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Abstract: Assessing the vulnerability of groundwater is the first step toward careful 

management of water resources to avoid or, at least, to minimize impacts on agriculture. 

The objective of this study was to propose a simple method to assess the groundwater 

quality and to map its spatial variation in terms of suitability for irrigation in the  

Darb El-Arbaein area, Southwestern Desert, Egypt. Thirty-six surveyed wells were used to 

assess and map the groundwater quality. For calculating the Water Quality Index (WQI), a 

total of 20 (13 chemical, two physical, and five calculated) parameters were considered 

e.g., EC, pH, Cl, SAR, B, Zn, iron, Mn, Pb and Cd. The results of analyses were used to 

propose a water quality model. The different water quality maps were produced using GIS 

software. The results show that three water samples fall into the moderate WQI. Most of 

the samples (26) fall into the unsuitable WQI category. Seven samples fall into the suitable 

WQI category. Groundwater samples that fall into the low salinity hazard class and high 

WQI can be used for irrigation of most crops and the majority of soils. The WQI for the 

samples ranges from 47.9 to 88.6. The WQI distribution maps delineating an area of  

266.66 ha are suitable for irrigation in villages (3,4) and areas of 382.35 ha are moderately 

suitability for villages (1,2). Since the final map shows the spatial distribution of irrigation 

water quality in the area, it is now much easier for a decision maker to assess the water 

quality for irrigation and to locate the most suitable site for drilling wells. The present study 

demonstrates high efficiency for GIS to analyze complex spatial data and groundwater 

quality mapping.  

Keywords: GIS; groundwater; Kriging; semivariogram; spatial variability; water quality 

index; heavy metals; Darb El-Arbaein 
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1. Introduction 

Groundwater quality evaluation in developing countries has become a critical issue due to fresh 

water scarcity. The quality of groundwater is equally important as the quantity. Assessment of 

groundwater vulnerability to pollution is necessary for feasibility and development analysis, planning 

management, and land use decisions. Two major techniques for groundwater protection strategies are 

groundwater vulnerability assessment and groundwater quality mapping. Groundwater quality 

mapping is one of the major techniques, which provide information about water suitability for 

irrigation. Water Quality Index (WQI) is a very useful and efficient method for assessing the suitability 

of water quality and for communicating the information on the overall quality of water [1–4] to the 

concerned decision-makers. Many studies and projects have been conducted to assess water quality [5]. 

Shihab and Al-Rawi [6] and Al-Hussain [7] used WQI as a management tool for water quality of the 

Tigris River within Mosul city for different uses. Debels et al. [8] used a modified water quality index 

that is composed of physicochemical parameters for evaluating the quality status of a river in Central 

Chile. Numaan [9] established irrigation WQI for the Tigris River between Al-Sharqat and Alboajeel 

in Iraq. Bhatti and Latif [10] used a water quality index to assess the water quality of the Chenab River 

in Pakistan for irrigation use. Fulazzaky [11] assessed the status and the suitability of Citarum River 

water in Malaysia for agricultural use. Meireles et al. [12] classified the water quality in the the Acarau 

Basin, in the North of the state of Ceara, Brazil for irrigation use. 

Pollution of water has become a health concern both in urban and rural areas [13]. Parameters that 

generally need to be considered for modeling WQI are for example EC, pH, B, Na, Cl and HCO3. 

Specific properties in water such as residual sodium carbonate (RSC) and sodium adsorption  

ratio (SAR) may be suitable or unsuitable for irrigation. The information on concentrations of some 

important heavy metals (Cu, Zn, Pb, Cr, and Cd) is necessary to assess its suitability for irrigation. 

Many studies have successfully used interpolation techniques of the ArcGIS Geostatistical tool [14–16]. 

Ordinary Kriging (OK) and lognormal Kriging were used to produce the spatial patterns of heavy 

metals and disjunctive Kriging was applied to quantify the probability of heavy metal concentrations 

higher than their guide values [17]. Geostatistical methods, Kriging and Co-Kriging, were applied to 

estimate the sodium adsorption ratio (SAR) in a 3,375 ha agricultural field [18].  

The knowledge of irrigation water quality is critical to understand what management changes are 

necessary for long-term and short-term productivity, particularly for crops that are sensitive to changes 

in quality [19]. With an adequate database, GIS can be a powerful tool for assessing water quality, 

developing solutions for water resource problems, and it is a decision-making tool for agriculture 

development [20]. Despite the large number of studies regarding water quality index techniques, no 

complete assessment tool has been found in the literature that incorporates the crucial aspects of 

irrigational water quality analysis. Indexes based on specialist opinion and on statistical methods have 

some degree of subjectivity, because they depend on the choice of variables upon which the major 

indicators of water quality are built. Thus generalization is not acceptable due to special characteristics 

of each water system. Simple, objective, and interpretable methods that use the peculiar characteristics 

of water resources are necessary to simplify the analysis of water quality in the monitoring task.  

The overall objective of the current study is “to propose a simple model to evaluate and map 

groundwater quality using Geostatistics in Darb El-Arbaein, Southwestern Desert, Egypt”. The 
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purposes of this assessment are: (1) To evaluate and monitor the status of groundwater quality and 

assess its suitability for irrigation; (2) to determine the spatial distribution of groundwater quality 

parameters; and (3) to generate a groundwater quality map for the Darb El-Arbaein area. There is an 

urgent need to have a first-hand assessment of the groundwater quality in the Darb El-Arbaein area 

which has special significance and needs great attention of all concerned since it is the main source of 

domestic, irrigating and drinking water. 

2. Materials and Methods 

2.1. Study Area 

Darb El-Arbaein, a historic desert track running between Sudan and Egypt and passing  

El-Kharga Oasis to Assuit, is geographically located between 30°21′56.7″–31°27′4.1″ E and  

24°40′28.5″–23°40′31.6″ N, in Southwestern Desert, Egypt. Arid climatic conditions are dominant and 

rainfall is rare. The area is considered one of the horizontal extensions for settlement developments in 

the Western Desert, which aims at establishing a link between the South Valley Project and Al-Kharga 

Oasis. The current project aims at reclamation 4654 ha and digging 85 wells of 150–500 m depth. 

The project “Development of Trans-Sahara camel route between the Sudan and Egypt  

(Darb El-Arbaein)” is intended to: (a) reduce camel mortality due to inadequacy of water and services 

on a 1500 km long route to markets; (b) promote regional camel trade and improve the economies of 

the region; and (c) motivate desert nomads to become more interested in camel breeding and 

marketing [21]. Groundwater is the only available source of water in the area. The assessment of 

agricultural potentiality in the Darb El-Arbaein area requires water resource evaluation. The general 

geology and geomorphology of the area studied are outlined in the geology of Egypt [22] which is a 

desertic plateau with vast flat expansions of rocky deep closed in depressions (Figure 1). The greatest 

altitude is attained in the extreme southwestern corner where the general plateau character is disturbed 

by the great mountain Gebel Uweinat. The study area (Figure 1), which consists of four villages 1–4, 

encompasses around 5723.18 ha. The area of villages 1,2 is equal to 1933.45 ha, however; villages 3,4 

have an area equal to 3789.73 ha.  

2.2. Overall the Proposed Methodology  

The methodology adopted for groundwater quality mapping using water quality data in the GIS 

environment is shown in Figure 2. The study was carried out with the help of four major components: 

input from remote sensing data, topographic sheets, groundwater quality data and data collected during 

field visits. In order to evaluate the quality of groundwater for irrigation in the Darb El-Arbaein area, 

36 surveyed wells (13 in villages 1,2 and 23 in villages 3,4) with GPS (Garmin eTrex Venture HC) 

data were used to produce the evaluation map. The water samples were collected after 30 min of 

pumping to avoid stagnant and contaminated water. White plastic containers of 1 L capacity were 

rinsed out three to four times with sampling water. Then the containers were filled up to the brim and 

immediately sealed to avoid exposure to air [23]. The containers were labeled for identification and 

brought to the laboratory. The groundwater samples were analyzed for (pH, EC, Na+, Ca++, Mg++, B, 

Cl− and HCO3
-) irrigation purposes. Sodium Adsorption Ratio (SAR), Soluble Sodium Percentage 
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(SSP) and Residual Sodium Carbonate (RSC) were calculated on some standard equations basis. These 

equations are as follows: 

/ ( ) / 2SAR Na Ca Mg+= +  (1) 

( ) ( ) ( )1
3 3     RSC HCO CO Ca Mg Meql− = + − +   (2) 

The concentrations of the heavy metals (Co, Fe, Pb, Ni, Cd, Zn and Cu) were determined using 

atomic absorption spectrophotometer. Area elevation and depth to water were also measured. Water 

quality maps were generated for different water properties and surfaces were interpolated using 

Kriging interpolation technique. A salinity hazard map was prepared and delineated into three classes: 

unsuitable, moderate, and suitable. Thus the final groundwater quality map for irrigation purposes was 

prepared by overlying the above-mentioned grid data. Finally the study area was delineated.  

Figure 1. Location map of the study area in relation to Egypt. 

 
  

Villages 1-2 

Villages 3-4 
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Figure 2. Flow chart showing the methodology adopted for groundwater quality mapping. 

 

2.3. Proposed Water Quality Evaluation Model  

The water quality evaluation model proposed in this study was developed in three steps. In the first 

step, principle component and factor model were developed. Parameters that contribute to most 

variability in irrigation water quality were identified using Principal Components and Factor Analysis 

(PC/FA) as described in SPSS (v.13). Factor analysis provides a useful tool to draw information from 
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multivariate data by exploring the covariance structure among observable variables in terms of a 

smaller number of unobservable variables. In exploratory factor analysis, the model is usually 

estimated by the maximum likelihood method with the use of efficient algorithms and then a rotation 

technique, such as the Varimax method, is utilized to find a meaningful relationship between the 

observable variables and the common factors. A rotation method gets factors that are as different from 

each other as possible and helps you interpret the factors by putting each variable primarily on one of 

the factors. In other words, rotation of factors helps to define which underlying factor a set of items is 

most strongly associated with. 

Indexes based on statistical techniques favor the recognition of the most characteristic indicators of 

the water under study. Factorial analysis allows the reduction of a great number of data obtained upon 

monitoring and permits an interpretation of the various constituents separately [24], making it possible 

to find a better selection of the relevant parameters for water quality classification [25,26]. The 

correlation matrix was calculated based on the normalized data of the 13 parameters, evaluated for the 

sampling sites throughout the Darb El-Arbaein. A preliminary analysis of the representative 

parameters of water quality was performed upon correlation matrix. According to [27] only values 

above 0.5 should be considered; this rationale was used in this study. In order to identify the most 

significant interrelation of water quality parameters in the Darb El-Arbaein area with each resulting 

factor of PC, a matrix rotation procedure was adopted using the Varimax method. This method 

minimizes the contribution of parameters with a lower significance to the factor such that the 

parameters will present loads close to one or zero, eliminating the intermediate values, which makes 

interpretation more difficult.  

In a second step, a water quality index WQI model was proposed. A definition of quality 

measurement values (Qi) and aggregation weights (Wi) was established. Values of (Qi) were estimated 

based on each parameter value shown in Table 1.  

Table 1. Parameters of limiting values for quality measurement (Qi) calculation. 

Qi EC (μScm−1) SAR 
Na Cl HCO3 

Meql−1 

85–100 200 ≤ EC ˂ 750 SAR ˂ 3 2 ≤ Na ˂ 3 Cl ˂ 4 1 ≤ HCO3 ˂ 1.5 
60–85 750 ≤ EC ˂ 1,500 3≤ SAR ˂ 6 3 ≤ Na ˂ 6 4 ≤ Cl ˂ 7 1.5 ≤ HCO3 ˂ 4.5 
35–60 1,500 ≤ EC ˂ 3,000 6≤ SAR ˂ 12 6 ≤ Na ˂ 9 7 ≤ Cl ˂ 10 4.5 ≤ HCO3 ˂ 8.5 

0–35 
EC ˂ 200 or  
EC ≥ 3,000 

SAR ≥ 12 
Na 2 ˂ 2 or  
Na ≥ 9 

Cl ≥ 10 
HCO3 ˂ 1 or  
HCO3 ≥ 8.5 

Note: The criteria established by [28]. 

Water quality parameters were represented by a non-dimensional number: the higher the value, the 

better the water quality. Values of Qi were calculated using the following equation, based on the 

tolerance limits shown in Table 1 and water quality results determined in the laboratory: 

( )max inf /i ij amp ampQ qi x x qi x = − − ∗   (3) 
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where qimax is the maximum value of Qi for the class; xij is the observed value for the parameter; xinf is 

the value corresponding to the lower limit of the class to which the parameter belongs; qiamp is the 

class amplitude; xamp is the class amplitude to which the parameter belongs. 

In order to evaluate xamp of the last class of each parameter, the upper limit was considered to be 

the highest value determined in the physical-chemical and chemical analysis of the water samples, then 

Wi values were normalized such that their sum equaled one. 

( ) ( )
1 1 1

/
k k n

j ij j ij
j j i

Wi F A F A
= = =

=   (4) 

where Wi is the weight of the parameter for the WQI; F = component 1 autovalue; Aij is the 

explainability of parameter i by factor j; i is the number of physical- chemical and chemical parameters 

selected by the model, ranging from 1 to n; j is the number of factors selected in the model, varying 

from 1 to k. 

The water quality index was calculated by summation of Qi, and Wi values as: 

1

n

i

WQI Qi Wi
=

= ∗  (5) 

where WQI is a dimensionless parameter ranging from 0 to 100; Qi is the quality of the ith parameter, 

a number from 0 to 100, a function of its concentration or measurement; Wi is the normalized weight 

of the ith parameter, a function of its importance in explaining the global variability in water quality. 

Division in classes based on the proposed water quality index, which was based on existent water 

quality indexes, and classes were defined considering the risk of salinity problems, soil water 

infiltration reduction, as well as toxicity to plants as observed in the classifications presented by [29]. 

Restrictions to water use classes were characterized as shown in Table 2. 

Table 2. Water quality index characteristics. 

WQI Water use restrictions 

85 ≤ 100 No restriction (Excellent) 
70 ≤ 85 Low restriction (Good) 
55 ≤ 70 Moderate restriction (Poor) 
40 ≤ 55 High restrictions (Very poor) 
0 ≤ 40 Severe restrictions (Unsuitable for irrigation) 

In a third step, the water quality data (attribute) was linked to the sampling location (spatial) in 

ArcGIS and maps showing spatial distribution were prepared to identify the variation in concentrations 

of the groundwater parameters at various locations of the study area. Different water quality maps 

were produced using point data like pH, EC, SAR, Cl, and B by ArcMap GIS software. Geostatistical 

analyses were performed using the Geostatistical analyst extension available in ESRI ArcMap (v. 10) [30]. 

Kriging differs from other methods (such as IDW), in which the weight function is no longer arbitrary, 

being calculated from the parameters of the fitted semivariogram model under the conditions of 

unbiasedness and minimized estimation variance for the interpolation. Thus, Kriging is regarded as 

best linear unbiased estimation (BLUE). A more detailed explanation of the method is given by [31–35]. 
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Of the different Kriging techniques, the ordinary Kriging (OK) method was used in the present study 

because of its simplicity and prediction accuracy in comparison to other Kriging methods [31]. 

Geostatistical analysis was the first to fully explore the data in which the histogram, normality, 

trend of data, semivariogram cloud and cross covariance cloud of the raw data were observed [36]. 

Kriging methods work best if the data is approximately normally distributed [37]. Transformations 

were used to make the data normally distributed and satisfy the assumption of equal variability for the 

data. In ArcGIS Geostatistial Analyst, the histogram and normal QQPlots were used to see what 

transformations were needed to make the data more normally distributed. For each water quality 

parameter, an analysis trend was made. Directional influences (anisotropy) are critical to the accurate 

estimation of water quality surface. The directional search tool was used to remove the directional 

influences from the groundwater quality data. In this study, the semivariogram models were tested for 

each parameter data set. Prediction performances were assessed by cross validation. Cross validation 

allows determination of which model provides the best predictions. For a model that provides accurate 

predictions, the standardized mean error should be close to 0, the root-mean-square error and average 

standard error should be as small as possible (useful when comparing models), and the root-mean 

square standardized error should be close to 1 [37]. Finally, to produce a simple (salinity and WQI) 

hazard map, simple classes were used. The suitability map obtained from the computed index value was 

evaluated according to three categories: unsuitable (0–40), moderate (40–70), and suitable (70–100). 

Also the salinity hazard map was assessed based on three categories: unsuitable (˃1500 μScm−1), 

moderate (1500–750 μScm−1), and suitable (˂750 μScm−1). The area with WQI value of less than 40 

was considered to be poor quality irrigation water not suitable for irrigating agricultural fields. Such 

water could impair soil quality and result in yield loss. As a rule of thumb, water extraction from such 

areas should be avoided.  

3. Results and Discussion 

3.1. Overall Statistical Analysis and Evaluation 

Table 3 shows the summary of the statistical evaluation of the laboratory analyses conducted on  

the samples. 15 of 20 parameters were used in the analysis at this stage because the remaining five 

parameters were used in the calculation of SAR and RSC parameters. The pH of the water samples 

was within a range of 7–8. The overall EC values varied between 642 and 2686 μScm−1. EC was 

lowest for a sample collected from Village 1 (Sample 3) while the highest occurred in a sample from 

Village 4 (Sample 32). The chloride concentration of the water samples was within a wide range of  

124.1–570.9 ppm. The concentration of chloride in most of the areas was high with the maximum of 

570.86 ppm in Village 2 (Sample 9). The range of SAR values in the water samples was 1.83–8.47, 

where the highest SAR value related to Village 4 (Sample 32) and the lowest value related to Village 1 

(Sample 3). Based on the RSC criterion, all water samples were −7.1 to −1.86 (Table 3). Water 

samples analyses revealed that heavy metal pollution of groundwater was low. The variations in the 

distribution of the investigated heavy metals (Cu, Fe, Pb, Mn, Ni and Zn) in the study area were small. 

Except for Cd whose concentration in the water samples was detected to be abnormally high (0.013 ppm) 
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and above the standard value (0.01ppm) for irrigation [38,39], all other heavy metals were within the 

maximum permissible range (Table 3). 

Table 3. Descriptive statistics of water quality parameters of water samples. 

Parameters Range Minimum Maximum Sum Mean SD Skewness Kurtosis 

Depth to well 316.00 214.00 530.00 13,792.00 383.11 107.28 −0.42 −1.43 
Elevation 83.00 82.00 165.00 4,747.00 131.86 25.12 −0.67 −0.99 

EC 2,044.00 642.00 2,686.00 59,645.00 1,656.81 540.32 −0.46 −0.59 
pH 1.14 6.99 8.13 271.55 7.54 0.31 0.01 −0.70 

SAR 6.64 1.83 8.47 198.28 5.51 1.82 −0.60 −0.54 
RSC 5.24 −7.10 −1.86 −145.52 −4.04 1.56 −0.26 −1.04 
Cl 446.76 124.10 570.86 12,385.18 344.03 115.68 −0.24 −0.62 
B 0.17 0.02 0.18 3.34 0.09 0.05 −0.47 −1.34 
Fe 0.19 0.00 0.19 2.60 0.07 0.06 0.72 −0.21 
Mn 0.27 0.00 0.27 1.35 0.04 0.06 2.25 5.40 
Cu 0.12 0.00 0.12 1.37 0.04 0.03 0.49 −0.32 
Zn 0.07 0.00 0.07 1.34 0.04 0.02 −0.10 −0.42 
Cd 0.013 0.00 0.013 0.07 0.002 0.003 2.34 5.62 
Pb 0.24 0.00 0.24 2.62 0.07 0.07 0.78 −0.06 
Ni 0.17 0.00 0.17 0.58 0.02 0.04 2.65 7.53 

All units except pH, SAR, RSC and EC are in ppm, Depth to well and Elevation, m; SD = Std. Deviation. 

The only abnormal and interesting result of a higher Cd amount than the standard value in 

groundwater at the depth varied between 214 and 530 m. The reason for the existence of Cd in Darb  

El-Arbaein is that cadmium can be present in groundwater through contact with soluble rocks and 

minerals. The primary mineral associations of cadmium are with otavite (CdCO3), greenockite (CdS). 

Soil weathering can lead to the release of the Cd2+ ions, which are generally soluble and mobile in 

water. Other sources of cadmium in groundwater include mining (sulfide ores of zinc), industrial 

operations, burning of fossil fuels, and fertilizer application. An important source of cadmium is the 

production of phosphate. Phosphate deposits were recorded at a depth of 600m in the Darb El Arbaein 

area [40]. Substitution of cadmium with natural apatite has also been documented [41] and may be a 

more common route for partitioning to phosphate minerals at concentrations undersaturated with 

respect to precipitation of cadmium phosphate. Cadmium is known to form solid solutions with 

calcium carbonate (calcite) [42–44].  

3.2. Principal Component and Factorial Model  

Table 4 shows the correlation matrix for the analyzed parameters. High correlations (above 0.9) 

were observed between EC and SAR and Cl. Kaiser-Meyer-Olkin (KMO) adequacy test for coefficient 

magnitude comparison indicated an optimum value of 0.82, indicating that the factorial model may be 

applied without restrictions. A similar result was found by [45] in the water quality evaluation in 

tropical lake systems, with a KMO value of 0.85, considered adequate for the study.  
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Table 4. Correlation matrix for the analyzed parameters. 

Parameters Elevation Depth to Well EC pH SAR RSC Cl B Fe Mn Cu Zn Cd Pb Ni 

Elevation 1 - - - - - - - - - - - - - - 

Depth to Well 0.803 1 - - - - - - - - - - - - - 
EC 0.697 0.725 1 - - - - - - - - - - - - 
pH 0.597 0.601 0.450 1 - - - - - - - - - - - 

SAR 0.761 0.773 0.955 0.496 1 - - - - - - - - - - 
RSC −0.226 −0.322 −0.780 −0.143 −0.594 1 - - - - - - - - - 
Cl 0.478 0.499 0.940 0.304 0.836 −0.883 1 - - - - - - - - 
B 0.895 0.895 0.717 0.658 0.817 −0.199 0.487 1 - - - - - - - 
Fe 0.423 0.320 0.194 0.089 0.158 −0.154 0.042 0.238 1 - - - - - - 
Mn −0.589 −0.628 −0.670 −0.256 −0.679 0.387 −0.600 −0.672 −0.009 1 - - - - - 
Cu 0.559 0.626 0.432 0.265 0.544 −0.026 0.253 0.583 0.102 −0.238 1 - - - - 
Zn 0.067 0.130 0.158 0.031 0.089 −0.276 0.077 0.006 0.501 0.151 −0.161 1 - - - 
Cd −0.192 −0.091 −0.223 −0.184 −0.352 −0.053 −0.194 −0.247 0.178 −0.028 −0.403 0.341 1 - - 
Pb 0.285 0.258 0.236 0.056 0.298 −0.051 0.138 0.258 0.076 −0.167 0.118 0.510 0.118 1 - 
Ni −0.155 −0.042 0.075 −0.152 0.034 −0.265 0.128 −0.162 0.341 0.043 −0.161 0.229 0.099 0.203 1 
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Table 5 shows the principal component analysis application to describe the dispersion of original 

parameters which implies a four component model, explaining 77.393% of total variance, diluted in 

fifteen dimensions. This result is in agreement with the works of [25,27,46] in which the two to three 

first generated components explain a great part of the variation of original data (60% to 90%). In many 

cases the use of these components allows the description of the entire data system without significant 

loss of information. Selection of this four-component model used the criterion described by [47] 

considering only those components with a variance that had an auto-value above one. Any component 

must explain a variance above that presented by a single variable. This criterion is observed by [48] 

upon water quality evaluation in the Guadalquivir river in the south of Spain, where through PC three 

hydrochemical factors were identified with variances above unity and explaining 79.1% of total 

variance of the data. 

Table 5 presents factorial loads for the chemical and calculated parameters. A matrix rotation was 

performed and data for factorial loads and communalities after transformation are presented in Table 5. 

The first Factor explains 43.371% of total variance in the data, whereas the second and third factors 

explain 15.366% and 11.510%, respectively. In the first Factor/Component, parameters such as 

elevation, depth to well, EC, SAR, Cl, B and Mn present a load above 0.70, indicating the most 

common composition of the observed parameters. In the second Factor/Component, parameters Zn and 

Ni show high factorial loads of 0.774 and 0.625 respectively. The fourth Factor/Component showed 

Cd as the element with the load (0.644). 

Table 5. Factorial loads for the observed parameters. 

Parameters 
Factorial loads matrix 

F1 F2 F3 F4 

EC 0.9666 0.1866 −0.1303 0.0068 
pH 0.5579 −0.2983 0.0767 −0.0226 

SAR 0.9710 −0.0364 −0.0636 0.0481 
RSC −0.6320 −0.6985 0.2836 −0.0091 
Cl 0.8392 0.3776 −0.3457 −0.0165 
Na 0.9781 0.1065 −0.0580 0.0474 
Ca −0.7883 0.4831 −0.3159 −0.0163 
Mg 0.5395 0.5618 −0.2283 0.0896 

HCO3 0.8209 −0.4469 0.2306 −0.0632 
Fe 0.2529 0.2356 0.6348 0.3909 
Mn −0.7149 0.0775 0.1227 0.4571 
Cu 0.5380 −0.5113 0.0334 0.3242 
Zn 0.1442 0.5101 0.6947 −0.0016 
Cd −0.2484 0.4213 0.3839 −0.6110 
Pb 0.2884 0.0929 0.5945 −0.2261 
Ni 0.0179 0.5396 0.2458 0.4044 

Variance % 47.030 15.512 10.725 6.017 
Cumulative % 47.030 62.541 73.266 79.284 

Extraction method: Principal component analysis. 
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3.3. WQI Development 

In order to develop the proposed WQI, EC, Cl, Na, HCO3 and SAR parameters were used. These 

carry the major factorial load (above 0.82 in Table 5), that is, they best define water quality [46–48]. 

Only these parameters have reference, weight, and hazard ranges, however the other parameters are 

missing from in the literature. Henceforth, the weight of each parameter was based on the variance of 

the first factor (Table 6), associated with the explainability of each parameter, in relation to this factor. 

The normalized weights (Wi), computed through Equation (2), are listed in Table 6. The suitability 

index, which wascalculated based on Equation 3, is shown in Table 7. 

Table 6. Weights for the Water Quality Index (WQI) parameters. 

Parameters EC SAR Na Cl HCO3 Total 
Wi 0.2412 0.2423 0.2094 0.2441 0.0630 1.000 

Table 7. Groundwater Quality Index (WQI). 

Location Sample No. WQI Water quality Location Sample No. WQI Water quality 

Village 1 

1 53.48 Very poor 

Village 3 

19 44.04 Very poor 

2 75.29 Good 20 60.65 Poor 

3 75.21 Good 21 54.92 Very poor 

4 74.16 Good 22 53.37 Very poor 

5 81.98 Good 23 48.42 Very poor 

Village 2 

6 49.13 Very poor 24 45.53 Very poor 

7 88.60 Excellent 25 45.84 Very poor 

8 50.71 Very poor 26 44.75 Very poor 

9 47.93 Very poor 

Village 4 

27 43.88 Very poor 

10 65.90 Poor 28 40.64 Very poor 

11 85.42 Excellent 29 45.18 Very poor 

12 68.42 Poor 30 43.22 Very poor 

13 70.40 Good 31 41.40 Very poor 

Village 3 

14 51.14 Very poor 32 38.87 Unsuitable for irrigation

15 45.38 Very poor 33 50.86 Very poor 

16 49.89 Very poor 34 46.15 Very poor 

17 46.01 Very poor 35 46.31 Very poor 

18 43.27 Very poor 36 45.44 Very poor 

Table 7 shows the suitability index map calculated. The suitability index is calculated to determine 

the suitability of water for irrigation purposes. Suitability index values revealed that the groundwater in 

the study area is of “suitable” quality with the suitability index ranging from 85 to 100 (two wells are 

of excellent water quality) and therefore can be used for irrigation usage. Most of the samples are very 

poor (25 wells) with a suitability index range from 40 to 55. One sample (well No. 32) is of 

“unsuitable” quality and cannot be used for irrigation purposes. Five wells are of good quality and 

three wells of poor quality. Overall, most of Village 1 wells are of good quality and can be used for 
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irrigation with low restrictions, except for well No. 1 which is of very poor quality. Village 2 wells are 

of very poor quality with high restrictions for irrigation except for wells No. 7,11 that are of excellent 

quality and can be used for irrigation with no restriction. The wells of villages 3,4 are of very poor 

quality and can be used for irrigation only with high restrictions.  

Overall, the results in Table 7 indicate that villages 1,2 generally have good water quality, however 

villages 3,4 have a very poor water quality. Restrictions for using this water in irrigation at long term 

are required especially because the soil texture is heavy and the climate is hot.  

3.4. Spatial and Interpolation Analysis of Groundwater Quality Variation 

Water samples were taken from 36 wells in the study area. The data was checked by a histogram 

tool and normal QQPlots to see if it showed a normal distribution pattern. Normal QQPlots provide an 

indication of univariate normality. If the data is asymmetric (i.e., far from normal), the points will 

deviate from the line. Histogram and normal QQPlot analysis were applied for each water quality 

parameter. It was determined that electrical conductivity, chloride, Mn, Cd, Pb, Ni and SAR 

concentrations showed normal distributions, however, only the pH, B, and Zn parameters did not show 

normal distributions. For these parameters, a log transformation was applied to make the distribution 

closer to normal. For each water quality parameter, an analysis trend was made and it was determined 

that there was no global trend for all parameters. In this study, the semivariogram models (circular, 

spherical, tetraspherical, pentaspherical, exponential, gaussian, rational quadratic, hole effect, K-Bessel, 

J-Bessel, and stable) were tested for each parameter data set. Prediction performances were assessed 

by cross validation, which examines the accuracy of the generated surfaces. 

Figure 3 and Table 8 list cross validation results of the examined validity of the fitting models and 

parameters of semivariograms for EC and Cl parameters. All of the water quality parameters were 

assessed by cross validation and given EC and Cl parameters as an example. For the EC sample, the 

standardized mean range is from 0.006153 to −0.000346 and the RMSS range is from 0.9642 to 

0.9788. In this case, for the EC parameter the best fit is the J-Bessel model (SME −0.000346)  

and Circular model for Cl with a 0.005528 standardized mean error. It is closest to zero, and the  

0.9788 RMSS value is closest to 1. When the average estimated prediction standard errors are close to 

the root-mean-square prediction errors from cross-validation, then you can be confident that the 

prediction standard errors are appropriate [37]. 

After applying different models for each water quality parameter examined in this study, the error 

was calculated using cross validation and models giving best results were determined. Table 9 shows 

the most suitable models and their prediction error values for each parameter. Table 9 also shows that 

for different parameters different models may give better results. For water quality parameters, RMSS 

range from 0.945 to 1.2452. 
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Table 8. Cross validation results of EC and Cl parameters. 

Models 

Prediction errors 

Mean 
Root mean 

square 

Average 

standard error 

Mean 

standardized 

Root mean 

square  

standardized 

EC Cl EC Cl EC Cl EC Cl EC Cl 

Circular (Cl) 2.8311 0.2810 331.711 96.730 343.976 97.070 0.00553 0.00001 0.9679 1.006 

Spherical 2.8075 0.5185 331.250 94.960 343.476 96.900 0.00549 0.0024 0.9685 0.983 

Tetraspherical 2.7862 1.6871 330.965 95.270 343.168 96.990 0.00544 0.014 0.9684 0.985 

Pentaspherical 2.7841 1.0608 330.811 95.410 343.003 97.049 0.00545 0.013 0.9685 0.985 

Exponential 2.9911 1.5944 328.131 96.375 341.106 97.327 0.00609 0.013 0.9675 0.990 

Gaussian −0.2096 1.7452 324.440 95.762 334.378 96.699 −0.00268 0.0147 0.9772 0.992 

Rational 

Quadratic 
2.4740 1.6371 329.068 96.402 338.294 97.613 0.00478 0.013 0.9772 0.989 

Hole Effect −0.6005 1.5360 322.291 94.020 332.479 96.75 −0.00350 0.012 0.9775 0.970 

K-Bessel 2.9260 1.7198 327.299 95.911 341.621 96.759 0.00615 0.014 0.9642 0.990 

J-Bessel (EC) 0.6290 1.4001 323.982 93.697 333.446 96.973 −0.00035 0.011 0.9788 0.969 

Stable 2.9880 1.7452 327.052 95.762 341.423 96.699 0.00630 0.0147 0.9643 0.992 

Table 9. Fitted parameters of the variogram model for groundwater quality. 

Parameters Models 

Prediction Errors 

Mean 
Root mean 

square 

Average 

standard error 

Mean 

standardized 

Root mean square 

standardized 

EC J−Bessel 0.6290 323.98 333.45 −0.00034 0.9790 

pH* 
Rational 

Quadratic 
0.0030 0.2580 0.2540 0.00584 1.0060 

SAR Stable 0.0058 1.0647 1.3280 0.00381 1.0647 

Cl Circular 0.2810 97.070 96.738 0.00001 1.0057 

B* Gaussian 0.0015 0.0147 0.0254 −0.04580 1.2452 

Zn* Spherical −0.0002 0.0139 0.0143 −0.02108 0.9825 

Mn Stable 0.00001 0.0088 0.0093 −0.00140 0.9517 

Cd Circular −0.0005 0.0119 0.0107 −0.02750 1.0930 

Pb Stable −0.0021 0.0720 0.0760 −0.02630 0.9450 

Ni Spherical −0.0000 0.0381 0.0396 −0.00230 0.9640 

* Logarithm is used to normalize data. 

Table 10 shows parameters of water quality variograms. The ratio of nugget to sill variances, 

expressed as percentage, can be regarded as a criterion to classify the Spatial Dependency (Sp.D) of 

parameters. If the ratio is less than 0.25, the variance has strong spatial dependency and if the ratio 

ranges between 0.25 and 0.75, the variance has moderate spatial dependency. All parameters of water 

quality have a strong spatial structure except Cl (0.67). Also the effective ranges of most parameters 

are close together, within the range of 600 to 850 m. 
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Table 10. Spatial dependency (Sp.D) and range of the interpolated models for different parameters. 

Parameters Model Nugget/Sill ratio (Sp.D) Range (Km) 

EC J-Bessel 0.03 0.60 
Cl Circular 0.67 0.82 

SAR Stable 0.36 0.73 
Cd Circular 0.23 0.85 
Mn Stable 0.12 0.65 

Sp.D = Spatial Dependency 

Figure 3. Cross validation and semivariograms model for EC and Cl parameters. 

EC Cl 

Figure 4 shows the spatial distribution of different parameters (e.g., EC, pH, SAR, Cl…) in the 

study area and some selected parameters (e.g., Cd, Mn, and water depth), which have F1 and F4 

factorial loads. The groundwater quality prediction maps show the concentration distribution generated 

from the surface map developed from the cross validation process.  
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Figure 4. Spatial distributions of EC, SAR, Cl, Cd, Mn and water depth. 

Villages 1,2 Villages 3,4 
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Figure 4. Cont. 

Villages 1,2 Villages 3,4 
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3.5. Well Water Quality Mapping for Agricultural Purposes 

The groundwater quality maps for agricultural purposes are shown in Figure 5.  

Figure 5. Groundwater salinity hazard map and WQI map of Darb El-Arbaein. 

Villages 1,2 Villages 3,4 

The whole area is divided into three classes on the basis of EC. The water quality for irrigation 

purposes depends on the salinity classified into suitable, moderate, and unsuitable. Also, the map of 

WQI is presented. When the computed index value is bigger than 70, the area is considered to have 

minimum problems with respect to irrigation quality. Therefore, a well drilled in this zone is 

considered to represent ideal conditions for irrigation water quality. When the computed index value is 
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between 40 and 70, the water demonstrates moderate suitability for irrigation purposes. On the other 

hand, values below 40 indicate water that should only be used with caution and better be avoided, 

particularly for sensitive crops. Three of the groundwater samples fall into the moderate WQI. Most of 

the samples (26) fall into the unsuitable WQI category. Seven samples fall into the suitable WQI 

category. Groundwater samples that fall into the low salinity hazard class and high WQI can be used in 

irrigation for most crops and the majority of soils.  

The map of villages 3,4 (Figure 5) shows that 382.35 ha (10.09%) of area fall into the moderate 

category, however, much of the area (3407.38 ha) has unsuitable water quality. For the villages 1,2, the 

corresponding area of suitable category is 266.66 ha (13.79%), however, the moderate category is 

1666.79 ha. The observed low suitability index of the groundwater quality is due to the desert location 

and the deficiency of water and rainfall, which leads to the need to dig deep and semi-deep wells. 

Since the map shows the spatial distribution of irrigation water quality in the area as index values, it is 

now much easier for a decision maker to assess the quality of water for irrigation purposes and further 

locate the most suitable site for drilling wells to extract irrigation water.  

Groundwater resource degradation is an issue of significant societal and environmental concern in 

the Darb El-Arbaein area. In order to prevent groundwater pollution and avoid the future need for 

costly remediation efforts, GIS can be used to assess groundwater pollution. It is also helpful for the 

public to understand that the quality of water is a useful tool in many ways in the field of water quality 

management [49].  

4. Conclusions and Future Outlook 

The present paper proposes a simple model to assess and map groundwater suitability for irrigation 

purposes in the Darb El-Arbaein area. Factor/Principal Component Analysis permitted the description 

of parameters involved in the processes that define water quality in the Darb El-Arbaein through a 

four-component model, the components of which explain 79.28% of total data variance, previously 

diluted into thirteen dimensions. The ordinary Kriging method was used for the preparation of thematic 

maps of groundwater quality parameters such as electrical conductivity, sodium adsorption ratio, 

chloride, and heavy metals. The circular semivariogram model was best fitted for chloride and Cd 

parameters where the spherical model fitted best for Ni and Zn parameters. The stable semivariogram 

model best fitted Pb and SAR parameters where the J-Bessel model fitted best for the EC parameter. 

High salinity was due to the high chloride concentration in the groundwater. The map of villages 1,2 

indicates the presence of about 13.79% of the study area which contains suitable groundwater for 

irrigation. However, in villages 3,4, 10.09% of the area falls into the moderate category for irrigation 

purposes. The groundwater quality index was devised to analyze the combined impact of different 

quality parameters on irrigation purposes. The Water Quality Index (WQI) developed and proposed in 

this study provides an easy-to-use tool that could help analyze the overall quality of irrigation water. 

Overall, the proposed index incorporates the EC parameter to represent salinity limitation; SAR and 

EC to represent permeability limitation; sodium, chloride, boron and trace elements to represent 

specific ion toxicity, HCO3 and pH to represent effects on sensitive crops.  

The application of WQI in this study has been found useful in assessing the overall quality of water. 

It is also helpful for the public to understand that the water quality is a useful tool in many ways in the 
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field of water quality management. The WQI used provides a non-expert with an easy way of 

understanding the overall water quality. The present study demonstrates high efficiency for GIS to 

analyze complex spatial data. The GIS would help to apply the groundwater management practices 

such as proper groundwater resource management in terms of groundwater quality and quantity. 

Groundwater quality maps produced as a result of this research should be taken into account by 

decision-makers for sustainable land-use management in Darb El-Arbaein.  

An analysis of the nature and types of land-use and its associated impact on groundwater quality is 

essential for a proper understanding of the present environmental problems and linking groundwater 

quality and land-use. The relationship between land-use and water quality is bidirectional. Land-use 

activities have direct impacts on water quality, while water quality greatly influences the siting of  

land-use activities. Inappropriate land-use, particularly poor land management, causes chronic 

groundwater quality problems. Acute groundwater quality problems are common and arise from 

unsuitable land use. There remains a lack of coherent land-use plans that protect and improve water 

quality. None of the research has advocated an overall spatial planning approach and the widespread 

restructuring of land-use, which we believe are needed to get to grips with the conflicts between 

groundwater and land-use. There is a real necessity to tackle these problems. So, further research could 

be to answer the following question: What are the effects of groundwater quality on land-use? One 

cannot discuss the future impact of land-use on groundwater without considering the scale used. So, 

further research also should answer the question: “Does scale matter?” The purpose is to evaluate the 

use of different spatial and temporal resolution satellite images for delineating meaningful land-use 

change information to support database development at different scales. 
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