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Abstract: Global optimization methods linked with simulation models are widely used for 

automated calibration and serve as useful tools for searching for cost-effective alternatives 

for environmental management. A genetic algorithm (GA) and shuffled complex evolution 

(SCE-UA) algorithm were linked with the Long-Term Hydrologic Impact Assessment  

(L-THIA) model, which employs the curve number (SCS-CN) method. The performance of 

the two optimization methods was compared by automatically calibrating L-THIA for 

monthly runoff from 10 watersheds in Indiana. The selected watershed areas ranged from 

32.7 to 5844.1 km2. The SCS-CN values and total five-day rainfall for adjustment were 

optimized, and the objective function used was the Nash-Sutcliffe value (NS value). The 

GA method rapidly reached the optimal space until the 10th generating population 

(generation), and after the 10th generation solutions increased dispersion around the 

optimal space, called a cross hair pattern, because of mutation rate increase. The number of 

looping executions influenced the performance of model calibration for the SCE-UA and 

GA method. The GA method performed better for the case of fewer loop executions than 

the SCE-UA method. For most watersheds, calibration performance using GA was better 

than for SCE-UA until the 50th generation when the number of model loop executions was 
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around 5150 (one generation has 100 individuals). However, after the 50th generation of 

the GA method, the SCE-UA method performed better for calibrating monthly runoff 

compared to the GA method. Optimized SCS-CN values for primary land use types were 

nearly the same for the two methods, but those for minor land use types and total five-day 

rainfall for AMC adjustment were somewhat different because those parameters did  

not significantly influence calculation of the objective function. The GA method is 

recommended for cases when model simulation takes a long time and the model user does 

not have sufficient time for an optimization program to search for the best values of 

calibration parameters. For other cases, the SCE-UA program is recommended for 

automatic model calibration. 

Keywords: genetic algorithm; shuffled complex evolution; global optimization; curve 

number method; surface runoff simulation 

 

1. Introduction 

Recently, optimization techniques have become widely used in computer modeling applications.  

A major advantage of the application of optimization techniques with models is to obtain better results 

without significant effort and time. Optimization techniques can be divided into two groups: global 

search methods such as Genetic Algorithm (GA) [1] and Shuffled Complex Evolution (SCE-UA) [2] 

algorithm, and local search methods, such as the downhill simplex method [3], the pattern search 

method [4], and the rotating direction method [5]. Numerous studies have reported that global search 

methods performed better than local search methods [6–10].  

Numerous studies reported that the SCE-UA algorithm provided better estimates of the solution 

compared with other global and local search procedures for calibrating watershed models. Cooper et al. [6] 

evaluated three global optimization methods including the SCE-UA, GA and simulated annealing 

(SA). They found that the performance of optimization was influenced by the objective function and 

starting position of the optimization search, and the SCE-UA method provided better results compared 

with other methods. Franchini et al. [8] reported that the solutions from SCE-UA were stable but 

characterized by many parameter values set at the boundary of their potential range. Kuczera [11] 

indicated the reason the SCE-UA is better than GA due to the periodic global sharing of information 

between the local simplex searches. Thyer et al. [10] revealed that SCE-UA’s use of multiple complexes 

and shuffling provided a more effective search of the parameter space than GA’s single simplex.  

Although most optimization applications for automated model calibration continue to be studied, 

recent research activity in optimization for environmental modeling is centered on systematic analysis 

and selection of the best alternative for environmental management strategies. Vasques et al. [12] 

applied GA with the first-order reliability method (FORM) for estimating the probability of system 

failure under a given wasteload allocation to achieve wasteload allocation solutions between treatment 

cost and reliability. Ngo et al. [13] proposed to optimize control strategies for reservoir operation by 

applying SCE-UA methods. Kerachian and Karamouz [14] identified operating rules for water quality 

management in reservoir-river systems using a stochastic GA based conflict resolution technique.  
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Park et al. [15] proposed application of an optimization method for effective water quality monitoring 

in a large river system.  

New optimization algorithms have been developed and some algorithms demonstrated better 

capability than GA or SCE-UA for some problems [16,17]. However, GA and SCE-UA algorithms are 

applied for automatic calibration and determination of alternative strategies for watershed management, 

while other researchers have enhanced algorithm capabilities. Table 1 summarizes case studies of GA 

and SCE-UA application over the last five years (2010–2014) [18–63]. SCE-UA has been primarily 

applied for automatic calibration, while GA has been more widely used for decision-making associated 

with watershed management strategy.  

Table 1. Case studies of GA and SCE-UA algorithm application for the last five years (2010–2014). 

Case Study GA SCE-UA 

Automatic calibration 9 [18–26] 19 [40–58] 
Decision making 11 [27–37] 2 [59,60] 

Algorithm enhancement 2 [38,39] 3 [61–63] 

Therefore, GA and SCE-UA can be expected to be widely used for watershed and water quality 

management for selection of the best alternatives for management as well as automated model 

calibration. In this study, GA and SCE-UA methods coupled with the Long-Term Hydrologic Impact 

Assessment (L-THIA) model, which employs the curve number (CN) method, were applied to  

10 watersheds. The two optimization methods were characterized by analyzing how they generated 

solution populations and found optimal values according to the number of iteration of model runs. This 

study might help for user to select between GA and SCE-UA or for developer to improve the algorithm.  

2. Theoretical Background 

2.1. Genetic Algorithm (GA) 

The GA is based on the principle of natural selection and natural genetics combining an artificial 

survival of the fittest with genetic operators abstracted from nature [1]. The GA method employs three 

distinct operations including reproduction, crossover, and mutation, which make the initial population 

to be evolved the next generation [64]. The flow chart of the PIKAIA version 1.0, which is a  

self-contained, genetic-algorithm-based optimization subroutine developed at the High Altitude 

Observatory [65], is shown in Figure 1. The initial population of chromosomes is generated randomly, 

and the objective functions for each individual are calculated. Both parents in one iteration of the 

reproductive cycle are selected by PIKAIA’s stochastic sampling mechanism for new individual 

generation. A chromosome-like structure for each selected parent is produced for use in crossover and 

mutation processes. One-point crossover between a pair of parent-individuals is implemented to create 

a pair of offspring-individuals. One-point crossover selects randomly point C in length L and 

exchanges the codes of the pairs as shown in Figure 2. Mutation is implemented here by exchanging 

the values of some randomly chosen grid cells within one parent. The most-fit individuals are selected 

to mate and reproduce. The procedures from generating an initial population to select to mate and 

reproduce are repeated until a specific condition is met. Please refer the user guide of PIKAIA 1.0 for 
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more detailed information [65]. In this procedure, the population of chromosomes or individuals is a 

group of generated values for an optimized parameter, and parents are selected values within the group 

based on the objective function in the hydrologic model. 

Figure 1. Flow chart of GA PIKAIA technique.  

 

Figure 2. One-point crossover method [64]. 

 

2.2. Shuffled Complex Evolution (SCE-UA) 

The SCE-UA was developed in the Department of Hydrology and Water Resources of the 

University of Arizona and combined the simplex procedure with the concept of controlled random 

search [3], competitive evolution [1], and a complex shuffling concept [2]. The SCE-UA flow chart is 
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illustrated in Figure 3. Number of complexes (p) and points (m) in each complex are initialized and 

sample size is s = p × m. s points are generated in parameter spaces randomly; function values are 

calculated at each s points; and s points are ranked from the worst criteria value to the best criteria. The 

s points are partitioned into p complexes containing m points in partitioning into complexes. Each 

complex is evaluated according to the competitive complex evolution (CCE) algorithm outlined 

separately. The sample population is sorted, and the sample population is shuffled into p complexes. 

Convergence and the reduction in the number of complexes are checked. In the CCE algorithm, each 

complex is evaluated and is illustrated in Figure 4. In this procedure, s points are a group of generated 

values for an optimized parameter, and function values are calculated from the objective function 

between observations and hydrologic model simulation values. 

Figure 3. Flow chart of SCE-UA algorithm [2].  

 

2.3. Long-Term Hydrologic Impact Assessment Model (L-THIA) 

The L-THIA model was developed to evaluate the impact of land use change and long-term 

characteristics of watershed hydrology and nonpoint source pollution by combination of CN and event 

mean concentration (EMC) methods [66]. The L-THIA model is available as a GIS version (Figure 5) 

and Web-L-THIA version available [67]. The L-THIA model is primarily used in watershed 

management to simulate various hydrologic conditions for land use change [68–71] and loads of various 

nonpoint source pollution [72–74]; evaluate various scenarios for land use management [75,76]; develop 

total maximum daily loads (TMDLs) [77]; and evaluate low impact development (LID) [78–80]. 
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Figure 4. Flow chart of CCE subroutine in SCE-UA algorithm [2]. 

 

Figure 5. Overview of GIS L-THIA application [66]. 
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3. Materials and Methods 

SCE-UA and GA were linked to the L-THIA model for automated calibration of surface runoff. Ten 

watersheds in Indiana were selected and calibrated for surface runoff for comparison of the two 

methods. CN values and amount of total 5-day rainfall for antecedent moisture condition (AMC) 

adjustment were calibrated automatically using an approximately 10-year calibration period for each 

watershed. During the automated calibration process, the generated individuals and their objective 

values were extracted and compared to review how each optimization method searches for the optimal 

value by using various graphical techniques. Calibrated CN values and 5-day rainfall for AMC 

adjustment from the two methods were graphically plotted. 

3.1. Modeling Approach 

CN value is assigned to the combination of land use type and hydrologic soil group. For more exact 

simulation, spatial rainfall distribution needs to be considered by L-THA for runoff simulation. 

Thiessen polygons for rainfall gages, land use classification, and hydrologic soil group layers were 

overlapped and CN values were assigned for each Thiessen polygon area. The surface runoff for 

different Thiessen polygon areas were simulated separately and summed. The L-THIA model 

predicted runoff based on daily simulation by considering AMC classification and the objective 

function was calculated monthly because the L-THIA model does not consider routing processes since 

the main application of the L-THIA model is for long-term simulation. The Nash-Sutcliffe (NS) 

coefficient is widely used for evaluating hydrological simulation performance [81] and was used as the 

objective function in this study: 
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where Qobs is the observed direct runoff; Qsim is the simulated direct runoff; and 
_

Q obs is average 

observed direct runoff. 

3.2. Optimization Approach 

FORTRAN codes of GA for PIKAIA version 1.0 and SCE-UA for version 2.2 were used to develop 

automated calibration of the L-THIA model. In each subroutine, which calculates the objective 

function of the two optimization programs, the surface runoff was simulated by an L-THIA algorithm, 

and the objective function value was calculated using simulated and observed runoff data.  

AMC is divided as AMC I for dry conditions, AMC II for normal conditions, and AMC III for wet 

conditions (Table 2). CN values for AMC II and 5-day rainfall for AMC adjustment were calibrated. 

For calibrating CN values, CN values were changed by adopting multiplication factors for each land 

use type for default CN values to maintain the relationship between CN value for a given land use and 

its hydrologic soil group. Therefore, the multiplication factors were optimized, and calibrated CN 

values were calculated by multiplying the multiplication factors and default CN values (6). The default 
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CN values and 5-day rainfall for AMC adjustment are shown in Tables 2 and 3. The range of 

optimized CN values was set as ±20% of default CN values to avoid searching extreme CN values. = ×  (2)

where CNcal is calibrated CN value; Px is a multiplication factor for each land use; and CNdef is default 

CN value.  

Table 2. Classification of AMC condition [82]. 

AMC Condition 
Amount of Total 5-Day Antecedent Rainfall (mm) 

Dormant Season Growing Season 

AMC I Less than 12.70 Less than 35.56 
AMC II 12.70–27.94 35.56–53.34 
AMC III Over 27.94 Over 53.34 

Table 3. Default CN values in this study. 

Land Use Type 
Hydrologic Soil Group 

Multiple Factor 
A B C D 

Commercial/Industrial 89 92 94 95 PI 
Crop land 65 75 82 85 PC 

HD residential * 77 85 90 92 PH 
LD residential ** 54 70 80 85 PL 

Grasses and pasture 39 61 74 80 PG 
Forest 30 55 70 77 PF 
Notes: * HD residential is high density residential; ** LD residential is low density residential. 

The range of total 5-day antecedent rainfall for adjusting CN for AMC was evaluated, and the range 

of rainfall amounts for the growing season was set higher than for the dormant season. CN value for 

each AMC is modified as follows: 

II

II
I CN

CN
CN

058.010

2.4

−
=  (3)

II

II
III CN

CN
CN

13.010

23

+
=  (4)

where, CNI is CN value for AMC I and CNIII for AMCIII. 

Once the optimization algorithm set the CN II value using Equation (2) and amount of total 5-day 

antecedent rainfall for AMC, L-THIA determines AMC by amount of total 5-day antecedent rainfall 

before a rain day, adjusts CN if AMC is I or III using Equation (3) or (4), and simulates surface runoff. 

Generated individuals in both GA and SCE-UA were set as 20,000 to fairly compare performance 

of the two methods. Therefore, the number of individuals in a population and generation was set as 100 

and 200 times for GA optimization, respectively, and number of complexes, points per complex, and 

maximum allowed trials were set at 23, 23, and 20,000 for SCE-UA optimization, respectively.  
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3.3. Study Area and Data Preparation 

The L-THIA model linked with the two optimization methods was applied to 10 Indiana watersheds 

to compare optimization performance of the two methods (Figure 6). Brief descriptions for the  

10 watersheds are provided in Table 4. The selected watershed areas ranged from 33 to 5811 km2. Five 

watersheds (WD#1 to WD#5) had crops as the primary land use, and forested area was dominant for 

watersheds WD#7 to WD#9. WD#6 and WD#10 had pasture/grass and urban as the primary land use, 

respectively. Major hydrologic soil groups for the study watersheds were B and C.  

Figure 6. Study watersheds. 

 

The State Soil Geographic (STATSGO) database soil layer was obtained from USEPA [83]. 

Although the Soil Survey Geographic (SSURGO) database contains higher resolution soil information, 

the search process and behavior to identify best values when using SSURGO or STATSGO for the two 

optimization methods are the same. Hydrologic soil group layer was generated by combination of soil 

layer and hydrologic soil group information for each soil type. Hydrologic soil group was divided in 

four groups: A for high infiltration, B for moderate infiltration, C for low infiltration, and D for very 

low infiltration.  

The National Land Cover Data (NLCD 2001) for use as the land use layer was obtained from the 

Multi-Resolution Land Characteristics Consortium web site [84]. The land use type was reclassified 

into seven categories for L-THIA model application: water, industrial/commercial, row crop,  

low-density residential, high density residential, grass/pasture, and forest. 

The 10 watersheds were selected such that streamflow gage stations operated by U.S. Geological 

Survey (USGS) were located at the outlets of these watersheds. Streamflow needs to be separated for 

obtaining direct runoff for the automated calibration process because the CN method estimates direct 

runoff. The processes of obtaining USGS streamflow data and separating direct runoff were performed 

using the web-based WHAT program [25] with the digital BFLOW filter method [85]. 
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Table 4. Study area. 

WD# Name Area (km2) Land Use (%) * Hydrologic Soil Group (%) ** Rainfall Station (COOPID) USGS Station 

1 Wildcat Creek 1024.3 
I: 1, H: 1, L: 4, O: 7, 
C: 80, P: 2, F: 5 W:1 

A: 1, B: 52, C: 47, D: 1 
122638, 122931, 124662, 
124667, 128784, 129905 

03334000 

2 Eagle Creek 268.8 
I: 0, H: 0, L: 2, O: 8, 

C: 73, P: 10, F: 6, W:1 
A: 0, B: 50, C: 46, D: 3 129557 03353200 

3 Big Raccoon Creek 364.7 
I: 0, H: 0, L: 1, O: 5 

C: 83, P: 5 F: 7, W: 0 
A: 0, B: 49, C: 51, D: 1 121873 03340800 

4 East Fort White River 5844.1 
I: 0, H: 1, L: 2, O: 6, C: 

72, P: 5 F: 13, W:1 
A: 0, B: 51, C: 47, D: 2 

121326, 121747, 123527, 
123547, 124272, 124642 

03365500 

5 Big Creek 269.4 
I: 0, H: 0, L: 1, O: 7, 

C: 81, P: 1, F: 9, W: 0 
A: 0, B: 54, C: 45 D: 1 127083 03378550 

6 West Fork Blue River 55.7 
I: 1, H: 0, L: 3, O: 0, 

C: 53, P: 0, F: 8, W: 0 
A: 0, B: 91, C: 9, D: 0 127755 03302680 

7 South Fork Patoka River 110.7 
I: 0, H: 0, L: 0, O: 3, 

C: 21, P: 6, F: 66, W:3 
A: 0, B: 38,C: 57, D: 5 128442 03376350 

8 Middle Fork Anderson 102.8 
I: 0, H: 0, L: 0, O: 4, 

C: 6, P: 17, F: 71, W:1 
A: 0, B: 61,C: 36, D: 3 127724 03303300 

9 Patoka River 32.7 
I: 0, H: 0, L: 0, O: 3, 

C: 21, P: 6, F: 66, W:3 
A: 0, B: 38,C: 57, D: 5 126705 03374455 

10 Little Eagle Creek 70.1 
I: 10, H: 20, L: 38, O: 

27, C: 0, P: 0, F: 4, W:1 
A: 0, B: 33,C: 39, D: 28 124249 03353600 

Notes: * I is industrial/commercial; H is high density residential; L is low density residential; O is developed open space; C is crop; P is pasture and grass; F is forest; and 

W is water; Bold and underline indicates the dominant land use type; ** A means high infiltration (low runoff); B means moderate infiltration(moderate runoff); C means 

low infiltration (moderate to high runoff); and D means very low infiltration (high runoff); Bold and underlined indicates dominant hydrologic soil group.  
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The 169 rainfall stations from 562 stations within Indiana operated currently by the National 

Climatic Data Center (NCDC) were selected, and spatial distribution of rainfall stations as Thiessen 

polygon GIS data was generated using their location information. NCDC rainfall stations for each 

watershed are listed in Table 4. Daily precipitation data location information for rainfall stations were 

obtained from the NCDC website [86]. Periods of 10 years for calibration were selected by considering 

available rainfall and streamflow data for each watershed. 

4. Results 

4.1. Generated Individual between GA and SCE-UA 

Figure 7 shows the generated individual that was a calibration parameter (PC) to adjust CN values 

for crop area, which is the dominant land use type (80% of total area) in WD#1. The WD#1 showed 

the highest NS values, so it was assumed to be a good example for comparing search results between 

the two methods. Total number of model loop executions was 20,000 for SCE-UA and 20,300 for GA 

(100 individual per evolution and 200 evolutions). In early stages of evolution, the GA method  

was very fast and efficiently went to optimal space but after that point, generated individuals were 

somewhat dispersed compared with the SCE-UA method as shown in Figure 7. 

Figure 7. Comparison of generated individuals during evolutionary run between GA  

and SCE-UA. Number of model runs were 20,000 for SCE-UA and 20,300 (100 

individual/generation and 200 generations) for GA. The individual is an optimized 

parameter of crop land in WD#1 (80% of total area). (a) GA generated individuals;  

(b) SCE-UA generated individual. 
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The reason the generated individuals are focused on the optimal space until early stages of 

evolution and then dispersed is well explained by PIKAIA’s user manual [70]. The initial, random 

population is distributed more or less uniformly in parameter space, but by the 10th evolution, nearly 

all individuals are concentrated on the central peak. After the 10th evolution, the mutation rate begins 

to increase. As the mutation rate is further increased, optimized parameters will produce a large 
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horizontal or vertical jump in solution space, named the crosshair pattern. The use of elitism is 

essential in PIKAIA for improving the best solution. The best solution keeps improving after the 10th 

evolution, despite the fact that the spatial distribution of the population as a whole exhibits a greater 

spread about the central peaks in the later phase of the evolutionary run. Figure 8 represents how the 

GA method generates individuals in each evolution stage. The x and y are individuals for optimized 

parameters of industrial land use (31% of total area) and high residential area (28% of total area) in 

WD#10, respectively. Until the 10th evolution, generated individuals are more focused on optimal 

space as shown in Figure 8c and the crosshair pattern was developed (Figure 8d).  

Overall, generated individuals by the SCE-UA were more concentrated in an optimal space 

compared with those by GA (Figure 7). Figure 9 shows the occurrence frequency of generated 

individuals for the optimized parameter of cropland (80% of total area) in WD#1. The two 

optimization methods show the peak in the same range, but frequency at that range for the SCE-UA 

was about two times higher than that for GA. Figures 7 and 9 illustrate the SCE-UA method focuses 

more on optimal space for generating individuals. 

Figure 8. Evolution of the population during the GA evolutionary run and development of 

the crosshair pattern on part (D). The x and y are individuals for optimized parameters of 

industrial land use (31% of total area) and high residential area (28% of total area) in 

WD#10, respectively. (a) Initial population; (b) 5th generation; (c) 10th generation;  

(d) 15th generation; (e) 100th generation; (f) 200th generation. 
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Figure 9. Histograms for generated individuals by GA and SCE-UA. Number of model 

runs were 20,000 for SCE-UA and 20,300 (100 individual/generation and 200 generations) 

for GA. (a) Histogram for GA; (b) Histogram for SCE-UA. 
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4.2. Performance of GA and SCE-UA for Model Calibration 

The generated individuals for SCE-UA fall around a high NS value more often than the generated 

individuals for GA as shown in Figure 10. The number of model loops executed was 20,000 for SCE-UA 

and 20,300 (100 individual per generation and 200 generations) for GA. The individuals in x and y 

were optimized CN multiplication factors for high-density residential and industrial area, respectively. 

Figure 10. NS values and individuals for two optimized parameters, which are industrial 

land use (31% of total area) and high residential area (28% of total area) in WD#10, 

respectively. Number of model runs were 20,000 for SCE-UA and 20,300 (100 

individual/generation and 200 generations) for GA. (a) NS values for GA; (b) NS values 

for SCE-UA. 
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Total number of model loop executions for automatic calibration with GA or the SCE-UA method 

for model calibration impacted the results. Until 5150 model loop executions, the GA method showed 

better performance in L-THIA calibration than the SCE-UA method, and after 5150 times, SCE-UA 

was better than GA (Table 5). 

The performance of GA and SCE-UA linked to L-THIA shows the two global optimizations were 

able to optimize CN monthly runoff well with most watersheds achieving NS values above 0.5 for  

10 year calibration periods (Table 5 and Figure 11). The NS values for calibration ranged from 0.531 

to 0.819 for GA and from 0.531 to 0.820 for the SCE-UA method.  

Table 5. Automatic calibration performance of L-THIA based on monthly simulation. 

WD# 

Calibration 

Period 
(year) 

5150 Model Runs 20,000 Model Runs 

GA SCE-UA GA SCE-UA 

l 10 0.814 0.812 0.819 0.820 
2 10 0.760 0.760 0.762 0.764 
3 10 0.710 0.710 0.716 0.717 
4 10 0.710 0.710 0.716 0.717 
5 10 0.743 0.735 0.747 0.741 
6 10 0.654 0.639 0.663 0.669 
7 6 0.674 0.663 0.679 0.675 
8 10 0.553 0.549 0.555 0.554 
9 10 0.519 0.517 0.531 0.531 
10 10 0.780 0.780 0.787 0.794 

The filled circles and unfilled circles in Figure 12a show the 1:1 scatter plot of the calibrated CN 

values for all land uses and for the dominant land use, respectively, found in each watershed. The 

unfilled circles were more concentrated around the 1:1 line. However, the calibrated CN values for 

minor land uses in each watershed were unlikely to be as sensitive to calibration as the dominant land 

uses because they do not significantly influence calculation of the objective functions. Therefore, some 

filled circles are not as well centered on the 1:1 line. Jeon et al. [45] proposed a global calibration 

method which obtains one CN parameter set for the best fit to several calibration watersheds rather 

than an arithmetic average of CN parameters for each calibration watershed to regionalize CN 

parameters, because unrealistic CN parameters from minor land uses and hydrologic soil groups and 

realistic CN parameters from major land uses and hydrologic soil groups could provide results that 

equally regionalize CN values. Figure 12b shows the 1:1 scatter plot for optimized total 5-day rainfall 

for AMC adjustment, and optimized values fall further from the 1:1 line than CN values. 

The parameters identified by SCE-UA for CN values of minor land use type and 5-day rainfall for 

AMC adjustments were sometimes differently optimized than those for GA as shown in Figure 12. The 

optimized CN values by SCE-UA for industrial/commercial areas, high and low density residential 

areas, and total 5-day rainfall were less variable and more concentrated around the average value 

(Figure 13).  
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Figure 11. The performance of GA and SCE-UA for model calibration according to the 

total number of model runs. 

WD#1

0.76

0.78

0.80

0.82

0.84
WD#2

0.72

0.74

0.76

0.78

WD#3

0.64

0.66

0.68

0.70

0.72 WD#4

0.66

0.68

0.70

0.72

WD#5

N
S

 v
al

ue

0.71

0.72

0.73

0.74

0.75

0.76
WD#6

N
S

 v
al

ue

0.56

0.60

0.64

0.68

WD#7

0.64

0.66

0.68
WD#8

0.48

0.50

0.52

0.54

0.56

0.58

WD#9

Number of iteration

0 5000 10000 15000 20000
0.30

0.35

0.40

0.45

0.50

0.55

0.60
WD#10

5000 10000 15000 20000
0.72

0.74

0.76

0.78

0.80

GA SCE-UA  

  



Water 2014, 6 3448 

 

 

Figure 12. 1:1 scatter plots of optimized CN and total 5-day rainfall for AMC adjustment. 

The filled and blank circles represent the calibrated CN values for all land uses and for the 

dominant land use, respectively, found in each watershed. (a) Optimized CN values;  

(b) Range of 5-day rainfall for AMC adjustment 
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Figure 13. Comparison of box plots of CN values (a) and total 5-day rainfall (b). 
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5. Discussion 

The NS value for the SCE-UA performance was a little higher than that for GA performance when 

the number of model loop executions by SCE-UA was large enough to search the optimized parameter, 

and in this study 20,000 times was enough (Figure 9). Cooper et al. [6] evaluated global optimization 

methods including GA, SCE-UA, and simulated annealing (SA) using a conceptual rainfall runoff 

model for eleven storms on a Caribbean island, and they also reported that the SCE-UA method 

provided the best approximations to the optimal solution compared with other methods; for the NS 

value, the SCE-UA method frequently searches for an exact solution but the GA method searches only 

near the optimal solution. The SCE-UA method concurrently searches for the optimal value within 

parameter space using divided complexes as shown in Figure 3. Cooper et al. [6] and Kuczera [11] 

reported that SCE-UA’s robust capability comes from the periodic global sharing of information 

among the local simplex searches. 

However, the number of model loop executions by the optimization program influenced which 

global optimization program between GA and SCE-UA was better for automatic calibration of  

SCS-CN model runoff in this study. The two methods have different ways to search for optimal 

values. The GA method was faster and efficiently reached the optimal space by the 10th generation, 

and after the 10th generation, generated individuals were somewhat dispersed to improve the 

optimization (Figures 6 and 7). Wang et al. [87] found variations in the calibration parameter that 

were almost same pattern found in this effort and reported in Figure 8 for GA. Table 4 illustrated 

that GA converges very quickly, and this has been reported by many researchers [88–91]. Although 

the SCE-UA method results were somewhat dispersed in initial stages of optimization until around 

5000 model executions compared to the GA method, after that point the generated individuals were 

more focused on the optimal space than those by the GA method (Figures 7–9). The differences  

in searching optimal space between GA and SCE-UA methods influenced the optimization 

performance between the two methods based on the total number of model loop executions (Table 5 

and Figure 11).  

L-THIA takes a relatively short time to be automatically calibrated when linked with GA or  

SCE-UA. Total automatic calibration time for WD#4, which is the largest watershed (5844.1 km2) in 

this study, took 83 min (4980 s) for 20,000 model runs for SCE-UA and 84 min (5040 s) for  

20,300 model runs for GA on a Windows XP machine with Intel® Core2 Quad CPU 2.40 GHz and 

3.25 GB RAM. In most cases the L-THIA user can select the best optimization method, which is  

SCE-UA in this study, since the time for calibration is relatively short. 

The characteristics of the two algorithms examined in this study might be extended to other models 

when the most sensitive parameters to the model results are selected as an optimized parameter. The 

execution of more complex and data intensive hydrological models need significant execution times, 

so calibrating the complex model becomes an important problem when applying the model on large 

watershed with long time calibration periods [92]. The number of calibration loop executions with 

SWAT is very critical so use of an optimization method that is more efficient with fewer calibration 

loop executions may be required for automatic calibration.  

Most researchers emphasized SCE-UA was better than GA when applied to conceptual rainfall-runoff 

models, which are relatively simple and require short times to run [6,8,10,11]. Van Griensven and 
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Bauwens [93] developed ESWAT, which is SWAT linked with SCE-UA and applied to the Dender 

River (1384 km2). ESWAT was ended after 8000 runs. If it takes 10 min for a SWAT run, calibration 

by ESWAT would take 55 days for 8000 runs in this application.  

Therefore, a modeler must sometimes select either the GA or SCE-UA method for model 

calibration considering the available time for calibration. If a model takes a long time to run and the 

modeler doesn’t have enough time for an optimization program to identify the best values, the GA 

method is recommended. Otherwise, if the modeler has sufficient time for the optimization approaches 

to run fully, the SCE-UA method is recommended for more accurate model calibration. In this study, 

NS value was used as the objective function because it has been widely used for hydrologic model 

calibration, although NS value has a bias of large stream flow events [94]. The performance of the two 

optimization methods with other criteria used in objective functions, such as relatively error or root 

mean square error, should be evaluated in future studies. 

6. Conclusions 

In this study, the performance of the GA and SCE-UA optimization methods was linked to the  

L-THIA model, which employs CN and EMC techniques to estimate watershed runoff and nonpoint 

source pollutant loads, and optimization performances were compared and evaluated through 

application to 10 watersheds with a 10-year calibration period. The CN values and total five-day 

rainfall for AMC adjustment were calibrated automatically. The generated individuals by the SCE-UA 

method were more focused on optimal values as they evolved. The generated individuals by the GA 

method were generated toward optimal space until the 10th evolution, but after the 10th evolution they 

were dispersed because mutation rates are increased and a crosshair pattern appeared. Increasing the 

mutation rate is essential for GA with PIKAIA version to improve the search for the solution. 

The two global optimization methods demonstrated acceptable performance for CN runoff 

simulation, and the calibrated direct runoff values were well matched with observed monthly runoff 

data. Significant performance differences between the GA and SCE-UA methods for calibration were 

not found, but the NS values for the SCE-UA are slightly higher than those for the GA method. 

However, the number of model loop executions for optimization influences the optimization 

performance between the two methods because the approach to searching optimal space is different. 

The GA method is recommended when the number of model loop executions for optimization is 

limited, otherwise SCE-UA’s search method, which globally shares the information from each local 

simplex search, provided slightly better performance. The results provide important information to 

help model users select an algorithm for optimization of model parameters and to help developers 

improve algorithms. 
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