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Abstract: This study examined the utility of a high resolution ground-based (mobile and 
terrestrial) Light Detection and Ranging (LiDAR) dataset (0.2 m point-spacing) 
supplemented with a coarser resolution airborne LiDAR dataset (5 m point-spacing) for use 
in a flood inundation analysis. The techniques for combining multi-platform LiDAR data 
into a composite dataset in the form of a triangulated irregular network (TIN) are 
described, and quantitative comparisons were made to a TIN generated solely from the 
airborne LiDAR dataset. For example, a maximum land surface elevation difference of 
1.677 m and a mean difference of 0.178 m were calculated between the datasets based on 
sample points. Utilizing the composite and airborne LiDAR-derived TINs, a flood 
inundation comparison was completed using a one-dimensional steady flow hydraulic 
modeling analysis. Quantitative comparisons of the water surface profiles and depth grids 
indicated an underestimation of flooding extent, volume, and maximum flood height using 
the airborne LiDAR data alone. A 35% increase in maximum flood height was observed 
using the composite LiDAR dataset. In addition, the extents of the water surface profiles 
generated from the two datasets were found to be statistically significantly different. The 
urban and mountainous characteristics of the study area as well as the density (file size) of 
the high resolution ground based LiDAR data presented both opportunities and challenges 
for flood modeling analyses. 
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1. Introduction 

Humans have traditionally developed settlements in floodplains and continue to do so, making flood 
events one of the most consistent and recurring natural disasters experienced by human populations [1–3]. 
The management of flood risk and the reduction of potential damages in the United States (U.S.) have 
been addressed by the Federal Emergency Management Agency (FEMA) through mapping flood 
hazard areas and the generation of Digital Flood Insurance Rate Maps (DFIRMS). The European 
Commission adopted the European Union (EU) Flood Directive in 2007 [4]. The Directive requires 
member states to assess the risk of flooding, to map potential flood extent, and to coordinate efforts to 
reduce flood risk [4]. The National Research Council (NRC) in the U.S. concluded that topographic 
data is the most important factor in determining the accuracy of flood maps for inland areas [2]. The 
primacy of topographic data in flood modeling is supported by additional scientific research [5,6]. 
Traditionally, land surface elevation data has been collected using time-consuming ground surveying 
techniques consisting of total stations, differential GPS units, field tapes, theodolite, micro profilers, 
national survey maps, and stereoscopic analysis of aerial imagery [7–9]. The elevation surfaces 
interpolated from the data collected using these methods can produce uncertainty in elevation values 
up to ten times greater than the acceptable limit set by FEMA for floodplain mapping [2]. Recently, a 
rapid increase in the adoption of airborne light detection and ranging (LiDAR) data for flood 
inundation studies has occurred due to the efficient collection of accurate elevation data for features 
within the landscape.  

Although the use of topographic data acquired from airborne LiDAR sensors has provided modelers 
with a more accurate dataset, challenges still exist when modeling complex urban environments. Urban 
flood modeling entails resolving surface water movement around buildings and representation of fine 
scale topographic and blockage effects [10]. Irregular and discontinuous patterns of floodplain depths 
are caused by the blocking effect of buildings [11]. Heterogeneities within the land surface such as 
road cambers, pavement curbs, and minute undulations in the topography play a substantial role in 
diverting overland flow and floodwaters and the lack of accurate representation of these features can 
drastically alter flood water flow paths [12–14]. High-resolution data is necessary to represent finer scale 
features in an urban landscape and to investigate how these features affect flood propagation. Elevation 
data acquired by ground-based mobile and terrestrial LiDAR systems have proven advantageous for 
representing the landscape at a finer resolution, and for improving the vertical accuracy of topographic 
feature representation as compared to the elevation data acquired by airborne systems [15–17]. 

LiDAR is an active remote sensing system which operates by emitting laser pulses of light at high 
frequencies towards the Earth’s surface as a photodiode measures the time it takes for the pulse to 
return from the surface to the sensor [7,8]. The distance to an object is then calculated by multiplying the 
speed of light by the time elapsed between when the laser pulse is emitted and received and dividing the 
product by two [18]. Global positioning systems (GPS) and inertial measuring units (IMU) are linked to 
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most LiDAR systems to determine location and account for trajectory variability that occurs during the 
collection process. The popularity of using LiDAR systems has increased due to their rapid data 
collection capability, high degree of automation, high point density, high level of accuracy, and cost 
efficiency. These characteristics led the NRC to recommend the creation of a nation-wide elevation 
dataset based upon LiDAR data in order to enhance floodplain mapping accuracy [19,20].  

Flood inundation studies are based on mapping and defining an area covered by water during a 
flood event. This is typically done by comparing digital water surface elevations with the digital terrain 
model (DTM) of the bare-earth elevation and indicating where the water surface elevation is above the 
land surface [21]. Successful floodplain models using airborne LiDAR data have been reported in rural 
areas where gradual changes in the topography are prevalent (e.g., [22–26]). Alternatively, the use of 
airborne LiDAR elevation data in an urban environment has been shown to be insufficient with respect 
to the accurate representation of the finer scale topographic features (e.g., [13,14,27–29]). A limited 
amount of research has been related to flooding in mountainous areas and the work that has been 
conducted has utilized airborne LiDAR data (e.g., [30,31]). Even fewer research efforts have been 
undertaken in urban locations within mountainous sub-basins (e.g., [12]).  

Elevation data from mobile and terrestrial LiDAR systems (MLS and TLS, respectively) have been 
utilized to compensate for inadequate representation of ground surfaces by airborne LiDAR systems 
(ALS). Fewtrell et al. [14] conducted one of the first flood inundation analyses based on sub-meter 
resolution elevation data acquired using a mobile LiDAR system in an urban environment and 
described the utility of such a high resolution dataset. They concluded that gaps found in their dataset 
were due to the limited field-of-view of their vehicle-based LiDAR system which produced a variety 
of undesirable artifacts within the floodwater depth grids (i.e., ponding near the data voids). In the 
current study to compensate for potential data gaps a triangulated irregular network (TIN) based on a 
composite of airborne, mobile, and terrestrial LiDAR data was generated. Utilizing the airborne data 
on the periphery of the study area minimized artifacts, such as artificial ponding, and allowed the voids 
present in the combined mobile and terrestrial (or ground-based) dataset to be filled using an 
overlapping airborne dataset. In addition, the ground-based bare-earth dataset was used to replace 
locations within the bare-earth airborne dataset that had become obsolete due to recent construction 
and restoration projects. While combinations of multi-platform datasets have been attempted in the 
past (e.g., [9,32–34]), these studies only combined two different platform datasets, typically merging 
ALS and TLS, or MLS and TLS [35]. To the author’s knowledge, the research presented in this paper 
is unique in that a combination of data from three LiDAR platforms ( i.e., airborne, mobile, and 
terrestrial) was created, therefore capitalizing on the complementary technologies and reducing the 
data collection weaknesses inherent in each individual system. 

The methodology for combining multi-platform LiDAR datasets into a single TIN for flood 
modeling in an urban environment was explored in this research. The accuracy of the elevation values  
in this composite dataset was quantitatively compared to a TIN created solely from elevation data 
acquired from an airborne LiDAR survey. The composite and airborne TINs were then used to 
generate independent flood modeling results and compared using a one-dimensional (1D) steady flow 
analysis implemented in the hydraulic model HEC-RAS (US Army Corp of Engineers; Davis, CA, 
USA). The generation of geospatial geometric data for flood modeling and the representation of 
flooding extent and depth were undertaken using the geographic information system (GIS) ArcGIS 
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(Environmental Systems Research Institute; Redlands, CA, USA), and the ArcGIS hydraulic model 
extension HEC-GeoRAS (US Army Corp of Engineers; Davis, CA, USA).  

To ensure an accurate representation of the study area, surveying of manmade features that 
intersected the study stream reach was accomplished through the measurement of structures within the 
all-return mobile and terrestrial LiDAR point clouds. Bridge and culvert information is essential in 
creating accurate high resolution flood models as they can control variability in velocity, stage height, 
and flood extents [36,37]; minimizing or estimating their parameters reduces the accuracy of the flood 
model results. Given the accuracy of the point cloud data, the resultant structural measurements   
can be considered as accurate as field-grade survey information [38], although a structure accuracy 
assessment was not completed for this study. 

From 1983 to 2003, the state of North Carolina ranked ninth in terms of the highest total flood 
damages and twelfth in terms of the highest damages per capita in the United States [39,40]. In the 
Blue Ridge Mountain Province of the Southern Appalachian Mountains in North Carolina, locally 
intense, short duration precipitation events coupled with the built environment have produced 
numerous flash floods substantiating the need to better understand local flooding. Appalachian State 
University in Boone, North Carolina, USA is located in this province and Boone Creek, part of the 
Upper South Fork of the New River (USFNR) watershed, runs directly through campus. In November 
2011, Boone Creek experienced a large amount of precipitation within a few hours causing a flow 
event that exceeded the bank-full capacity of the channel and consequently flooded several buildings 
on campus. Due to this and similar preceding events, this reach of Boone Creek was selected as the  
study area for this research. 

In this research, the utility of a high resolution ground-based LiDAR dataset supplemented with an 
airborne LiDAR dataset for a flood inundation study in a hydraulic modeling and GIS environment 
was evaluated. The techniques for combining multi-platform LiDAR datasets were described and 
illustrated. The final composite dataset in the form of a TIN was quantitatively compared to a TIN 
generated solely from the airborne dataset. The all-return mobile and terrestrial LiDAR point clouds 
were used to extract structural information from features intersecting the study stream reach. Utilizing 
both the airborne and composite datasets, flood inundation analyses were completed and the resultant 
water surface profiles and depth grids were quantitatively compared. Challenges presented in this 
research included the complexity of attempting to accurately model an urban stream located in a 
mountainous headwater sub-basin.  

2. Data and Methods 

2.1. Study Area 

The Boone Creek sub-basin located in the USFNR watershed drains approximately 5.3 km2  
(530 hectares) and is characterized by its high-gradient and rugged topography [41]. This study focused on 
a 1300 m reach of Boone Creek that flows through the campus of Appalachian State University in 
Boone, North Carolina, USA (Figure 1). A river can be defined as a mountain river if the gradient of 
the majority of its channel length is greater than or equal to 0.002 m/m [42]. However, portions of its 
channel may also flow through broad lower gradient valleys. Overall, the steep channel is considered a 
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mountain river [42]. The gradient of the reach modeled in the current study was 0.018 m/m. The 
hydrology of mountain environments is dynamic in terms of its spatial and temporal complexity [30]. 
Precipitation can move rapidly into stream channels due to high topographic relief, intense seasonal 
precipitation, thin soils, sparse vegetation, and the close coupling of stream channels and hillslopes [31].  

Extensive development along the banks of Boone Creek has modified natural conditions leading to 
reduced riparian vegetation, channelization, incised streambeds and banks, and added extensive 
impervious surfaces surrounding the stream [43]. The primary land cover type of the Boone Creek  
sub-basin is 60% non-differentiated forests, with 24% impervious surfaces, and 16% is a mixture of 
grass, barren land, and agriculture [41]. The riparian area bounding Boone Creek (within 50 m) is 
dominated by impervious surfaces (54%), grasslands (35%), and non-differentiated forests (10%). 
These values were determined by calculating the area of each land use type generated through  
heads-up digitizing of 2010 6-inch aerial photography and dividing the total area for each land use 
classification by the total sub-basin or riparian area, respectively. 

Figure 1. Study area: (a) Location of the Upper South Fork of the New River (USFNR) 
watershed in North Carolina. Source: [44]; (b) Hillshade-relief image of the Boone Creek 
sub-basin located in the USFNR watershed derived from bare-earth airborne LiDAR data. 
The major streams are indicated in blue while the location of the study stream reach is 
highlighted in red; (c) Photograph looking upstream on Boone Creek at the open channel 
and the end of the culvert through which part of the study stream reach flows. 

 

The regional climate is classified as a humid, temperate zone with high levels of precipitation in the 
spring and summer months, and flood events primarily occurring in late summer and early fall [41,45]. 
Flooding events in the sub-basin are characterized by their high intensity, short duration, and high 
variability. The predominance of impervious surfaces surrounding Boone Creek and the Hortonian 
flow associated with this land cover type has led to substantial flood events. 
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2.2. Airborne LiDAR Data Acquisition and Processing 

LiDAR data used in flood modeling applications is typically acquired from airborne platforms and 
used for the creation of bare-earth DTMs and the estimation of land surface roughness characteristics. 
Statewide airborne LiDAR data was collected by the North Carolina Floodplain Mapping Program 
(NCFMP) in an effort to modernize FEMA’s Flood Insurance Rate Maps (FIRM) [46]. Airborne 
LiDAR data for the study region was collected in March 2003 using a Leica Geosystems Aeroscan 
system. The instrument was flown at an altitude of 3050 m above ground level producing an all-return 
point spacing of approximately 5 m (Table 1). The maximum scan angle was set to 27.5 degrees from 
nadir with up to five returns per pulse, netting a vertical root mean squared error (RMSE) for  
this dataset of 25 cm [46]. Point cloud processing was performed by the NCFMP using automated 
processes to extract bare-earth points, followed by manual editing to remove any falsely identified 
points within the bare-earth dataset [46]. The data was organized into 3048 m (10,000 ft.) by  
3048 m (10,000 ft.) tiles in an ASCII format and have been made available to the public on the 
NCFMP website [47]. The bare-earth LiDAR tiles covering the selected study stream reach were 
downloaded from the NCFMP website, converted from the ASCII format to an LAS format to a  
multi-point shapefile in ArcGIS, and clipped to the study region. 

Table 1. Comparative table of the applied LiDAR sensors and data attributes. 

Descriptions Airborne Mobile Terrestrial 
Scanner system Leica Geosystems Aeroscan Trimble MX8 Pod Leica ScanStation C10 
Range  Flown 3050 m AGL 200 m 300 m 
Vertical RMSE 25 cm 6 cm 3 cm 
Measurement rate 150 kHz 300 kHz 50 kHz 

Field-of-view 55° 360° 
360° (horizontal);  
270° (vertical) 

Nominal all-return point-spacing 5 m 0.05 m 0.005 m 
Acquisition date March 2003 July 2011 July 2011 

2.3. Ground-Based LiDAR Data Acquisition and Processing 

Ground-based LiDAR data was collected by ESP Associates, P.A. in July 2011 and donated to 
Appalachian State University. Vehicle-based mobile LiDAR data was collected for the 1300 m reach 
of Boone Creek. Voids within the dataset were observed during post-processing, especially in areas 
adjacent to the stream due to heavy riparian vegetation blocking the laser scanner’s line-of-sight. Static 
terrestrial LiDAR scans were taken in areas that would fill the data gaps in order to create a complete 
3-D dataset.  

2.3.1. Mobile LiDAR 

The mobile LiDAR data were acquired in ten discrete runs using a Trimble MX8 mobile mapping 
system equipped with two VQ 250 Riegl lasers, six 5-megapixel cameras, one Applanix POS LV 420 
IMU, two Trimble Global Navigation Satellite System (GNSS) GPS receivers, and one Distance 
Measuring Instrument (DMI). The DMI is a wheel-mounted rotary shaft encoder that confines drift 
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errors during a loss of GPS signal by measuring the linear distance travelled [48]. Each laser collected 
300,000 points per second over a five-kilometer stretch of campus. Photographs were taken every three 
meters using four separate cameras. The all-return point spacing for the dataset ranged from 0.9 cm 
(directly adjacent to the vehicle) to 30 cm (approximately 200 m away from the vehicle). The entire 
dataset was comprised of approximately 425 million points; a list of the mobile sensors attributes and a 
description of the dataset are listed in Table 1. 

2.3.2. Terrestrial LiDAR 

Eight terrestrial LiDAR scans were acquired to fill the data gaps within the coverage of the mobile 
LiDAR dataset. A portable Leica ScanStation C10 equipped with a dual-axis level compensator, laser 
plummet and tribrach mount, and an integrated data storage system was utilized to acquire the terrestrial 
data. This device collected 50,000 points per second with a range of approximately 300 m. The all-return 
point spacing ranged from 0.3 cm (directly adjacent to the scanner) to 15 cm (approximately 300 m away 
from the scanner). The entire dataset was comprised of approximately 89 million points; a list of the 
terrestrial sensors attributes and a description of the dataset are listed in Table 1. 

2.3.3. Ground Control Points and the Continuously Operating Reference Station 

Survey grade accuracy of the final mobile and terrestrial point clouds were verified via thirty-two 
ground control points (GCPs) acquired using a Trimble R8 Model 3 GNSS receiver. Control points 
were placed on recognizable features in the landscape which could later be identified within the point 
cloud during the registration process. Photographs were taken at each control location in the event the 
sites were difficult to locate within the point cloud. 

A Continuously Operating Reference Station (CORS) was used to enhance the post-processing 
coordinates to within centimeters relative to the National Spatial Reference System, both vertically and 
horizontally [48]. A CORS was located on the Rankin Science West Building situated near the center 
of Appalachian State University campus. The mean distance of the GCPs from the CORS was 
approximately 0.5 km.  

2.3.4. Mobile and Terrestrial LiDAR Post-Processing 

LiDAR surveys contain points representing bare-earth and non-bare-earth features such as 
buildings, powerlines, and vegetation, while the manual ground survey methods described earlier 
typically ignore these features. Therefore, the integrity of a LiDAR-based bare-earth dataset depends 
on the quality of the bare-earth points extracted from the all-return point cloud and the removal of 
additional features within the dataset. Post-processing of the mobile and terrestrial LiDAR datasets 
was required to ensure the point clouds could be seamlessly merged into one ground-based LiDAR 
dataset and that the ground-based point cloud could be tied to real world coordinates then merged and 
compared to the existing bare-earth airborne dataset. 

Post-processing of the GPS files from the Trimble MX8 Mobile Scan Pod to the local CORS was 
completed using POSPac Mobile Mapping Suite Version 5.1 (Applanix; Ontario, Canada). This 
process uses the concept of a “Virtual Reference Station” (VRS) where “observables from a dedicated 
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network of GNSS reference stations are processed to compute the atmospheric and other errors within 
the network” [49]. The output information from the DMI and IMU was integrated and post-processed 
in forward and reverse directions which refined the data and produced the best possible results [49]. 
This information was used to “normalize” the mobile LiDAR data fitting the point cloud with the 
proper trajectory (i.e., path of the sensor during the collection process).  

The mobile and terrestrial LiDAR point clouds were then registered to real world coordinates via 
the GCPs using the Match Point process in Trident-3D Analyst Version 4.5 (Trimble; Sunnyvale, CA, 
USA). For this registration, the GCPs were manually “matched” to their corresponding locations 
within the point cloud and a “best fit analysis” was used to rectify the point cloud to the GCPs, 
ensuring survey-grade accuracy. Prior to the GCP registration, the mobile data points were 
approximately 6 cm lower than the GCPs, while the terrestrial data points were approximately 3 cm 
lower than the GCPs. The registered mobile dataset was approximately 2 cm lower than the GCPs 
while the registered terrestrial dataset was approximately 1 cm lower. The error present following the 
correction is due to the inherent trajectory drift of the mobile LiDAR platform, the irregularities of the 
terrain, and the methods used in the Trident-3D Analyst Match Point process. Additionally, this 
process was used to merge the mobile and terrestrial LiDAR datasets by using a tie-point-based  
co-registration process. This combination yielded a 3 cm vertical RMSE between the two datasets. 

The co-registered ground-based all-return point clouds were then divided into 14 discrete blocks 
using the Place Fence tool in MicroStation V8 (Bentley Systems; Dublin, Ireland) to create 
manageable sub-datasets and reduce processing time (Figure 2). Point cloud classification consisting of 
identifying and classifying noise as well as extracting bare-earth points was completed using 
TerraScan software (Terrasolid; Helsinki, Finland). Initially, the Low Points and Isolated Points 
routines were used to reduce the amount of erroneous or ‘noisy’ points within the dataset.  

Figure 2. The study area segmented into 14 discrete blocks for the creation of manageable 
datasets. Blocks were generated using the Place Fence tool in MicroStationV8.  
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The Ground routine provided by TerraScan was used to extract bare-earth points using an algorithm 
based on the adaptive TIN model created by Axelsson [50]. The algorithm develops a TIN network 
from neighboring low points as a first iteration of the bare-earth extraction. Then, based on the  
user-defined input values, the TIN was modified by adding additional points that met the user-defined 
criteria in relation to the existing TIN. The user-defined values utilized by the Ground routine consist 
of the maximum building size in the area, the maximum terrain angle in the study area (i.e., the 
steepest slope), the iteration angle (i.e., the angle of the triangles within the adaptive TIN model being 
generated), and the iteration distance (i.e., the length of the triangle within the adaptive TIN model  
being generated). Superior results were obtained during point cloud classification by further 
segmenting the blocks into areas of homogeneous land cover and topography and utilizing different 
iteration angle and iteration distance values. Segmentation of the blocks into homogeneous areas was 
completed using the Place Fence tool in MicroStation V8. 

Points located below the classified bare-earth points were identified using the Below Surface routine 
from TerraScan. Classification accuracy was completed using visual assessment in TerraScan and LP 
360 (QCoherent; Madison, AL, USA) by inspecting random locations within the study area in a profile 
view. Areas that appeared to have multiple incorrectly classified ground points were reclassified using 
new iteration angle and iteration distance values. The final classified ground points from each block 
were merged into one file and consisted of approximately 44 million points. Figure 3 is an example 
from the datasets displaying the differences between the all-return and bare-earth point clouds. 

Figure 3. A visual comparison between (a) the all-return co-registered ground-based point 
cloud and (b) the co-registered ground-based bare-earth classified point cloud. 
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2.3.5. Synthesis of Airborne and Ground-Based Bare-Earth LiDAR Data and TIN Generation 

The tie-point-based co-registration process used to merge the mobile and terrestrial LiDAR data 
was utilized because the GCPs within the study area could be identified within each point cloud. Due 
to the coarser resolution of the airborne LiDAR data, the GCPs could not be identified within the 
airborne LiDAR point cloud. Therefore, the synthesis of the georeferenced airborne and ground-based 
LIDAR datasets was completed by displaying the two point clouds in the same reference system. 
While this method is not as exact as the tie-point-based registration, the identical projection and 
coordinate system of these two datasets allows for a synthesis which potentially produced vertical 
differences up to 20 cm where the two datasets intersect. Seventy-five percent of the composite dataset 
was comprised of the ground-based LiDAR data representing the areas adjacent to the stream and in the 
floodplain. The remaining 25% of the composite dataset consisted of the airborne LiDAR data which was 
located on the periphery and was used to fill in areas not scanned by the ground-based sensors.  

TINs necessary for the flood inundation analysis were generated from the bare-earth LiDAR 
datasets within ArcGIS. ArcGIS was not capable of processing the entire ground-based bare-earth 
LiDAR point clouds in a single pass (over 44 million points); therefore, the airborne and composite 
point clouds were segmented into six sub-areas with overlapping adjacent cross-sections described 
later in the flood modeling section. To retain the high resolution integrity of the dataset, segmentation 
into sub-areas was determined to be the most reliable approach. Two TIN datasets for each sub-area 
were created, one from the bare-earth airborne LiDAR dataset and one from the bare-earth composite 
dataset consisting of airborne, mobile, and terrestrial LiDAR data. TINs generated from the bare-earth 
airborne LiDAR data contained an average point spacing of 5 m and the bare-earth composite TIN 
yielded a weighted average point spacing of 0.2 m (Figure 4).  

Figure 4. A composite triangulated irregular network (TIN) consisting of the merged  
bare-earth airborne, mobile, and terrestrial LiDAR data. The location of the ground-based 
LiDAR data is contained within the red polygon. 
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2.4. LiDAR Data Quality in the U.S. 

According to Mark et al. [5], the use of up to 5 m horizontal resolution DTMs are recommended for 
urban flood modeling. A 5 m resolution DTM can be used for quick assessment of model results, while 
more detailed analysis should be based on finer resolution DTMs [5]. In the U.S. the National Digital 
Elevation Program (NDEP) sponsored the National Enhanced Elevation Assessment (NEEA) which 
was completed in December of 2011 [51]. The results from the NEEA led to the implementation of the 
3D Elevation Program (3DEP) developed by the U.S. Geological Survey (USGS). The NEEA 
identified 5 Quality Levels (QL) for topographic data, and the source of the three highest Quality 
Levels were LiDAR data [19]. The goal of the 3DEP is to develop Quality Level 2 data (vertical 
RMSE of 9.25 cm and nominal point spacing of 0.7 m) for the conterminous U.S. Federal 
organizations such as FEMA would certainly benefit from this enhanced elevation data. Currently, 
however, only 28.4% of the lower 49 states have LiDAR data that is available to the public [19]. With 
a nominal point spacing of 5 m and a vertical accuracy of 25 cm the airborne LiDAR data used in this 
study would be considered medium to low quality (QL3/QL4). Nevertheless, the use of this elevation 
data has led to risk avoidance and significant cost savings for businesses and residents [19], and is 
currently the only statewide LiDAR data available in North Carolina. With a nominal point spacing of 
0.2 m, and a plus or minus 3 cm vertical RMSE, the composite LiDAR dataset would be considered 
better than the QL 1 [19]. It would be informative to compare DTMs and urban flood modeling results 
generated from these two LiDAR datasets.  

2.5. LiDAR Accuracy Assessments 

Several diagnostic tests were used to evaluate the processed bare-earth datasets. The first diagnostic 
method evaluated the accuracy of the LiDAR data in relation to the National Spatial Reference System 
(defined and managed by the National Geodetic Survey) to ensure the LiDAR data met the vertical 
accuracy and precision of survey-grade data to enable reliable mapping. At the location of the thirty-two 
GCPs, elevation values were extracted from the bare-earth airborne and composite TIN datasets and 
quantitatively compared to the elevation values of the GCPs. TINs were used for the comparison due 
to a lack of point-to-point agreement between the GCPs and the airborne LiDAR dataset.  

The second diagnostic method quantitatively evaluated the differences between the airborne LiDAR 
and composite LiDAR bare-earth datasets on three different land surface features. Grass, pavement, 
and slopes greater than 15 degrees were selected based on the work of Bremer and Sass [9] and the 
experience of the authors. For comparison, 18 random points within each land surface type were 
generated throughout the study region using the Create Random Points tool in ArcGIS. Elevation 
values were extracted at these random points from the airborne and composite TIN datasets, 
respectively, and descriptive statistics were calculated.  

The third diagnostic method compared the airborne and composite LiDAR datasets using 120 
randomly generated points from throughout the entire study region. Random points were generated, 
irrespective of land surface features, and elevation values were extracted from both TIN datasets and 
quantitatively compared. The final diagnostic involved the generation of 12 random cross-sections that 
intersected the study stream reach perpendicularly. Elevation values from both TIN datasets were 
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extracted along the cross-sections using the Interpolate Shape tool in ArcGIS and the values were 
displayed and compared in a line graph format.  

2.6. Flood Modeling 

Flood modeling is the digital reconstruction and prediction of the flooding depth and extent of a 
particular flooding source for a given stream [2]. This is typically completed by comparing digital 
water surface elevations to digital representations of the ground elevation and indicating where the 
water surface elevation is above the land surface. A commonly used floodplain hydraulics model [52] 
and the primary software utilized by FEMA when generating the Digital Flood Insurance Rate Maps 
(DFIRMs) is the Hydrologic Engineering Center’s River Analysis System (HEC-RAS). This model is 
used for determining remedial and preventative measures for reducing flood damages to a community 
through the creation of hydraulic studies and flood maps. These maps are used to determine flood 
insurance rates for property owners that purchase flood insurance through the National Flood 
Insurance Program (NFIP) and are also used as the basis for regulations for determining building codes 
and where and what types of structures are allowed in floodplains.  

One-dimensional hydrodynamic flood models are an industry standard [12]. HEC-RAS, which was 
used in this study and is available in the public domain, provides “one-dimensional steady flow, 
unsteady flow, sediment transport/mobile bed computations, and water temperature modeling” [53]. 
One-dimensional hydrodynamic modeling provides rapid, simple, but representative calculations for a 
network of natural and artificial streams, including the representation of manmade objects such as 
bridges, culverts, and weirs [40,54]. Due to a portion of the study stream reach being contained within 
a culvert, HEC-RAS provided the necessary methodologies to include this structure within the flood 
model. Additional information such as bridge and culvert dimensions and material type or blocked 
obstructions (i.e., buildings) were added to improve the model and resultant water surface profiles and 
depth grids.  

Combining 1D modeling and GIS can provide a cost efficient system for management and planning 
for urban flooding [5]. The tradeoffs in using a 1D, two-dimensional (2D), or combined 1D/2D hydraulic 
model for urban flood modeling have been reported in the literature [5,12]. The flashy character of the 
Boone Creek sub-basin encouraged a 1D hydraulic modeling approach, as one-dimensional hydraulic 
models are useful for modeling urban flooding during heavy rainfall events [5,12]. For an initial 
comparison of flood modeling efforts which included a coarser resolution dataset (5 m) with a lack of 
fine scale feature representation the use of a 2D or 1D/2D model may not be necessary. Further 
research using 2D or combined 1D/2D models focusing on the use of finer resolution LiDAR data in 
steep mountainous environments would be useful. 

2.6.1. Input Data 

Discharge rates and water surface elevations for a 100-year flood event were obtained from the 
2009 Flood Insurance Study (FIS) produced by FEMA in the State of North Carolina [55]. Real-time 
floodwater measurements, i.e., stream gages, were not available for an event of this magnitude. Proxies 
such as eyewitness testimonies on the location of high water marks were used to estimate flood water 
extents, as have been used in similar studies [12]. Discharge rates were utilized in the model at every 
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cross-section cut line location. Water surface elevation values were utilized at the upstream and 
downstream cross-section cut lines of the study stream, as well as locations where culverts or bridges 
intersected the stream. 

2.6.2. Flood Modeling Using HEC-RAS and ArcGIS 

Geometric input data for HEC-RAS, consisting of stream centerlines, banks, flow-paths, cross-section 
cut lines, land use polygons, and blocked obstructions were digitized from 2010 6-inch orthoimagery 
(Figure 5) within ArcGIS using HEC-GeoRAS. HEC-GeoRAS is a “set of procedures, tools, and 
utilities for processing geospatial information data in ArcGIS using a graphical user interface (GUI)” [56]. 
HEC-GeoRAS tools were used to extract and prepare geometric data for HEC-RAS and  
post-processing of the results from the flood analysis generated by HEC-RAS. For example, using 
HEC-GeoRAS, land use polygons were attributed with the appropriate Manning’s n (roughness 
coefficient) values determined by Chow [57], based on surface roughness, vegetation, surface 
irregularities, and obstructions.  

Cross-section cut lines were digitized from the orthoimagery and drawn perpendicular to the stream, 
stream banks, flow-paths, and contours. Cross-sections were placed at “intervals along [the] stream to 
characterize the flow carrying capacity of the stream and its adjacent floodplain” [58]. Cross-sections 
are necessary at representative locations along the stream reach where changes in discharge rates, 
streambed slope, shape, and surface friction or roughness occur, or at structures such as bridges and 
culverts. Cross-section placement is critical in that they contain information related to elevation, the 
intersection of other geometric data (i.e., stream centerlines or flow-paths or blocked obstructions), 
roughness coefficients, reach lengths (i.e., distance between cross-sections), and discharge values. The 
amount of cross-sections recommended by HEC-RAS for an area similar to the study stream reach was 
doubled to better exploit the high resolution LiDAR terrain data.  

Figure 5. Geometric data consisting of stream centerline, stream banks, cross-section cut 
lines, flow-paths, blocked obstructions, and land use polygons were digitized from 2010 6-inch 
orthoimagery [44] for the flood inundation study. 
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The geometric data and corresponding TIN derived cross-section station-elevation points were 
exported from ArcGIS using HEC-GeoRAS into HEC-RAS for use in a 1D steady flow analysis. 
Cross-section elevation points had to be processed using a near and collinear point filter to reduce the 
point density of the elevation data along the cross-section cut lines, as HEC-RAS is limited to using 
500 points per cross-section cut line. Approximately 700 m of the study stream reach flowed through a 
culvert increasing the complexity of the model. Bridge and culvert structural information necessary to 
maintain the accuracy of the flood model were extracted from the all-return mobile and terrestrial 
LiDAR point clouds. The structural measurements consisted of high and low chord elevations, length 
and width of the bridge, rise and span of the culvert, and qualitative assessments of the pipe material and 
shape (Figure 6). All structural information from the point cloud was entered into the Deck/Roadway and 
Culvert Data Editor in HEC-RAS to generate bridges and culverts in the model that intersected the 
study stream reach.  

Figure 6. Structure measurements within the all-return mobile and terrestrial LiDAR point 
clouds of a bridge and culvert in the study area. (a) Photograph of the bridge and culvert 
being assessed; (b) Measurements of the rise and span of the culvert; (c) Measurements of 
the bridge length and width; (d) Highest elevation (high chord) measurements taken on the 
upstream and downstream side of the bridge. The numerical values represent the X, Y, and 
Z of the point being obtained. 

 

Hydrologic data (discharge rates and water surface elevation) obtained from the FIS produced by 
FEMA [55] was entered into the Steady Flow Analysis tool in HEC-RAS. Identical planimetric 
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geometric data and hydrologic values were used for the HEC-RAS models based on the airborne and 
composite LiDAR terrain datasets. A Steady Flow Analysis was run using HEC-RAS to generate flood 
extents in the form of water surface profiles for each terrain dataset. The cross-section station-elevation 
data of the water surface profiles were exported from HEC-RAS into ArcGIS. Using HEC-GeoRAS, 
the water surface data in conjunction with the terrain elevation data was used for floodplain delineation 
and the generation of depth grids. The first step was to create a water surface TIN from the water 
surface elevation values attached to the cross-sections exported from HEC-RAS. The water surface 
TIN was created apart from the terrain TIN and clipped to the bounding polygon (exported from  
HEC-RAS) which limits the water surface to areas modeled using HEC-RAS. The water surface TIN 
and terrain TIN were then rasterized with a resolution based on the point-spacing of the respective 
terrain dataset and the floodplain was delineated where the water surface elevations were higher than 
the terrain elevations. The rasterized terrain elevation values were subtracted from the rasterized water 
surface elevation values to create the depth grids. The sub-area flood modeling results were merged 
into seamless water surface profiles and depth grids representing the airborne and composite LiDAR 
datasets, respectively. 

2.6.3. Flood Modeling Diagnostics 

Several diagnostic methods were used to compare the flood modeling results generated using the 
two different datasets. Following the work of Colby and Dobson [31], a diagnostic method was applied 
to compare the horizontal extent of the water surface profiles (WSPs) using 60 randomly stratified 
transect lines drawn perpendicular to the study stream reach (Figure 7). The intersection of the two 
WSPs and the transect lines was computed and the distance flooded along each transect was calculated  
for each dataset. The distances flooded were tested for normality and were found to be normally 
distributed for both datasets. Therefore, a parametric Paired-T test was performed to determine 
whether statistically significant differences existed between the distances flooded along the transects  
between datasets. The mean percentage of distances flooded along the transects was also calculated 
using the formula provided by Colby and Dobson [31]. Additionally, the shape and area of the WSPs 
were evaluated based on a symmetric difference calculation [31,59] [Equation (1)]: 

Error (%) = 
                                -                               

                
 100 (1) 

where Area (Airborne) refers to the area of the airborne LiDAR-derived WSP; Area (Composite) refers 
to the area of the composite LiDAR-derived WSP; and Area (Airborne ∩ Composite) refers to the 
intersection of the airborne and composite WSPs. The resultant value represents the percent error (i.e., 
symmetric difference) of the airborne LiDAR-derived water surface profile compared to the composite 
LiDAR-derived water surface profile. 

The volumes of the modeled depth grids were calculated using the Surface Volume tool in ArcGIS. 
For each depth grid cell, the volume was determined by multiplying the area of the cell (length times 
the width or the resolution squared) by the depth value for that cell then taking the sum of the volumes 
for all of the cells. This was completed for both the airborne LiDAR and composite LiDAR-derived 
depth grids and the resultant unit of measure was cubic meters. Maximum flood height was also 
calculated. The differences between the depth grids were evaluated by subtracting the depth grid 
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derived using the composite dataset from the depth grid derived using the airborne dataset. The root 
mean squared error (RMSE) between the airborne LiDAR and composite LiDAR-derived depth grids 
was calculated by resampling the airborne depth grid resolution to match the resolution of the 
composite depth grid to ensure a one-to-one match for each cell volume calculation.  

Figure 7. Randomly stratified transect lines drawn perpendicular to the study stream for 
use in a flood modeling diagnostic. The intersection of the water surface profiles and the 
transect lines were computed in ArcGIS and the distance flooded along each transect was 
calculated. (a) Original transect lines; (b) Transects clipped to the intersection of the 
airborne LiDAR-derived water surface profile; (c) Transects clipped to the intersection of 
the composite LiDAR-derived water surface profile. 

 

3. Results and Discussion 

3.1. Bare-Earth LiDAR Accuracy Assessment and Comparison 

Table 2 indicates the differences in elevation values between the 32 GCPs and the bare-earth 
airborne and composite LiDAR TIN datasets, respectively. While the ground-based LiDAR dataset 
was registered to the GCPs, errors associated with LiDAR collection ( i.e., line-of-sight, beam 
divergence, beam grazing, land cover) still affected the accuracy of the data. However, based on the 
results, the composite dataset was determined to provide a more accurate representation of the land 
surface. The variation between the two TIN datasets is assumed to be due to the point-spacing 
(density) of the airborne dataset in addition to the inherent error associated with airborne LiDAR data 
collection compared to ground-based LiDAR data collection.  

The evaluation of the relative measurement inaccuracies between the airborne-LiDAR TIN and the 
composite-LiDAR TIN were compared for the same vertical position on three land surface features 
(Table 3). The least amount of difference between the two datasets was found on paved surfaces due to 
the planar surface characteristics. The greatest differences in elevation values were found on sloped 
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surfaces greater than 15 degrees where data density played a key role in defining the subtleties found 
on irregularly sloping terrain surfaces. Grasslands produced a range of values falling between the 
paved and sloping surfaces during the comparison due to its irregular yet nearly flat surface. Although the 
differences were not extensive on paved surfaces, the complexity of the study area was not fully captured 
by the airborne LiDAR data which could affect the outcome of the final hydraulic modeling results.  

Table 2. Differences between the ground control point (GCP) elevation values and 
elevation values from the bare-earth airborne and composite LiDAR TIN datasets. 

Statistics GCP minus Airborne GCP minus Composite 
Mean Difference [abs]* (m) 0.133 0.081 
Maximum Difference (m) 0.800 0.616 
Range (m) 0.962 0.619 
Standard Deviation 0.193 0.145 

Note: * The mean absolute value was used to ensure an underestimation of differences did not occur. 

Table 3. Differences between bare-earth airborne and composite LiDAR TIN elevation 
datasets on various land surface types found by subtracting the composite TIN elevation 
values from the airborne TIN elevation values.  

Statistics Pavement Grass Slope 
Mean Difference [abs] (m) 0.074 0.068 0.230 
Maximum Difference (m) 0.215 0.228 1.416 
Range (m) 0.239 0.451 2.013 
Standard Deviation 0.071 0.099 0.412 

An additional analysis comparing the elevation values from the respective TIN datasets at 120 
random locations within the entire extent of the study region was conducted. The elevation values from 
the composite LiDAR TIN were subtracted from elevation values from the airborne LiDAR TIN at 
each location (Table 4). The range between elevation values was calculated to be 2.7 m with a 
maximum difference in elevation values of 1.677 m. Again, this variation was likely due to the density 
of the airborne LiDAR data, differentiation of data acquisition technologies, and the topographic 
characteristics of the study area. 

Table 4. Difference in elevation values between the bare-earth airborne and composite 
LiDAR TIN datasets at 120 random locations throughout the study region. Values were 
determined by subtracting the composite elevation values from the airborne elevation values. 

Statistics Airborne minus Composite Elevation Values 
Mean Difference [abs] (m) 0.178 
Maximum Difference (m) 1.677 
Range (m) 2.730 
Standard Deviation  0.335 

A comparison of land surface characteristics captured in the respective TIN datasets was conducted 
through the generation of twelve random cross-sections drawn perpendicular to the study stream reach 
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(example in Figure 8). While numerical differences between elevation values within the two datasets 
was on average 0.178 m, visual comparison of the cross-sections illustrated the inaccurate 
representation of critical features within the landscape by the airborne LiDAR TIN. For example in 
Figure 8, the location of the stream centerline in the airborne LiDAR TIN cross-section is 
approximately 3.17 m north (horizontally) and approximately 1 m higher (vertically) than the actual 
stream centerline as represented in the composite LiDAR TIN dataset. During the ground-based data 
collection, the stream was less than 0.25 m deep in several locations. The composite dataset captured 
undulations in the terrain that are not present in the airborne data. These differences in terrain 
representation translate into potentially divergent floodwater flow paths and may alter the direction and 
velocity of flow in urban environments. 

Figure 8. An example of one of twelve cross-sections drawn perpendicular to the study 
stream reach for elevation value extraction. (a) Aerial view of the cross-section location 
within the study area on 2010 6-inch orthoimagery [44]; (b) Profile view of elevation 
values extracted along the cross-section from the bare-earth airborne LiDAR TIN dataset 
and bare-earth composite LiDAR TIN dataset.  
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3.2. Flood Modeling Results 

The flood modeling results generated from the two TIN datasets revealed both similarities and 
differences between the water surface profiles and depth grids. In the first diagnostic test comparing 
the elevation values of the two datasets, the composite dataset was found to be more accurate and 
representative of the actual land surface and theoretically would, therefore, provide a more accurate 
representation of flooding extent and depth. Discrepancies between the water surface profiles 
generated from the two datasets are visually evident (Figure 9), and Table 5 provides some quantitative 
differences. An 8 % increase in water surface area was produced using the composite LiDAR dataset; 
in addition, using the randomly stratified transect diagnostic method, the average distance flooded and 
the mean percentage of transects flooded were both greater for the composite LiDAR-derived water 
surface profile. The results of the Paired-T test, whose null hypothesis was that there was no difference 
between the sets of distance flooded measurements at a 0.05 signi ficance level, indicated that distances 
flooded along the transects were statistically significantly different between the airborne and 
composite LiDAR-derived water surface profiles. This was based on the rejection of the null 
hypothesis due to the 0.039 p-value. This difference may be caused by an overestimation of bare-earth 
elevation values in the airborne LiDAR dataset. Furthermore, representation of complex flow paths 
within the composite dataset may have also directed the water into lower relief areas not captured in 
the coarser resolution airborne LiDAR dataset. An example of this can be illustrated by the symmetric 
difference value that indicates the amount of variation in area and shape between the two water surface 
profiles (Table 5). The 17.76% symmetric difference is illustrated in Figure 9 which highlights the 
location of those differences and how they could affect nearby structures. 

Depth grids generated from the two TIN datasets are illustrated in Figure 10. Perhaps the most 
significant difference between the flood model results was the maximum flood height (Table 6). A 35% 
increase in maximum flood height was recorded using the composite LiDAR elevation dataset. While a 
retention pond had been added to the study area between the time of the airborne and ground–based 
LiDAR data collection, the differences between the data sets are still representative. It should be stated 
that the maximum flood height value within the composite LiDAR-derived depth grid did not occur at 
the retention pond location and was located in a region that had not undergone restoration between the 
dates of data acquisition. The RMSE between the depth grids was calculated as 1.36 m. These 
differences also underscore the utility of obtaining and utilizing not only a high resolution dataset but 
also a current and representative dataset.  

Table 5. Quantitative comparison of parameters between the water surface profiles 
generated using the bare-earth airborne and composite LiDAR datasets. 

Statistics Airborne Composite Percent Different 
Area (m2) 55,238.94 59,887.62 8.08% 
Average Transect Distance Flooded (m) 25.59 28.44 10.55% 
Mean Percentage of Transects Flooded 48.36 51.98 7.22% 
Symmetric Difference (Error %) between Water Surface Profiles  17.76% 
Parametric Paired-T Test p-value (at 0.05 significance level) 0.039 
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Figure 9. Water surface extents for the airborne (red) and composite (yellow) LiDAR 
datasets. (a) Study area. The dashed boxes represent the location of (b) and (c);  
(b) Expanded area indicated by the northern dashed box in the study area figure;  
(c) Expanded area indicated by the southern dashed box in the study area figure. 
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Figure 10. Depth grids generated using HEC-RAS, HEC-GeoRAS, and ArcGIS. (a) Depth 
grid (shaded purple) generated using bare-earth airborne LiDAR data; (b) Depth grid 
(shaded blue) generated using the bare-earth composite LiDAR data. 

 

Table 6. Quantitative differences between the depth grids generated using the bare-earth 
airborne and composite LiDAR datasets.  

Statistics Airborne Composite Percent Different 
Volume (m3) 28,800.51 29,696.98 3.06% 
Maximum Flood Height (m) 3.36 4.81 35.37% 
Root Mean Squared Error (RMSE) between Airborne and Composite  1.36 m   

The percent difference between the volume of the airborne LiDAR-derived depth grid and the 
composite-LiDAR derived depth grid was 3.06% which translates into approximately 890 m3 of water 
(Table 6). To visually enhance the differences between the two depth grids and depict the location of those 
differences, the composite LiDAR-derived depth grid was subtracted from the airborne LiDAR-derived 
depth grid (Figure 11). Within the difference raster layer (Figure 11), areas containing dark blue 
represent locations where the airborne depth grid was greater than the composite depth grid indicating 
an overestimation of the volume of water for that particular area using only the airborne data. The 
regions containing red indicate locations where the composite depth grid was greater than the airborne 
depth grid. Supplementing the airborne dataset with mobile and terrestrial LiDAR in areas where the 
airborne data were no longer accurate improved topographic representations and flood modeling 
results. Although the difference in volume measurements recorded for the two datasets seemed small, 
the variation in flood model results displays the magnitude at which these differences can affect the 
products of the models.  
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Figure 11. Difference between the depth grids generated using the bare-earth airborne 
LiDAR data and bare-earth composite LiDAR data, derived by subtracting the composite 
depth grid from the airborne depth grid. Areas containing dark blue represent locations 
where the airborne depth grid was greater than the composite depth grid. Areas containing red 
indicate locations where the composite depth grid was greater than the airborne depth grid. 

 

The accuracy of the terrain dataset is critical when delineating the 100-year floodplain or any return 
period flood, and for identifying structures that may be flooded during heavy precipitation events. 
Examples of these differences are illustrated in Figure 9. Several structures shown outside the flood 
extent delineated using the airborne LiDAR dataset are shown as flooded at the same discharge level 
using the composite LiDAR dataset. Less accurate representation of topography and complex features 
in an urban environment can have a significant effect on flood modeling results. An example of this 
lack of precision can be seen in Figure 9c. The water surface profiles indicating flooding extent vary in 
relation to the two buildings shown. A greater flood extent is illustrated on the west side of building 1 
using the composite LiDAR elevation data (yellow) as compared to the airborne LiDAR-derived water 
surface profile (red). Additionally, for building 2, flooding extent derived using the airborne LiDAR 
data (red) illustrates that the building will not be affected by the 100-year discharge water levels while 
the composite LiDAR water surface extent (yellow) illustrates that the building will be affected and 
preparations can be made accordingly. In November 2011, the study area experienced a large 
precipitation event which flooded the first floor of both buildings as well as the adjacent parking lot. A 
direct measurement of precipitation levels and discharge rates for this event were not acquired due to a 
lack of instrumentation and the “flashy” nature of the stream, therefore, a quantitative accuracy 
assessment was not conducted. However, empirical assessments (based on eyewitness accounts) were 
made about the accuracy of the composite LiDAR-derived flood modeling results. 
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The results from the flood modeling comparisons are not entirely consistent with previous flood 
inundation research using LiDAR elevation data. Wang and Zheng [60] and Cook and Merwade [26] 
found that coarsening the resolution of the topographic dataset increased the area of the water surface 
profiles as well as the maximum depth and volume of flood waters. These studies were conducted in 
both narrow-valleys and flat floodplains using resolutions as fine as 3 m [26]. Colby and Dobson [31] 
completed two studies in the mountains and plains of North Carolina and found generally similar 
results in relation to the increase in area of water surface profiles when coarsening data resolution, but 
found differing results in relation to the volume of flood waters in the mountains, concluding that the 
differences were due to a difference in data source as well as topographic data resolution. Conversely, 
Li and Wong [61] found a decrease in maximum flood height and water surface extent when 
coarsening the terrain dataset resolution in the rolling hills of Kansas using a finest resolution of 2 m. 
Abdullah et al. [62] found similar results, citing low resolution digital elevation models yielded 
shallower floodwater depths; this was typically due to the loss of detailed landscape properties in the 
airborne dataset which affected floodwater transport [62]. 

A comparison of research efforts in this area between various authors is difficult in that the results 
of a flood inundation analysis depend on multiple input parameters (i.e., data source, topographic data 
resolution, discharge levels, water surface elevations, geometric data), geomorphic-hydrologic and 
landscape characteristics (e.g., length and width of the study stream reach, drainage basin topography, 
surrounding land cover), hydraulic models (i.e., 1D, 1D/2D or 2D), and diagnostic methods. 

4. Conclusions and Future Research 

In this paper, the utility of a high resolution ground-based LiDAR terrain dataset supplemented with 
a medium to low resolution airborne LiDAR terrain dataset for a flood inundation study in a GIS and 
hydraulic modeling environment was presented. Multi-platform LiDAR data consisting of airborne, 
mobile, and terrestrial bare-earth points were merged into one composite triangulated irregular network 
(TIN) to form a seamless representation of the study stream reach and adjacent terrain. A separate TIN 
consisting solely of bare-earth airborne LiDAR data was also generated, and a comprehensive 
quantitative comparison was made between the elevation values of the composite and airborne LiDAR 
datasets. A flood inundation analysis was conducted utilizing both the composite and airborne LiDAR 
datasets. The all-return ground-based LiDAR point clouds were used to obtain structural information 
for bridges and culverts that intersected the study stream reach enabling a more accurate model of 
features in the study area. The flood modeling results (i.e., water surface extents and depth grids) were 
quantitatively compared using several diagnostic methods. 

A comparison of the elevation values in the two LiDAR datasets indicated differences in landscape 
characterization. When comparing values across three land surface features (pavement, grass, and 
slope), the greatest differences were found on sloping terrain. A mean difference of 0.178 m and a 
maximum difference of 1.677 m were calculated between the datasets based on 120 sample points 
randomly distributed throughout the study area. An evaluation of 12 cross-section profiles drawn 
perpendicular to the stream illustrated approximate horizontal (e.g., 3.2 m) and vertical (e.g., 1 m)  
offsets of the stream centerline. 
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Through the combination of multi-platform LiDAR data and its use in a hydraulic flood modeling 
analysis, a 35% increase in maximum flood height using the composite LiDAR dataset compared to 
the airborne LiDAR dataset was observed. The distances flooded along transects drawn perpendicular 
to the stream were found to be statistically significantly different between the water surface profiles 
generated using the composite and airborne terrain datasets. Additionally, a 17.76% symmetric 
difference value was calculated indicating a notable difference in the area and shape of the two water 
surface profiles. The results of this research indicated an underestimation of flood extents and volumes 
while using the airborne LiDAR data.  

While flood modeling may generally be accurate in rural or homogenous areas using the airborne 
LiDAR data, the effects of complex terrain and features such as buildings and infrastructure that affect 
floodwater direction and flow in more urban environments could create inaccuracies while generating 
flood maps. The unique “flashy” character with potentially high flow volumes of the mountainous  
sub-basin in which this study occurred make an accurate representation of the topography for flood 
modeling more important. The addition of high resolution data from ground-based LiDAR sensors can 
supplement existing airborne data in topographically complex or sensitive urban areas to increase 
accuracy of the flood level predictions which will assist in better informing local populations of their 
potential risks. 

An important challenge in using LiDAR data is the computational requirements necessary to handle 
such dense datasets. The workflow presented in this study provides researchers with less than optimal 
computational power a method to achieve reliable results. It is believed that the methods presented in 
this paper, namely the synthesis of airborne, mobile, and terrestrial LiDAR data in a GIS and hydraulic 
modeling environment, provide a robust method for accurately representing an urban floodplain and 
the subsequent flood modeling results dictate the need to better represent such a complex environment 
to indicate potential flood inundation locations. Further exploration of the application of mobile and 
terrestrial LiDAR data for urban flood modeling in a mountainous environment is warranted. 

The airborne LiDAR data used in this study represents the first statewide available dataset acquired 
in the U.S., and the previous and continued application of this data has greatly benefited residents and 
businesses in North Carolina. Higher accuracy airborne LiDAR datasets have since been acquired in 
other states, and a comparison between these datasets or a QL 2 LiDAR dataset as recommended by 
the NEEA, and a composite LiDAR dataset similar to that used in this study for urban flood modeling 
would be valuable. Also, flood modeling using only high resolution LiDAR datasets would likely 
benefit from further analysis using 1D/2D or 2D hydraulic models.  
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