flow patterns around the 

mean is defined as follows: 

x

xS
CV

μ
=  (1)

where CV is defined as the coefficient of variation and is represented by the ratio of the standard 

deviation (Sx) to the mean (µx). Table 2 shows the degree of variation in rainfall and stream flow patterns. 

Table 2. Rainfall and stream flow variability at Broughton River, Torrance River and 

Wakefield River in South Australia (SA) from 1990 to 2011. 

Statistics 
Broughton River Torrance River Wakefield River 

Rainfall Stream flow Rainfall Stream flow Rainfall Stream flow 

Mean 1.653 9.817 1.530 5.396 1.282 25.333 

Estimated standard deviation 0.385 4.075 0.296 4.201 0.223 21.300 

Coefficient of variation (CV) 23.31% 41.51% 19.36% 77.85% 17.40% 84.07% 

In Table 2, the CV for stream flow patterns indicates higher variability than for the rainfall series. 

Figure 3 shows the variability of the wavelet coefficients from levels 0 to 8. The evidence of 

association between the rainfall and stream flow coefficient is strongly correlated at the 5% 

significance level in Table 1. 
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Figure 3. Standard deviations of wavelet coefficients of rainfall and stream flow from 

level 0 to 8. (a) Rainfall; (b) Stream flow. 
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3.2. Correlation Structures between Rainfall and Stream Flow 

In the previous sections, we calculated wavelet coefficients for each subset of the rainfall and 

stream flow series. In order to filter each of those series, we applied Haar wavelets. 

The constructed correlation pattern for each rainfall and stream flow sub-series for levels 0 to 8 is 

given by: 


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where rk is the constructed correlation with level n from 0 to 8 and 
jj wdwd YX , is the jth sub-series of the 

rainfall and stream flow wavelet decomposed with the Haar procedure. The results are presented in 

Table 3. 

The evidence of significant correlation (r ≥ 0.50) between rainfall and stream flow wavelet 

coefficient series with at least a 5% significance level is shown in Table 3. Furthermore, to avoid  

co-linearity problems, the squared rainfall and stream flow wavelet coefficient series are also included. 

We found that a correlation structure (r = 0.56) such as stream flow is determined by rainfall on at 

least 4 days with 5% level at the Broughton River Basin and Torrance River Basin, as shown in  

Table 3. The adjusted squared stream flow and rainfall has a little evidence of correlations (i.e., at 5% 

level) up to 64 days at Torrance River at, also a marginal correlation (r = 0.51) up to 128 days within 

squared adjusted rainfall and adjusted stream flow at Wakefield River. The rainfall and stream flow 

relationship was used to develop a response model for predicting stream flow.  
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Table 3. Constructed correlation pattern for different levels between (a) adjusted rainfall 

and adjusted stream flow; (b) squared adjusted rainfall and adjusted stream flow;  

(c) adjusted rainfall and squared adjusted stream flow; (d) squared adjusted rainfall and 

squared adjusted stream flow. 

Days 
Broughton River Torrance River Wakefield River 

a b c d a b c d a b c d 

1 0.71 ** 0.89 *** 0.70 ** 0.86 *** 0.76 ** −0.184 −0.513 0.447 0.76 ** −0.53 * −0.59 * 0.86 *** 

2 0.65 * 0.264 0.469 0.449 0.72 ** 0.57 0.158 0.265 0.384 0.413 0.201 0.038 

4 0.56 * −0.189 0.257 0.146 0.63 * 0.061 −0.27 0.125 0.324 −0.28 −0.341 0.115 

8 0.087 0.369 −0.296 0.103 0.032 0.55 * 0.173 −0.51 * −0.369 0.483 0.191 −0.418 

16 0.233 0.08 −0.009 −0.326 0.275 −0.15 0.009 −0.311 0.306 −0.652 0.081 −0.393 

32 0.094 0.055 −0.059 −0.248 0.68 * −0.84 ** −0.81 *** 0.97 *** −0.116 0.002 −0.382 −0.121 

64 0.411 0.036 0.292 0.238 0.488 0.67 * 0.456 0.71 ** −0.091 0.166 −0.005 −0.301 

128 0.423 −0.409 0.604 * 0.68 * 0.299 −0.162 0.186 −0.223 0.279 −0.575 0.128 −0.51 * 

512 0.456 0.354 −0.292 0.343 −0.218 −0.405 0.007 −0.405 0.094 0.117 0.098 −0.163 

Notes: * Coefficients are statistically significant at 5%; ** Coefficients are statistically significant at 1%; *** Coefficients are 

statistically significant at 0.1% 

3.3. Rainfall-Stream Flow Response Modeling 

The constructed correlations described in the previous section may be partly due to common 

seasonal variations and trends, so a first step is to estimate these deterministic features with regression 

models for entire period from 1990 to 2010. The residuals from these regressions are reformed to the 

deseasonalized and detrended (dsdt) time series. For all three stations, a cubic trend gave a statistically 

improved fit over a linear or quadratic trend over the study period. The seasonal variation was 

reasonably modelled by a sinusoidal curve. Therefore, the regression models are of the form: 

ti SCtimetimetimeT εββββββ +×+×+×+×+×+= 54
3

3
2

210  (4)

where, Ti represents either rainfall or stream flow; time is the mean adjusted time, that is )( tt −  where t 

is the number of days from the start of the record and t  is the mean of t, time2 and time3, which allows 

for possible quadratic and cubic trends; C is cos(2πt/365.25) and S is sin(2πt/365.25) and together 

these allow for seasonal variation of period one cycle per year; βj are the unknown coefficients to be 

estimated; and εt are random variations with mean 0 and constant standard derivation. 

For the estimated coefficients, only a few values are significantly different from 0 even at the 5% 

significance level, as shown in Table 4. There is evidence of significantly different trends in rainfall at 

Wakefield River, which may have corresponded to increased stream flows if rainfall is increased. We 

have predicted the stream flow (Yt) on day t from rainfall (Xt) with corresponding lags k. This is 

referred to as a Response Model (RM). The regression is defined as: 

tt XXXY εββββ +×+×+×+= 12812822110 ..............  (5)

We assess stream flow in response to rainfall at lags 0 to 128. The best fitted model is selected 
based on the adjusted coefficient of determination; )( 2

adjR ; minimum sigma squared (σ2) and the Akaike 

Criterion Information (AIC); The AIC is defined as: 
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AIC = 2 × number of parameters − 2 Log(L) (6)

where L is the maximized value of the likelihood function for the estimated model. Comparisons of the 
AIC for different model is as shown in Table 5. The 2

adjR value significantly reduces and the estimated 

stream flow influence is close to zero after the exogenous rainfall at lag 7. Therefore, we reduced the 

exogenous rainfall at lags from 128 to 7 in the response model; referred to as RM0 in Table 5. This 

strategy is sub-optimal inasmuch as rejected terms might meet the retention criterion if added back 
individually. However; any small improvement in 2

adjR  would be balanced by increased complexity in 

the model; which is undesirable if interaction and squared terms are added. The regression model is 

defined as RM: 

776655443322110 XXXXXXXYt ×+×+×+×+×+×+×+= ββββββββ  (7)

In the second model, we add deterministic features to the regression model including linear, 

quadratic and cubic terms of t, allowing for seasonality effects. This model is defined as RM_D:  


=

+ ×++=
7

1
50

l
llt XLY ββ  (8)

where tSCtimetimetimeL ×+×+×+×+×= 54
3

3
2

21 βββββ . 

The third model is defined as RMD_AR[1] and is an autoregressive model of order 1 (AR[1]) with 

RM_D. It can be written in the form: 

113

7

1
50 −

=
+ ×+×++=  t

l
llt YXLY βββ  (9)

The fourth model is defined as RMD_AR[2], and is an autoregressive model of order 2 (AR[2]) 

with RMD_AR[1]. It can be written in the form: 

214113

7

1
50 −−

=
+ ×+×+×++=  tt

l
llt YYXLY ββββ  (10)

Table 4. Estimated coefficients of rainfall and stream flow variability from 1990 to 2012. 

Station Statistical Summary Intercept (β0) Linear Term t Quadratic Term t Cubic Term t 

Broughton 

River 

Estimated rainfall 1.58 −0.000042 −0.000000001 −0.000000000003 

Variability of rainfall 0.106 0.00008 0.000000017 0.000000000008 

Estimated stream flow 52.08 −0.01244 * 0.0000031 * −0.000000000258 

Variability of stream flow 6.18 0.004661 0.0000009 0.000000000485 

Torrance 

River 

Estimated rainfall 1.424 −0.00007 0.000000019 0.000000000004 

Variability of rainfall 0.077 0.00006 0.000000012 0.000000000006 

Estimated stream flow 3.47 −0.00174 * 0.0000003 * 0.000000000149 * 

Variability of stream flow 0.607 0.0004573 0.000000092 0.000000000048 

Wakefield 

River 

Estimated rainfall 1.226 −0.000123 * 0.0000000037 0.00000000001 * 

Variability of rainfall 0.067 0.000051 0.00000001 0.000000000005 

Estimated stream flow 15.95 −0.01144 * 0.0000007 0.0000000008 * 

Variability of stream flow 3.576 0.002694 0.0000005 0.000000000280 

Note: * statistical significance at 5%. 
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Table 5. Fitted regression model for Broughton River, Torrance River and Wakefield River. 

Model 
Broughton River Torrance River Wakefield River 

2
adjR  

Std. Error AIC RMSE * 
2
adjR Std. Error AIC RMSE * 

2
adjR Std. Error AIC RMSE * 

RMO 0.16 333.6 1104.9 3.5107 0.24 31.19 742.77 5.074 0.13 195.8 1023.53 1.1777 

RM_D 0.18 331.3 1103.9 3.1507 0.26 31.02 741.9 5.012 0.14 195.3 1023.1 1.1777 

RMD_AR[1] 0.35 292.9 1085.1 0.0353 0.42 27.35 722.7 0.052 0.21 187.4 1016.9 0.11777 

RMD_AR[2] 0.36 291.7 1084.5 0.0313 0.43 27.35 722.5 0.0452 0.22 187.4 1016.8 0.10777 

RMD_tau 0.39 285.8 1081.4 0.0035 0.42 27.32 722.1 0.0411 0.23 187.3 1016.1 0.10178 

Note: Asterisk (*) units are in m3s−1. 

Finally, we develop a model for a benchmark comparison of stream flow on day t based on the 

entire previous period of stream flow and their influence (τ) adding with model RM_D. This model is 

defined as RMD_tau. Tau (τ) is 0 if there is no stream flow influence from the previous day’s rainfall. 

We have demonstrated an example of count stream flow influence in Table 6. 

Table 6. An example of count tau and stream flow influence rainfall over time. 

Stream flow 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 

8 9 0 0 0 2 9 22 3 5 8 8 6 

Rainfall 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 

3 2 5 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 

In the Table 6, when the day t = 6, Y6 = 2, then we count tau = 3 (number of 0), and Y6-3-1 = 9, 

can be applied in the referred model RMD_tau. 

The model RMD_tau can be written in the form: 

11413

7

1
50 −−

=
+ ×+×+×++=  τβτβββ t

l
llt YXLY  (11)

The fitted model for predicted stream flow in response to exogenous rainfall, deterministic features 

of the regression model, and previous stream flow influence, is presented in Table 5. The best fitting 

model selection was based on minimum AIC and minimum root mean square Error (RMSE). The 

RMSE is defined as: 

2)ˆ( tt YYERMSE −=
 (12)

where, tŶ  is defined as the estimated stream flow and Yt is the observed stream flow, respectively. 

The response model RM0 has 128 predictor variables namely the rainfall lags at 0 to 128. 

Therefore, there are 129 parameters to estimate including the intercept. The estimated rainfall effects 

belong to 0 up to 7 days lag, therefore we reduced the rainfall lags from 128 to 7 days and the 
optimized 2

adjR  values for this model are 0.16, 0.24 and 0.13 for Broughton River, Torrance River and 

Wakefield River, respectively, as presented in Table 5. We also offset the cross product term of lags to 

further reduce the complexity of this model. The second model included linear quadratic and cubic 

terms, and this model is denoted as RM_D. The number of parameters to be estimated is therefore  
8 + 3 = 11 and the 2

adjR  increased to 0.18, 0.26 and 0.14 for Broughton River, Torrance River and 

Wakefield River, respectively, which is a practical and statistically significant improvement. We then 
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added a first order autoregressive term, referred to as a RMD_AR[1] model, and a second order 

autoregressive term referred to as a RMD_AR[2] model. We also made a benchmark comparison by 

using the entire stream flow record and this model is denoted RMD_tau, as presented in Table 5.  

In Table 5, there is evidence of improvement of 2
adjR  values, RMSE in m3s−1 from RM to RM_D. 

Adding autoregressive order 1 (AR[1]) with RM_D results in substantially improved 2
adjR  values 

(from 0.18, 0.26, and 0.14 to 0.35, 0.42 and 0.21 for Broughton River, Torrance River and Wakefield 

River, respectively. Furthermore, when adding autoregressive order 1 (AR[1]) with RM_D, there is 

evidence of improvement but this may be offset by the increasing number of parameters that affect the 

complexity of the model. In addition, the RMD_tau model represents a small improvement for two of 

the three river basins. The best fitted models are RMD_tau for Broughton River, RMD_AR[2] for 

Torrance River and RMD_tau for Wakefield River, were selected based on the minimum Akaike 

Information Criterion (AIC) and minimum root mean square error (RMSE) in m3s−1. The residuals 

from the best fitted models were transformed to normalized form by factor multiplication. A factor was 

calculated, which allows for the fact that the mean of a non-linear function of a random variable is not 

equal to that function of the mean. The transform series follow an identically normalized form with 

mean (μ) of zero, standard deviation (σ2) of 1 and a random disturbance term (εt) which is uncorrelated. 

The transformed series were used to predict the stream flow on day t based on the predicted stream 

flow influence over the short term, as shown in Figure 4. 

Figure 4. Predicted stream flow based on dsdt rainfall for (a) Broughton River;  

(b) Torrance River; and (c) Wakefield River from 1990 to 2010. 
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In Figure 4, we demonstrate the versatility of stream flow prediction. It can be seen that this is a 

non-linear relationship when expressed in terms of the physical interpretation of stream flow based 

on rainfall. 

3.4. Modeling Stream Flow Using an Artificial Neural Network 

Artificial neural network (ANN) techniques are motivated by the principles of biological  

nervous systems [36]. Although there are different types of ANN, the multilayer feed forward network 

is the most commonly used technique. For example, a common approaches of training using  

back-propagation in a multi-layer feed forward network [23]. The network consists of input, hidden 
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and output layers. Each layer is fully connected with the proceeding layer with weights in each 

connection, as shown in Figure 5. 

Figure 5. A schematic ANN including input, hidden and output layers. 

 

In Figure 5, the number of nodes in the input layer is p, the number of nodes in the hidden layer is q 

and the number of nodes in the output layer is r. The initial assigned random weights are updated 

during the training process by comparing the predicted output and the known output for errors. Errors 

are then back-propagated to adjust the weights. The dsdt of daily rainfall and stream flow data from the 

regression model developed in the previous section are considered for developing a prediction model 

for each of the three river basins for the years 1990 to 2010. A certain methods proposed such as input 

selection, model architecture selection, model calibration (training) and validation (testing) [37]. In 

addition, we emphasize the fact that ANN set-up has to be carefully achieved and described to get the 

reliable results. This study described the steps in building the prediction models for stream flow. We 

consider the prediction function as: St+1 = f(St, St-1, St-2, ….., St-m, Rt, Rt-1, Rt-2,...,Rt-n) where S 

represents stream flow, R represents rainfall, t is the current day, m = {3,...,8}, n = {3,...,8} and f 

represents the ANN as a regression function. We investigate necessary lagged inputs of rainfall and 

river flow for modeling the river flows at three locations in South Australia. We apply an artificial 

neural network (ANN) technique for modeling river flow. ANN models are developed with all 

combinations of rainfall and river flow input ranges. In addition, a standard range of nodes in the 

hidden layer are also considered. Among all models based on inputs and hidden nodes, the best model 

is selected based on mean absolute error criteria. This entire process is applied to all three locations. 

ANN models capture the non-linear relationships of rainfall and river flow patterns in modeling river 

flows from large time series data. For example, if we consider 3 days lag of stream flow and 5 days 

lag of rainfall, then the total number of input nodes in the ANN structure will be 8 and we consider 

the number of nodes in the hidden layers ranging from 1 to 10. To achieve the best model using 

ANN for each location, all inputs not only apply in combination, but we also consider setting a range 

of parameters, such as different number of nodes in the hidden layer, for each combination of inputs. 



Water 2014, 6 3539 

 

In predicting stream flow one day ahead as output, we consider stream flow and rainfall with 

combinations of consecutive lags where the minimum lag is 3 days and the maximum lag is 8 days. 
Thus, for each location, the total number of models to be trained becomes 36. As the data set is large, 

one year of data is considered initially for testing. For training ANN models at each location, we 

consider stream flow and rainfall data for the period 1990 to 2009. The remaining data for the year 

2010 is used for testing the best model found in the training phase.  

For the Multilayer Perceptron (MLP) function, the ANN stream flow prediction model was built 

using the RWeka package in R Language [38]. One of the important parameters to specify is the 

number of nodes in the hidden layer, which may vary for time series modeling in different locations. 

Using trial and error, the number of nodes in the hidden layer is considered from 1 to 10. This range is 

widely used in hydrological time series modeling [21]. We consider the learning rate (the amount the 

weights are updated) to be 0.3, momentum is 0.2 and the number of epochs to train is 500.  

Application of back propagation in ANN with a sigmoidal function was used to set the normalized 

data in the MLP function. Furthermore, the mean absolute error (MAE) in m3s−1 was minimized 

through an iteration process that varied the number of nodes in the hidden layer. 

The best lag combination at each location is presented in Figure 6. 

Figure 6. MAE for training data (1990–2009) using ANN with best lag combinations at 

each location, units in m3s−1. 

 

We find that both input lags and nodes in the hidden layer are different for each location. The best 
model based on correlation coefficient )( 2

adjR  and the lowest root mean square error (RMSE) and mean 

absolute error (MAE) for each location is presented in Table 7. For Broughton River, 3 days rainfall 

and 6 days stream flow as lagged inputs with 9 nodes in the hidden layers produces the lowest MSE. 
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At Torrance River, 3 days rainfall and 8 days stream flow as lagged inputs with 2 nodes in the hidden 

layers produces the lowest MSE. For Wakefield River, 4 days rainfall and 5 days stream flow as 

lagged inputs with only one node in the hidden layer produces the lowest MSE. This indicates the 

variability in the ANN models for different locations. 

When the best model is identified based on the training data for each location, we use this model on 

testing data prediction. This study show the prediction results for the testing data for each location. 

Figure 7 shows the predicted and observed stream flows using testing data for the locations Broughton 

River, Torrance River and Wakefield River, respectively.  

Table 7. Best prediction model based on 2
adjR , lowest RMSE and MAE are in m3s−1 on the 

training data. 

Location Input Lags Nodes in Hidden Layer in ANN(H) 
2
adjR  RMSE * MAE *

Broughton River  3 days rain, 6 days stream flow 9 0.68 270.33 45.53 

Torrance River  3 days rain, 8 days stream flow 2 0.71 24.54 4.89 

Wakefield River  4 days rain, 5 days stream flow 1 0.45 179.42 19.28 

Note: Asterisk (*) units are in m3s−1. 

Figure 7. Observed and predicted stream flow for (a) Broughton River; (b) Torrance 

River; and (c) Wakefield River for the year 2010. 
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The MAE for training and testing data is shown in Figure 8 for all three locations. We observed that 

the MAE for the training and testing data at Broughton and Torrance Rivers do not vary significantly. 

For Broughton, in training, the best ANN model structure includes 3 days lagged rainfall and 6 days 

lagged stream flow as inputs with 9 nodes in the hidden layer. This model has the lowest MAE, at 

45.53 m3s−1. We further use this best model for testing and we find the MAE of 32.43 m3s−1. For 

Torrance, the ANN best model in training has 3 days lagged rainfall and 8 days lagged stream flow as 

inputs with 2 nodes in the hidden layer achieving the MAE of 4.89 m3s−1. For testing data, this model 

gives a MAE of 9.27 m3s−1. In case of Wakefield, the best ANN model has 4 days lagged rainfall and 5 

days lagged stream flow as inputs with 1 node in the hidden layer achieving the MAE of 19.28 m3s−1. 

For the testing data, this model achieves an MAE of 42.88 m3s−1. The reason for the difference in 

MAE between the training and testing phases could be due to this river’s ephemeral nature, and its 

substantial dependence on rainfall. 
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Figure 8. Comparison of MAE for training and testing data, units are in m3s−1. 

0

5

10

15

20

25

30

35

40

45

50

Broughton Torrence Wakefield

M
AE Calibration

Validation

 

4. Conclusions 

Initially, we split the whole series with a dyadic signal process for assessing the short term 

relationship between rainfall and stream flow including correlation using Haar wavelets. We have 

presented an innovative idea for the hydrological community for assessing stream flow for any 

catchment. In particular, the end user could assess the variability of changes and construct higher order 

correlations from 2 days up to as long as required. In addition, this study would be helpful for 

predicting stream flows using deterministic regression techniques, particularly where there is evidence 

of changes of statistical distribution characteristics, which is important for Water Sensitive Urban 

Design, as clearly demonstrated [39]. Using a deterministic regression based response model we found 

an increasing trend in stream flow when rainfall increased significantly. Predicted stream flow was 

more influenced by the previous few days’ stream flows than when considering the entire previous 

period of stream flow. We also developed artificial neural network models for three locations. The 

results show that the influence of lagged rainfall and stream flow lies within a short temporal window. 

The results demonstrate that the ANN models perform better for Broughton and Torrance River in 

capturing the rainfall and stream flow relationships. 
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