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Abstract: Microalgae can be used for the treatment of municipal wastewater. The 

application of microalgal biofilms in wastewater treatment systems seems attractive, being 

able to remove nitrogen, phosphorus and COD from wastewater at a short hydraulic 

retention time. This study therefore investigates the area requirement, achieved effluent 

concentrations and biomass production of a hypothetical large-scale microalgal biofilm 

system treating municipal wastewater. Three scenarios were defined: using microalgal 

biofilms: (1) as a post-treatment; (2) as a second stage of wastewater treatment, after a first 

stage in which COD is removed by activated sludge; and (3) in a symbiotic 

microalgal/heterotrophic system. The analysis showed that in the Netherlands, the area 

requirements for these three scenarios range from 0.32 to 2.1 m2 per person equivalent. 

Moreover, it was found that it was not possible to simultaneously remove all nitrogen and 

phosphorus from the wastewater, because of the nitrogen:phosphorus ratio in the 

wastewater. Phosphorus was limiting in the post-treatment scenario, while nitrogen was 

limiting in the two other scenarios. Furthermore, a substantial amount of microalgal 

biomass was produced, ranging from 13 to 59 g per person equivalent per day. These 

findings show that microalgal biofilm systems hold large potential as seasonal wastewater 

treatment systems and that it is worthwhile to investigate these systems further.  
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Abbreviations 

COD—Chemical Oxygen Demand SRT—Sludge retention Time 

MTR—Maximum Tolerable Risk VSS—Volatile suspended solids 

PAR—Photosynthetic Active Radiation WWTP—Wastewater Treatment Plant 

PE—Person Equivalent  

 

1. Introduction 

The conventional treatment of municipal wastewater consists of activated sludge processes with a 

combination of nitrification and denitrification and biological or chemical phosphorus removal. 

However, other treatment systems are also used, including systems based on microalgae, eukaryotic 

microorganisms and prokaryotic cyanobacteria that carry out oxygenic photosynthesis [1]. Microalgae 

have a high affinity for nitrogen (N) and phosphorus (P), illustrated by the low values reported for  

half-saturation constants, ranging from 0.56 to 3094 µg N/L, and from 0.001 to 81.9 µg P/L [2–5]. 

Microalgae can either grow in suspension (phytoplankton) or on substrata (benthic) in biofilms [6]. 

Microalgal biofilms are attached microbial consortia of phototrophs and chemotrophs entrapped in an 

exopolymeric matrix, and are omnipresent in aquatic environments [7,8]. Although not given a lot of 

attention, microalgal biofilms systems could form interesting wastewater treatment systems. A 

microalgal biofilm system can operate at short hydraulic retention times due to the ability of the 

biofilm to retain the biomass. It is also expected that, in contrast to suspended microalgal systems, little 

or no separation of microalgae and water is required before discharging the effluent [9,10]. 

Furthermore, no mixing is needed in the system, resulting in a lower energy requirement than for 

suspended systems.  

Algal biofilms systems can be composed of large biofilm panels over which the wastewater flows. 

These panels can either be placed horizontally, at an angle like the algal turf scrubber [11], or 

vertically in rows like the twin layer system [12]. Such microalgal biofilms may be used at different 

stages of the wastewater treatment. A first scenario is using microalgal biofilms as a post-treatment 

system. In light of the EU Water Framework Directive objective to obtain good chemical and 

ecological status for all surface waters by 2015, this can be an interesting concept. The high affinity of 

microalgae for N and P and the lack of requirement of an organic carbon source are advantages over 

currently available post-treatment systems. A microalgal biofilm can also be used to remove N and P 

after a highly loaded activated sludge system. The microalgal biofilm then serves as an alternative for 

nitrification and denitrification and chemical or biological P removal. This scenario holds the 

advantages of a higher net heterotrophic biomass yield, and a lower energy input for aeration 

compared to a conventional wastewater treatment system.  

A third option is applying an algal-bacterial biofilm to treat the wastewater directly. This scenario 

makes use of a symbiotic relationship that may develop when using microalgae and heterotrophs 
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together. During this symbiosis the microalgae produce oxygen (O2) that is needed by aerobic 

heterotrophs, and the carbon dioxide (CO2) that is released by these heterotrophs is in turn used by the 

microalgae. In this manner no external O2 supply is needed, which saves the energy otherwise required 

for aeration of the activated sludge system. 

Previous studies have shown that microalgal biofilms systems can achieve good removal of N and P 

from wastewater. Removal capacities over 90% were measured for ammonium (NH4
+), nitrate (NO3

−) 

and over 80% for phosphate (PO4
3−) [12–14], and up to 75% of the Chemical Oxygen Demand (COD) 

was removed from diluted swine manure in an algal-bacterial biofilm [14]. However, the feasibility of 

the application of microalgal biofilms in wastewater treatment will be determined by more factors than 

the removal capacity. These factors include the achieved effluent concentrations, biomass production 

and the area requirement. Especially the latter is a point of concern, as algal systems are known for 

their relatively large area requirement. Unfortunately, little is known about these aspects of microalgal 

biofilms and how the three different scenarios mentioned above compare.  

This study aims to get insight in the feasibility of using microalgal biofilms for municipal 

wastewater treatment. A scenario analysis will be performed for the three different concepts of using 

microalgal biofilms in municipal wastewater treatment. This analysis compares the area requirement, 

achieved effluent concentrations and biomass production under the conditions of municipal wastewater 

treatment in the Netherlands. In addition, this study seeks to determine what knowledge is still  

lacking in order to be able to make a final conclusion on the feasibility of microalgal biofilms  

in wastewater treatment.  

2. Material and Methods 

2.1. Scenarios 

Three different scenarios were defined in which microalgae are integrated in a municipal 

wastewater treatment plant (WWTP), as shown in Figure 1.  

In Scenario 1 the microalgal biofilm system is used as a post-treatment system for effluent from an 

activated sludge process. In Scenario 2 the first stage of wastewater treatment removes the bulk of the 

COD. Nitrification is prevented in this stage by operating at a short sludge retention time (SRT; 2.5 days). 

The second stage consists of a microalgal biofilm system removing N and P. In contrast to Scenario 1, 

N is mainly present as NH4
+ rather than NO3

−. In Scenario 3 the microalgae are used in a symbiotic 

process of algae and bacteria. N is removed by combined nitrification and denitrification and via 

assimilation by microalgae, COD is removed by heterotrophs, and P is mainly assimilated by microalgae. 

In all scenarios the target effluent values were 2.2 mg/L total N and 0.15 mg/L total P. These values 

are the maximum tolerable risk (MTR) guidelines which are used by the Dutch water boards, as the 

classification of the good chemical and ecological status of surface water of the Water Framework 

Directive is not yet known. 
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Figure 1. Schematic overview of the three different scenarios of using microalgal biofilms 

in municipal wastewater treatment. The incoming wastewater and target effluent MTR 

values of 2.2 mg/L N and 0.15 mg/L P are equal for all scenarios. The sludge retention 

time (SRT) is shown for the activated sludge compartments of Scenarios 1 and 2.  

 

2.2. Calculations and Parameters 

2.2.1. Microalgae 

The WWTP in this study was located in the Netherlands and receives wastewater from 100,000 

inhabitants producing 130 L per person equivalent (PE) per day. In the Netherlands, microalgal 

systems offer the highest potential at tourist locations during the period late spring-early autumn, when 

an increased wastewater production is accompanied by the highest irradiation of the year. Therefore, 

only the period late spring-early autumn was considered in this analysis, corresponding with the tourist 

season. The microalgal biofilm system therefore receives irradiation summed over the months May 

until October. The microalgae utilize 43% of this irradiation, equivalent to the photosynthetic active 

radiation (PAR, 400–700 nm). The variation of irradiance during the day and over these months has 

not been taken into account, but will be discussed subsequently. The summed irradiation was equal to 

4773 mol photons/m2 (see Appendix A).  
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An important parameter of the microalgal system is the quantum requirement of the photosynthetic 

process. This is the efficiency with which the microalgae take up light energy and convert it to 

chemical energy, i.e., new biomass, while releasing O2. Under low light intensities, approximately  

10 PAR photons are required for the liberation of one molecule of O2 [15,16]. At higher light 

intensities, photosaturation takes place and part of the absorbed light is lost in the form of heat. 

Considering this photosaturation effect, a vertical positioning of the microalgal biofilm system is 

proposed and a minimal quantum requirement of 20 PAR photons per O2 is envisioned [17]. This 
corresponds to a maximum oxygen quantum yield ( ) of 0.05 O2/photon. With  the amount of 

O2 produced per photons received per m2 of ground area is calculated: 

, , · / /  (1) 

with Ro,A,algae the areal oxygen production by microalgae [mol/m2/d]; PFD the photon flux  

density [mol photons/m2/d]. 

The following stoichiometrical reactions are used for microalgae, with either nitrate (assumed in 

Scenario 1) or ammonium (assumed in Scenarios 2 and 3) as nitrogen source:  0.94 0.12 0.01 . . . . 1.42 0.13  (2) 0.70 0.12 0.01 . . . . 1.18 0.11 (3) 

The areal amount of biomass produced (Px,A,algae) is calculated with Equation 2 or 3; 1.42 mol O2 

coincides with 1 mol of biomass (on C-basis) in case of NO3
− uptake or 1.18 mol O2 with 1 mol of 

biomass in case of NH4
+ uptake. This biomass is assumed to be present in a biofilm kept at optimal 

thickness through regular harvesting of the biofilm. Keeping the biofilm at this thickness will reduce 

respiration losses and ensure an optimal nutrient uptake capacity.  

It is expected that the microalgal biofilm will be composed of a mixed culture of microalgae, due to 

varying conditions with respect to temperature, and N and P concentrations. We assumed an average 

microalgal biomass composition for this mixed culture, of 7.8% N and 1.4% P (w/w, based on algal 

biomass of CH1.78O0.36N0.12P0.01) [18–20]. With the amount of biomass produced known and the 

fraction of N and P present in the biomass, the uptake of N and P from the wastewater is calculated. 

The following calculation shows the uptake of N, but the calculation of the P uptake is equivalent:  

, , , , · , / /  (4) 

with RN,A,algae the areal N uptake rate by microalgae [g/m2/d]; Px,A,algae the areal microalgal biomass 

production rate [g/m2/d] and fN,algae the fraction of N in the microalgal biomass [g/g]. 

Using the desired amount of N or P removed, the area was calculated as: · , ,  (5) 

with A the area [m2] and Q the flowrate [m3/d]. 

2.2.2. Heterotrophs 

It was assumed that biomass production in the activated sludge process is only accounted for by the 

heterotrophic biomass converting COD. The following formula is used [21]: 
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, · · , ,1 · · 1 · ·  ⁄  (6) 

with Px,sludge the sludge production [g VSS/d]; Ysludge the biomass yield [g VSS/g bCOD], SRT the 

sludge retention time [d]; fd the fraction remaining as cell debris [g VSS/g VSS] and kd the decay 

coefficient [d−1]. 

The sludge in the WWTP was assumed to have an average composition of 12% N and 2% P  

(w/w based on sludge biomass of C1H1.4O0.4N0.2) [21]. With the amount of biomass produced known 

and the fraction of N and P present in the biomass, the uptake of N (RN,sludge) and P from the 

wastewater is calculated. Calculation shown here for N: 

, , · , /  (7) 

Additional calculations of O2 and CO2 production and consumption, and a list of all parameters can 

be found in Appendix A.  

3. Results 

Table 1 shows the area requirement of the microalgal biofilm and the corresponding effluent 

concentrations for the different scenarios. The area requirements are based on the calculated uptake 

capacities of 1.85 g N/m2/d and 0.34 g P/m2/d in Scenario 1 and 2.2 g N/m2/d and 0.41 g P/m2/d in 

Scenarios 2 and 3. The area requirement of the post-treatment system of Scenario 1 is the smallest with 

0.32 m2/PE, followed by the symbiotic system of Scenario 3 requiring 0.76 m2/PE. The large area 

requirement of 2.1 m2/PE of Scenario 2 in comparison to Scenarios 1 and 3 was due to the larger 

amount of N that needed to be assimilated by the microalgae in this scenario.  

Table 1. The required ground area and effluent concentrations of N and P of a microalgal 

biofilm system treating wastewater from 100,000 inhabitants in the Netherlands during 

May to October for the three different scenarios. 

Scenario 
Area requirement

(m2/PE) 
Effluent total N 

(mg/L) 
Effluent total P 

(mg/L) 

Scenario 1 0.32 5.39 0.15 
Scenario 2 2.10 2.20 1.40 
Scenario 3 0.76 2.20 6.07 

The limiting nutrient was found to be P for Scenario 1 and N for Scenarios 2 and 3. The calculations 

were therefore performed for P reaching the desired MTR value in Scenario 1 and for N reaching the 

desired value for Scenarios 2 and 3. Consequently, in the P limiting Scenario 1, the N concentration 

remained above target with 5.39 mg N/L, while in the N limiting Scenarios 2 and 3 the P concentration 

remained above target. The latter two also did not comply with current EU effluent discharge 

requirements of 1 mg P/L. Consequently, the desired effluent values for both N and P could not be 

reached simultaneously. 

In Scenario 3, a symbiotic relationship between microalgae and heterotrophs was assumed to 

develop. The O2 production by the microalgae and the O2 consumption by the heterotrophs were 

balanced, by adjusting the fraction of N that was removed by combined nitrification and denitrification 
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and the fraction that was assimilated by microalgae. Figure 2 shows that the O2 in the system was 

balanced when 70% of the NH4
+ was converted by the heterotrophs (nitrification-denitrification) and 

the remaining 30% by the microalgae. With this balance, the microalgae supply all O2 for the 

heterotrophs, and aeration is theoretically not needed. However, it can also be seen from Figure 2 that 

the CO2 production and consumption could not be balanced at the same time. Approximately 40% 

additional CO2 needs to be supplied or fixed by the microalgae from the air. 

Figure 2. The consumption of CO2 by microalgae alongside the production of CO2 by 

heterotrophs, and the production of O2 by microalgae alongside the consumption of O2 by 

heterotrophs in the symbiotic system of Scenario 3. The amounts are expressed in gram per 

person equivalent (PE) per day. 

 

Figure 3 shows the amount of activated sludge and microalgal biomass produced in the three 

different scenarios. The microalgal biomass per PE was based on the calculated microalgal biomass 

production of 24 g/m2/d in Scenario 1 and 28 g/m2/d in Scenarios 2 and 3. In Scenario 1 similar 

amounts of activated sludge and microalgal biomass were produced. Scenario 2 had the largest microalgal 

biomass production of 59 g/PE/d, because larger amounts of nutrients needed to be assimilated in  

this scenario.  
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Figure 3. The microalgal biomass and activated sludge in the three scenarios for a WWTP 

of 100,000 inhabitants in the Netherlands from May to October. The amount of activated 

sludge is expressed in grams volatile suspended solids (VSS) and the amount of microalgae 

in grams dry weight, both per person equivalent (PE) per day. 

 

4. Discussion 

4.1. Effluent Concentrations  

The results of this scenario analysis showed that it was not possible to simultaneously remove the N 

and P in the wastewater to the target values of 2.2 mg N/L and 0.15 mg P/L. In the post-treatment 

scenario P, while in Scenarios 2 and 3 N was limiting the microalgae growth. Indeed, given the ratio of 

N:P in wastewater, N will always be the limiting nutrient, if the molar ratio of C:N:P of 100:12:1 

represents the real average elemental composition of microalgae grown in such systems. However, 

elemental composition in microalgae is known to be highly variable. Compositions with C:P ratios 

between 34:1 and 418:1, and N:P ratios between 3.5:1 and 38:1 are reported in literature for different 

species of microalgae [20,22]. Also the growth conditions, with respect to nutrient and/or light 

limitation, influence the elemental composition. Molar N:P ratios as low as 3:1 have been reported under 

N limiting conditions, while under conditions of P limitation a N:P ratio of 100:1 is possible [23,24]. At 

low growth rates, the N:P ratio of the biomass composition can sometimes match the supply ratio. 

Especially luxury uptake of P with storage as polyphosphate, is known to take place in microalgae [25,26]. 

This luxury uptake might make it possible to not only achieve MTR quality with respect to N, but also 

with respect to P. 
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In the scenario analysis only N and P removal by microalgal assimilation was taken into account. 

Additional removal of P by precipitation with cations like Ca2+ and Mg2+ is also possible. This 

precipitation occurs at higher pH levels caused by microalgae changing the CO2/HCO3
−/CO3

2− 

equilibrium when more CO2 is taken up than can be supplied via absorption from the atmosphere [9,26]. 

With such a pH rise expected within the biofilm, it is likely that in practice a larger P removal occurs 

than was calculated.  

4.2. Area Requirement 

This study found area requirements for the three scenarios between 0.32 and 2.1 m2/PE.  

A conventional WWTP is estimated to have an area requirement around 0.2–0.4 m2/PE. Hence, with 

0.32 m2/PE, the microalgal post-treatment requires a similar area to that of the activated sludge plant. 

The two-stage system of Scenario 2 requires the largest area of 2.1 m2/PE. However, the first activated 

sludge stage will be considerably smaller than in a conventional WWTP, because nitrification is 

absent. In addition, more sludge is produced, and this sludge will have a higher energy value. This 

implies that more methane can be produced when digesting the sludge anaerobically.  

The symbiotic system of Scenario 3 has an area requirement of 0.76 m2/PE, which is smaller than 

the area of the system of Scenario 2, and similar to the conventional WWTP combined with microalgal 

post-treatment in Scenario 1. Moreover, this system has the advantage that the O2 production by 

microalgae and O2 consumption by heterotrophs can be balanced. This balance implies no need for an 

external oxygen supply, giving energy and cost savings. Although very attractive, the technology 

required to support a symbiotic biofilm system still needs to be developed.  

The area requirements are based on the calculated uptake capacities of 1.85 g N/m2/d and  

0.34 g P/m2/d in the post-treatment scenario and 2.2 g N/m2/d and 0.41 g P/m2/d in Scenarios 2 and 3. 

These calculated uptake capacities are higher than the 0.1–0.6 g N/m2/d and 0.006–0.09 g P/m2/d 

measured in lab-scale biofilm systems [13,14], but lower than the 0.7–2.1 g P/m2/d measured in other 

pilot scale microalgal biofilms systems [11,27]. This indicates that the calculated uptake capacities in 

this study can be considered a good average estimation.  

The area requirement calculated for the different microalgal systems depends on the elemental 

composition of microalgal biomass, as well as on the irradiance and the photosynthetic efficiency. As 

mentioned above, the elemental composition can vary in microalgae. Clearly a higher N and P content 

in the microalgae will result in a lower area requirement, while a lower content will increase the 

required area. This again illustrates the importance of knowing the real elemental composition of the 

microalgae when growing on wastewater.  

The effect of irradiance on the area requirement can only be changed by either moving the system to 

another location, or by applying artificial illumination. However, the addition of artificial light yields 

no substantial area reduction. If all produced biomass, both activated sludge as well as microalgal 

biomass, would be converted into biogas to produce electricity for artificial light, the area reduction for 

the three scenarios is at most 0.8% (see Appendix B). This extremely low reduction is related to the 

energy losses in the process of methanogenesis, in converting biogas into electricity, electricity into 

light and light into new biomass via photosynthesis. Clearly these large scale microalgae based 

processes can only be fueled by sunlight.  
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In this analysis the oxygen quantum efficiency was assumed to be 0.05 mol O2/mol photons. This 

value is not reached in horizontal microalgal systems, but has been reached in vertical panel 

photobioreactors [17]. This efficiency has been determined with light as the limiting substrate. 

However, it is likely that CO2 limitation will occur when the biofilm is only exposed to ambient air. 

Modeling of microalgal biofilms has shown that CO2 limitation can easily occur, the level of limitation 

depending on the bulk pH and alkalinity [28]. Therefore, the assumed efficiency can only be reached 

in a vertical biofilm system, if CO2 limitation can be prevented. Using heterotrophic microorganisms 

to directly supply the CO2 to the microalgae as in Scenario 3, may therefore be a very attractive way to 

accomplish this.  

4.3. Seasonal Variation in Temperature and Light Intensity 

Both microalgal growth and uptake of N and P decrease at lower temperatures and light intensity [29]. 

Therefore, the capacity of the microalgal system will change throughout the day and the seasons. Low 

uptake of nutrients by microalgae during winter may be one of the main limitations of the application 

of microalgal wastewater treatment systems in a country like the Netherlands. In this scenario analysis, 

the system was assumed to be running only in the tourist season, from May until October. The 

application of the microalgal system in places where a much higher capacity is needed during summer 

is the most interesting application of this technology in The Netherlands. The microalgal system will 

provide additional capacity during summer, whereas during winter the existing WWTP capacity will 

be sufficient. Such a microalgal system may be applied on the islands in the Wadden Sea of the 

Netherlands, being a tourist location during summer. On the island Ameland for example, wastewater 

production during summer can be more than three times the amount during the rest of the year. With 

these conditions a microalgal biofilm system is an interesting option to treat the additional wastewater 

in summer, instead of increasing the size of the wastewater treatment plant to be able to treat the 

summer wastewater load.  

4.4. Daily Variation in Light Intensity 

The microalgae production was based on the total irradiation received in five months, and therefore 

the diurnal light cycle was not taken into account. In general, uptake of N and P by microalgae changes 

throughout the day and is faster during daytime than in the dark [24,25]. N-limited microalgae, on the 

other hand, are known to take up either NO3
− or NH4

+ in the dark. Uptake of NH4
+ can be more than 

50% of the daylight value in N-limited microalgae [30]. Consequently, when N is the limiting nutrient 

for microalgae in the treatment of municipal wastewater, considerable uptake of N during darkness 

might be expected. In addition, the wastewater loading rate of N and P is expected to be lower during 

the night, possibly compensating for the reduced nutrient uptake.  

4.5. Application of Microalgal Biomass 

When using microalgal biofilm systems in wastewater treatment, substantial amounts of microalgal 

biomass are produced. In Scenario 1 the microalgal biomass production was 24 g/m2/d based on the 

consumption of NO3
− and in Scenarios 2 and 3 the production was 28 g/m2/d based on the 
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consumption of NH4
+. These biomass productions are slightly higher than biomass production of  

11–18 g/m2/d measured in pilot photobioreactors [31,32] and in the range of biomass production of 

24–31 g/m2/d measured in other biofilm pilot systems [11,27]. With this biomass production, a WWTP 

for 100,000 inhabitants with the microalgal post-treatment of Scenario 1 produces 200 ton (dry weight) 

microalgal biomass during the five summer months of operation. In Scenarios 2 and 3 this amount of 

biomass is even larger. With such a substantial amount of biomass, it is important to find an efficient 

way to harvest the biomass, and a proper destination. 

To ensure an actively growing biofilm, and to prevent washout of valuable biomass with the 

effluent, the biofilm will need to be harvested regularly. This regular harvesting will reduce respiratory 

biomass losses or even cell death, which otherwise would lead to release of N and P from the biofilm. 

Two ways of harvesting can be distinguished, passive and active. Passive harvesting entails collecting 

the microalgal biomass that naturally detaches from the top of the biofilm when it ages. This might 

involve the addition of a settler tank, resulting in extra area requirement. Active harvesting techniques 

currently applied to remove biofilms in other systems include pH shock [33], backwashing and 

scraping. Active harvesting appears more attractive as it gives the possibility to harvest very regularly, 

hereby reducing the respiratory losses as much as possible. 

Nitrogen was shown to be the limiting nutrient when integrating microalgal biofilms in the 

wastewater treatment (Scenarios 2 and 3). In this case, it might be possible to accumulate lipids in the 

microalgal biomass, as microalgae start to accumulate these under conditions of N-limitation [34,35]. 

To achieve this N-starvation and induce lipid accumulation the C:N ratio should be twice as high as 

was assumed in the scenario analysis. Although this increased ratio would result in an area requirement 

twice as large, the amount of produced biomass will also be doubled and thus larger amounts of lipids 

may be produced. In Scenario 1 these lipids would approximately amount to 79 ton during the five 

summer months of operation (see Appendix C). However, further research is still needed to induce the 

accumulation of specific desired lipids, to obtain a stable (mixed) culture of the desired species in the 

system, and to set up the biorefinery needed to extracts these lipids as well as valorize the remaining 

biomass constituent [30,31]. 

Depending on the microalgal biomass composition other products might also be possible. Using the 

biomass as fertilizer is very attractive but is only possible when no heavy metals or other recalcitrant 

compounds are present in the wastewater and accumulated by microalgae. Anaerobic digestion for 

biogas production is another possibility, although afterwards still autotrophic N and P removal or 

recovery will be necessary. The CO2 that is produced during digestion might be recycled to the 

microalgal biofilm system as an additional CO2 supply [36,37].  

5. Conclusions 

This study investigated the potential of a hypothetical microalgal biofilm system as a seasonal 

wastewater treatment system in the Netherlands. The analysis showed that the area requirement of the 

microalgal biofilm system was 0.32 m2/PE for a post-treatment system, 2.10 m2/PE for a two stage 

wastewater treatment system and 0.76 m2/PE for a one-stage symbiotic system. In addition, it was 

found that microalgae growing on wastewater treatment plant effluent are P limited and microalgae 

growing on untreated or partially treated wastewater are N limited. The microalgae will produce a 
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substantial amount of biomass. For the application of microalgal biofilms in countries such as the 

Netherlands, further research should look into the effect of the daily variation of both the wastewater 

flows and of the irradiation and temperature. In addition, the destination of the produced biomass is an 

important topic for future studies. Finally, real (pilot) tests should be performed to establish if indeed  

a photosynthetic efficiency of 0.05 mol O2/mol photons can be reached and whether CO2 limitation 

will occur.  
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