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Abstract: Bankfull hydraulic geometry relationships relate bankfull stream dimensions, 

such as cross-sectional area, width, mean depth, mean velocity, width to depth ratio, and 

slope to bankfull discharge. These relationships can assist in determining a design discharge 

for stream restoration and management projects. This study assessed 27 stable streams 

located in the Inner Bluegrass and Outer Bluegrass regions of Kentucky. Reaches were 

selected based on the presence of a U.S. Geological Survey gage, as well as other conditions 

such as presence of readily identifiable bankfull indicators, stability indices, and site 

accessibility. Bankfull channel dimensions and discharges were determined, and hydraulic 

geometry relationships were developed for both the Inner Bluegrass and Outer Bluegrass 

regions. These scaling relationships for karst-influenced streams were similar to others 

reported in the literature for non-karst areas. Significant differences between the regions 
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were found only for bankfull width and width-to-depth ratio. Streams in the Inner Bluegrass 

tended to be more narrow and deep at bankfull discharges less than 10 m
3
s
−1
 and wider and 

shallower at bankfull discharges greater than 20 m
3
s
−1
 as compared to stream in the Outer 

Bluegrass. It is suspected that physiographic conditions related to local geology and/or 

riparian vegetation at three sites in the Outer Bluegrass accounted for these differences. 

Results of this study indicate that in instances of geologic variation within a physiographic 

region, hydraulic geometry relationships may require evaluation at the watershed scale.  

Keywords: natural channel design; geomorphology; karst; bankfull discharge; stream 

restoration; hydrology 

 

1. Introduction 

Hydraulic geometry provides a means for enhancing our ability to assess and design stream  

projects [1-3]. Hydraulic geometry equations describe the relationship between a stream’s form, such 

as cross-sectional area, width, mean depth, mean velocity, and slope, and a single representative 

discharge such as bankfull discharge [3-6]. Bankfull discharge is the discharge at which the stream 

flows at the top of its banks just before waters spill onto the floodplain [6-9]. Bankfull discharge is a 

deterministic discharge often used to estimate the channel-forming discharge [6]. As defined by 

Copeland et al. [6], the channel-forming discharge is a single discharge that over a long period of time 

would theoretically “produce the same channel geometry as the natural long-term hydrograph.” While 

Copeland et al. [6] referred to stable alluvial channels, Fola and Rennie [10] noted that the concept of 

channel forming discharge is applicable to non-alluvial channels. In addition to bankfull discharge, 

channel forming discharge can also be estimated by computing effective discharge, which is the 

discharge that transports the maximum annual sediment load [6,11-15]. Both Andrews [8] and 

Andrews and Nankervis [16] found that effective discharge and bankfull discharge were equivalent for 

streams in the western U.S. However, the difficulty with using effective discharge as a means to 

estimate channel-forming discharge is that a large amount of data is required as both flow duration and 

sediment rating curves are needed. This data requirement makes the computation of effective discharge 

impractical in many situations. Annable et al. [17] noted that the sediment rating curves used to 

compute effective discharge are typically created using only suspended sediment data. By not 

including bed load data, which is often difficult to acquire, the authors state that such effective 

discharge computations may contain significant error, particularly when considering coarse-bed 

systems such as gravel channels. 

The physical characteristics of natural streams are interconnected [18]. Leopold and Maddock [4] 

recognized this and used empirical data collected over a 70-year period to develop hydraulic geometry 

equations using a single representative discharge, Q, which was the mean annual discharge.  
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The equations are as follows: 

w = aQb (1) 

d = cQf (2) 

v = kQm (3) 

The variables w, d, and v are the parameters width, mean depth, and mean velocity, respectively. 

The coefficients or intercepts are represented by a, c, and k. The exponents or slopes are represented 

by b, f, and m. Based on the continuity equation where Q = (w)(d)(v), the product of the respective 

coefficients (a)(c)(k) equals one, and the sum of the exponents (b + f + m) equals one [5]. Hydraulic 

geometry relationships can be developed for a single cross-section, termed at-a-station, where changes 

in channel form at a single location are examined in relation to changes in discharge. Such 

relationships can also be developed in the downstream direction along a stream network for a specific 

discharge such as bankfull discharge. In general, the bankfull discharge will increase in the 

downstream direction since runoff is contributed from larger drainage areas [15]. 

The hydraulic geometry equations developed by Leopold and Maddock [4] assume steady, uniform 

flow conditions meaning the water surface slope is parallel with the energy grade line [5]. Because of 

this assumption, the mean values of the variables used in the general hydraulic geometry relationships 

must correspond to the equilibrium state of the channel [3]. Equilibrium in a stream involves the 

interaction of sediment discharge, sediment particle size, stream flow, and stream slope, and is 

achieved when all four independent variables are in balance [19]. Lane [19] showed the  

relationship as: 

�� ∙ ��� ∝ �� ∙ 	  (4) 

where QS refers to the sediment discharge, D50 refers to the median sediment particle size, QW refers to 

the stream flow, and S refers to the slope. Leopold et al. [5] noted that an alluvial stream in 

equilibrium has both properties of adjustability and stability. Such a “graded’ stream [20] is one in 

which the slope is adjusted to provide the velocity required to transport the sediment load provided by 

the watershed, given discharge and channel characteristics. If one of the variables in (4) changes, the 

other variables will either increase or decrease to maintain a state of equilibrium. For example, if QW 

increases, either the QS or D50 or both must also increase to maintain equilibrium in the channel. 

Leopold and Maddock [4] and Wolman [21] found that a stream adjusts its hydraulic geometry to carry 

its sediment load to reach a state of equilibrium. Pietsch and Nanson [22] state that a stream will adjust 

its shape to accommodate changes in discharge in a nonlinear manner with a greater response 

occurring in the parameter width followed by mean depth and then mean velocity. Since each stream 

has different boundary conditions (e.g., stream bank material and vegetation), the equilibrium state for 

each stream differs [3,23]. Knighton [24] found that in the absence of high flows, channels can adjust 

their form over a relatively short period of time thus suggesting that the approach to equilibrium is 

relatively rapid.  

As noted by Castro and Jackson [25], a substantial amount of research into hydraulic geometry 

relationships, both empirical and theoretical [3-5,26-29], has been performed. However, research 

regarding hydraulic geometry relationships for non-alluvial streams is limited, particularly in 
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comparison to alluvial channels [30]. Fola and Rennie [10] studied clay-dominated cohesive bed rivers 

in Canada and found that hydraulic geometry concepts could be extended to these non-alluvial 

systems. Wohl and David [30] evaluated hydraulic geometry relationships for bedrock channels using 

a dataset comprised of 47 sites located predominately the western U.S. but also including sites in 

Maryland and a few in West Virginia, as well as the countries of Japan, Australia, Panama, India, and 

Israel. The authors found that while alluvial streams tended to be slightly wider than bedrock ones, a 

similar finding by Montgomery and Gran [31], both scaled at similar rates with respect to discharge. 

Wohl and David [30] concluded that other factors than the erosional resistance types accounted for 

channel geometry of these two stream types. However, none of these studies occurred in  

karst-influenced areas. Research regarding hydraulic geometry relationships for karst-influenced 

streams, such as those in the Bluegrass Region of Kentucky where bedrock streams with cohesive 

banks are common, is lacking. This project will assist in our understanding of how such streams in 

karst-influenced geology scale with respect to discharge.  

Furthermore, the Inner Bluegrass and Outer Bluegrass regions are areas where the number of stream 

restoration and management projects is relatively high for the southeastern U.S. [32]. However, 

information on hydraulic geometry whereby bankfull parameters are regressed on bankfull discharges 

is not available for the Bluegrass Region. As discharge may be used as one of the independent 

variables, along with sediment inflow and bed material composition, to compute the design variables 

width, mean depth, slope and planform [2,33], knowledge of hydraulic geometry relationships can 

assist the design process, particularly in the initial phases.  

The objectives of this study were to (1) develop bankfull hydraulic geometry relationships for the 

Inner Bluegrass and Outer Bluegrass regions of Kentucky and (2) determine if the relationships differ 

between the regions. As noted by Johnson and Fecko [34] and Keaton et al. [35], regional relationships 

are typically developed for each physiographic region as climate, geology, topography and soils 

influence the morphology of streams. Since the Inner Bluegrass region has more extensive karst 

geology, lower relief, and different soil types than the Outer Bluegrass region, it is hypothesized the 

hydraulic geometry relationships between the two regions will differ.  

2. Materials and Methods 

2.1. Study Area 

The study was conducted in the Bluegrass Region of Kentucky, USA, which is located in the 

central and northern portions of the state. The Bluegrass Region is subdivided into the Inner Bluegrass 

and Outer Bluegrass regions (Figure 1). The Inner Bluegrass is an almost circular region, centered on 

Lexington, Kentucky (latitude 38.05°N; longitude 85.00°W). This region is about 4,660 km
2
 in size 

and is characterized by gently rolling topography, phosphate-rich soils, and extensive karst  

geology [36,37]. The geology of the Inner Bluegrass is dominated by Lexington Limestone 

(Ordovician strata) [38]. Weathering of this limestone has produced a large number of sink holes, 

springs and caves throughout the region [37]. Topography within the region is characterized as having 

very low relief with typical elevations between 168 m and 326 m above mean sea level [39]. Soils in 

the Inner Bluegrass have significantly higher permeabilities (15 to 152 mm hr
−1
) as compared to the 
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Outer Bluegrass (< 15 mm hr
−1
) [40]. The Outer Bluegrass surrounds the Inner Bluegrass, and it is 

about 17,600 km
2
 in size. This region includes the cities of Louisville, Kentucky and Cincinnati, Ohio. 

The geology of the Outer Bluegrass is characterized by Silurian and Devonian carbonate rocks and 

shales. Karst in the Outer Bluegrass is not as abundant as compared to the Inner Bluegrass [38]. 

Topography within the Outer Bluegrass has a low to moderate relief with elevations generally ranging 

from 244 m to 274 m above mean sea level. Valleys of the Outer Bluegrass are often deeper and rock 

types present (limestones, dolomites and shales) are generally more erodible [37]. Soils are less 

phosphate-rich than those of the Inner Bluegrass [38]. Streams within the Inner Bluegrass and Outer 

Bluegrass regions largely have erosion-resistant boundaries comprised of bedrock bottoms and 

cohesive banks. Coarse and sand-sized sediment supply in the Bluegrass regions is generally low [39].  

The climate for the study area is considered humid subtropical with hot and humid summers and 

mild winters [36]. Average annual precipitation is 117 cm with maximum rainfalls occurring during 

the months of March and May. The average annual temperature is 13 °C with typical maximums  

of 32 °C in July and typical minimums of 2 °C in January [41]. 

Figure 1. Study site locations (U.S. Geological Survey gages) within the Inner Bluegrass 

and Outer Bluegrass regions of Kentucky. Adapted from Brockman et al. [42]. Used by 

permission from JAWRA. 
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2.2. Stream Selection Criteria 

Hydraulic geometry relationships were developed using U.S. Geological Survey (USGS) gaged 

streams. For the Inner Bluegrass, 36 gaged sites were evaluated while 64 gaged sites were considered 

for the Outer Bluegrass. Google Earth was used to assess site potential by identifying the presence of 

tributaries near the gaged sites and looking for evidence of recent watershed disturbance activities such 

as land development. Additionally, the USGS data for each gaged site were examined to determine the 

type of data collected as well as the duration of data collection. Based on the preliminary screening,  

50 sites were eliminated. Field visits were conducted for the remaining 50 sites to determine their 

eligibility for inclusion in the study. Site eligibility criteria included: 

1. Drainage areas less than 390 km
2
 to allow for primarily wadable data collection. 

2. Single-threaded channels. 

3. Presence of readily identifiable bankfull indicators (listed in order of importance) such as (1) flat 

depositional surfaces, at a consistent elevation, immediately adjacent to the stream; (2) tops of 

point bars (if present); (3) prominent breaks in slope; and/or (4) erosion or scour features [43]. 

4. Absence of severe bank erosion, bank armoring such as riprap, and streambank modifications. 

5. Bank height ratios (BHR) of 1.5 or less [44]. 

6. Presence of verifiable reference marks at discontinued gage sites. 

7. Site accessibility meaning the stream reach was located on public property or landowner 

permission was granted. 

To ensure each reach met the stated criteria, a visual assessment was performed. Only 12 sites 

within the Inner Bluegrass and 15 within the Outer Bluegrass met these criteria (Figure 1). As is 

characteristic for the Bluegrass Region, the majority of the selected streams have exposed  

bedrock outcrops. 

2.3. Data Collection and Analysis 

Guidelines for field data collection as described by Harrelson et al. [45] were used. Representative 

riffle cross-sections and a longitudinal profile were surveyed at each selected site using a  

CST/berger 24X SAL automatic level and standard equipment such as a tripod, level rod, tapes and 

pins. Attempts were made to survey two representative riffle cross-sections as each site, but landowner 

permission was not always granted. As such, only one representative riffle cross-section could be 

surveyed at some sites. Water surface elevations at the time of the surveys were correlated to the 

USGS rating curves by using real-time water level data, if available from the USGS, or by using a staff 

gage located in the field [11]. Surveyed cross-sectional data were used to calculate the bankfull 

parameters cross-sectional area, width, mean depth, and BHR using the RIVERMorph software 

(RIVERMorph, LLC, Louisville, KY, USA). Bankfull discharges were determined using the most 

recent USGS ratings curves for the respective gages provided the gages were active. For discontinued 

sites, the USGS does not supply stage-discharge rating tables. Therefore, state-discharge curves were 

developed for these sites [46].  
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Mean bankfull velocities were determined using the continuity equation as follows [47]: 

Qbkf = Vbkf × Abkf (5) 

The variables Qbkf, Vbkf, and Abkf are the bankfull parameters discharge, mean velocity, and bankfull 

cross-sectional area, respectively. 

ArcGIS was used to determine the amount of impervious area and major land uses (e.g., developed, 

forested, and agriculture) for the watershed draining each site. As riparian vegetation can exert a strong 

influence on channel geometry [48,49], the dominate type of vegetation was noted for each site. Sites 

whose riparian buffers consisted mostly of trees were classified as having forest-dominated riparian 

vegetation while sites with mostly grass or short-rooted plants were classified as having grass-

dominated riparian vegetation. Figure 2 is an example of a site with forest-dominated riparian 

vegetation while Figure 3 is an example of a site with grass-dominated riparian vegetation. 

Figure 2. Example of forest-dominated riparian vegetation at Little Goose near Harrods 

Creek (03292480) in the Outer Bluegrass region. 

 

Bankfull return periods were calculated using the Log Pearson Type III method as described in the 

U.S. Geological Survey [50] Bulletin 17B Guidelines for Determining Flood Flow Frequency. Peak 

flow data for each site were downloaded into RIVERMorph to determine the bankfull recurrence 

interval using the Bulletin 17B procedures. A generalized skew coefficient of 0.011 and a standard 

error of prediction of 0.520 specific to Kentucky were used [51]. 

Six regression equations of a power form were developed for both the Inner Bluegrass and Outer 

Bluegrass. Bankfull cross-sectional area, width, mean depth, mean velocity, width-to-depth ratio, and 

slope and were the dependent variables while bankfull discharge was the independent  

variable [5,30]. Coefficients and exponents were compared to values presented in the literature. A 

general linear model (PROC GLM) was built for each dependent variable using  
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SAS
®
 (Statistical Analysis System) version 9.2 [52]. Bankfull discharge and region (e.g., Inner 

Bluegrass or Outer Bluegrass) were the explanatory variables. The models tested for statistical 

differences between the Inner Bluegrass and Outer Bluegrass hydraulic geometry curves.  

Figure 3. Example of grass-dominated riparian vegetation at Cave Creek near Fort Springs 

(03288500) in the Inner Bluegrass region. 

 

3. Results and Discussion  

3.1. Bankfull Hydraulic Geometry Curves 

Stream morphology data were collected at 12 USGS gaged sites in the Inner Bluegrass for drainage 

areas between 2.5 and 111 km
2
 and 15 USGS gaged sites in the Outer Bluegrass for drainage areas 

between 8.0 and 357 km
2
 (Table 1). Bankfull discharges ranged from 1.1 to 33.4 m

3
 s
−1
 for the  

Inner Bluegrass and 4.4 to 92.6 m
3
 s

−1
 for the Outer Bluegrass. The percentage of imperviousness 

was similar between the two regions with values between 0.5 to 29.6 percent measured for the Inner 

Bluegrass and values between 0.4 to 33.9 percent measured for the Outer Bluegrass (Table 2). For the 

Inner Bluegrass region, gage sites with higher percentages of imperviousness were not concentrated in 

smaller watersheds, as might be expected. Rather, higher percentages of imperviousness were 

measured for gages representing a wide range of watershed sizes. For the Outer Bluegrass region, 

gages with higher percentages of impervious area tended to be concentrated around Louisville, 

Kentucky. Land use for the study sites located in the Inner Bluegrass is predominately consists of the 

categories developed (45.6 ± 21.5 percent) and agriculture (36.7 ± 16.9 percent) with some  

forest (14.5 ± 13.4 percent) (Table 2). In the Outer Bluegrass, land use is follows a similar pattern with 

development largest (30.6 ± 25.6 percent); however a greater percentage of land is in  

forests (35.2 ± 10.5) as compared to agriculture (29.9 ± 16.1 percent). 
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Table 1. Bankfull summary data for the selected sites in the Inner Bluegrass and Outer Bluegrass regions. Adapted from Brockman et al. [42]. 

Used by permission from JAWRA. 

Site Location 
USGS Gage 

Number 

Bankfull 

Discharge 

(m
3 
s
-1
) 

Bankfull Cross-

Sectional Area 

(m
2
) 

Bankfull 

Width (m) 

Bankfull 

Mean Depth 

(m) 

Bankfull 

Slope (m/m) 

Bankfull Mean 

Velocity (m/s) 

Return 

Interval 

(years) 

Bankfull 

Indicator
1
 

Inner Bluegrass Region 

UT to East Hickman 

Creek at Chilesburg 
03284525 1.3 1.6 4.2 0.4 0.0063 0.8 1.03 FDS, ESF 

East Hickman Creek 

at Andover  
03284520 1.1 1.5 4.1 0.4 0.0058 0.7 < 1.01 FDS, PBS 

Cave Creek near Fort 

Springs 
03288500 1.8 2.1 5.3 0.4 0.0074 0.9 1.27 FDS  

North Elkhorn Creek 

at Man O War Rd. 
03287580 1.7 3.1 5.9 0.5 0.0073 0.5 1.06 

FDS, TPB, 

PBS 

North Elkhorn Creek 

at Winchester Rd. 
03287590 2.1 4.7 8.4 0.6 0.0046 0.4 < 1.01 FDS, PBS 

Wolf Run at Old 

Frankfort Pk. 
03289193 11.9 9.2 11.6 0.8 0.0050 1.3 < 1.01 FDS, PBS 

East Hickman Creek 

at Delong Rd. 
03284530 7.5 9.9 11.5 0.9 0.0025 0.8 1.01 FDS, ESF 

West Hickman Creek 

at Ash Grove Pk. 
03284555 12.9 13.8 17.8 0.8 0.0034 0.9 < 1.01 FDS, ESF 

South Elkhorn Creek 

at Fort Springs 
03289000 15.4 11.8 16.5 0.7 0.0028 1.3 1.17 

FDS, TPB, 

PBS 
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Table 1. Cont. 

Site Location 
USGS Gage 

Number 

Bankfull 

Discharge 

(m
3 
s
-1
) 

Bankfull Cross-

Sectional Area 

(m
2
) 

Bankfull 

Width (m) 

Bankfull 

Mean Depth 

(m) 

Bankfull 

Slope (m/m) 

Bankfull Mean 

Velocity (m/s) 

Return 

Interval 

(years) 

Bankfull 

Indicator
1
 

Inner Bluegrass Region 

North Elkhorn Creek 

at Bryan Station Rd. 
03287600 7.6 14.6 17.3 0.9 0.0032 0.5 < 1.01 

FDS, PBS, 

ESF 

Town Branch at 

Yarnallton Rd. 
03289200 30.6 21.9 21.9 1.0 0.0029 1.4 1.15 FDS, PBS 

Eagle Creek at 

Sadieville 
03291000 33.4 32.1 26.2 1.2 0.0016 1.0 1.24 FDS, PBS 

Outer Bluegrass Region 

Fourmile Creek at 

Polar Bridge
2
 

03238772 4.4 4.1 8.0 0.5 0.0184 1.1 < 1.01 
FDS, PBS, 

ESF 

Chenoweth Run at 

Ruckriegel Pky.
3
 

03298135 4.7 6.3 13.6 0.5 0.0053 0.7 < 1.01 FDS 

Little Goose Creek 

near Harrods Creek
3
 

03292480 7.7 10.9 13.7 0.8 0.0061 0.7 1.15 FDS, ESF 

Goose Creek at Old 

Westport Rd.
 3
 

03292474 4.7 6.8 9.5 0.7 0.0053 0.7 1.09 FDS, ESF 

Cedar Creek at Hwy 

1442
3
 

03297800 9.7 8.9 12.6 0.7 0.0050 1.1 1.02 
FDS, PBS, 

ESF 

North Fork Grassy 

Creek near Piner
2
 

03254400 10.3 8.6 13.0 0.7 0.0056 1.2 < 1.01 FDS, ESF 

Cruises Creek at Hwy 

17
2
 

03254480 10.6 14.8 15.8 0.9 0.0056 0.7 < 1.01 FDS, ESF 
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Table 1. Cont. 

Site Location 
USGS Gage 

Number 

Bankfull 

Discharge 

(m
3 
s
-1
) 

Bankfull Cross-

Sectional Area 

(m
2
) 

Bankfull 

Width (m) 

Bankfull 

Mean Depth 

(m) 

Bankfull 

Slope (m/m) 

Bankfull Mean 

Velocity (m/s) 

Return 

Interval 

(years) 

Bankfull 

Indicator
1
 

Outer Bluegrass Region 

Middle Fork 

Beargrass Creek at 

Old Cannons Ln.
 3
 

03293000 15.0 16.0 16.5 1.0 0.0037 0.9 1.23 FDS 

Woolper Creek at 

Woolper Rd.
 2
 

03262001 15.3 15.8 18.4 0.9 0.0071 1.0 < 1.01 FDS, PBS 

Banklick Creek at 

Hwy 1829
2
 

03254550 21.2 21.4 22.0 1.0 0.0051 1.0 < 1.01 FDS, ESF 

Mud Lick Creek at 

Hwy 42
3
  

03277130 57.8 48.7 32.0 1.5 0.0053 1.2 < 1.01 FDS, PBS 

Gunpowder Creek at 

Camp Ernst Rd.
 2
 

03277075 46.4 26.1 26.9 1.0 0.0035 1.8 < 1.01 FDS, PBS 

Twelvemile Creek at 

Hwy 1997
2
 

03238745 38.2 29.7 25.6 1.2 0.0025 1.3 < 1.01 FDS 

Harrods Creek at Hwy 

329
3
 

03292470 54.1 47.9 28.1 1.7 0.0023 1.1 1.01 FDS, ESF 

Floyd’s Fork at 

Fisherville
3
 

03298000 92.6 82.1 38.0 2.2 0.0010 1.1 < 1.01 FDS, PBS 

1
 FDS = flat depositional surface immediately adjacent to the stream; TPB = tops of point bars; PBS = prominent breaks in slope; and ESF = erosion or scour features. 
2
 Outer Bluegrass gage sites located near Cincinatti, OH, USA.  
3
 Outer Bluegrass gage sites located near Louisville, KY, USA. 
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Table 2. Watershed characteristics summary data for the selected sites in the Inner Bluegrass and Outer Bluegrass regions. Adapted from 

Brockman et al. [42]. Used by permission from JAWRA. 

Site Location 
USGS Gage 

Number 

Drainage Area 

(km
2
) 

Percentage Impervious 

Area 

Streamside 

Vegetation
1
 

Land Use (%) 

Developed Forest Agriculture 

Inner Bluegrass Region 

UT to East Hickman Creek at 

Chilesburg 
03284525 2.5 3.5 Forest 42.1 3.6 44.2 

East Hickman Creek at Andover  03284520 4.1 12.0 Grass/Forest 41.1 11.3 46.7 

Cave Creek near Fort Springs 03288500 5.0 21.6 Grass 64.4 5.6 29.7 

North Elkhorn Creek at Man O 

War Rd. 
03287580 5.7 3.2 Forest 23.7 17.6 54.5 

North Elkhorn Creek at 

Winchester Rd. 
03287590 10.5 9.8 Forest 31.9 12.5 53.2 

Wolf Run at Old Frankfort Pk. 03289193 24.8 29.6 Forest 80.6 14.5 4.2 

East Hickman Creek at Delong 

Rd. 
03284530 39.1 13.7 Grass 44.1 7.6 44.1 

West Hickman Creek at Ash 

Grove Pk. 
03284555 53.1 24.2 Forest 73.1 15.1 9.9 

South Elkhorn Creek at Fort 

Springs 
03289000 54.9 13.1 Forest 43.7 15.5 39.5 

North Elkhorn Creek at Bryan 

Station Rd. 
03287600 55.7 12.0 Forest 33.7 8.3 56.6 

Town Branch at Yarnallton Rd. 03289200 77.7 25.7 Grass/Forest 62.8 7.6 28.5 

Eagle Creek at Sadieville 03291000 111.1 0.5 Forest 5.6 54.5 29.7 
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Table 2. Cont. 

Site Location 
USGS Gage 

Number 

Drainage Area 

(km
2
) 

Percentage Impervious 

Area 

Streamside 

Vegetation
1
 

Land Use (%) 

Developed Forest Agriculture 

Outer Bluegrass Region 

Fourmile Creek at Polar Bridge
2
 03238772 8.0 6.5 Forest 27.9 39.9 26.6 

Chenoweth Run at Ruckriegel 

Pky.
3
 

03298135 14.2 33.9 Forest 75.7 15.2 7.8 

Little Goose Creek near Harrods 

Creek
3
 

03292480 15.0 18.7 Forest 64.0 27.9 7.1 

Goose Creek at Old Westport 

Rd.
 3
 

03292474 15.5 11.1 Forest 51.6 36.5 10.3 

Cedar Creek at Hwy 1442
3
 03297800 31.3 0.4 Forest 5.3 57.5 29.2 

North Fork Grassy Creek near 

Piner
2
 

03254400 35.2 1.0 Forest 7.7 40.5 46.0 

Cruises Creek at Hwy 17
2
 03254480 46.6 1.2 Forest 7.2 39.7 48.7 

Middle Fork Beargrass Creek at 

Old Cannons Ln.
 3
 

03293000 49.0 24.4 Forest 73.7 20.1 3.8 

Woolper Creek at Woolper Rd.
 2
 03262001 62.7 4.1 Forest 20.9 38.4 35.1 

Banklick Creek at Hwy 1829
2
  03254550 77.7 4.5 Forest 26.6 33.8 38.3 

Mud Lick Creek at Hwy 42
3
  03277130 94.3 3.4 Forest 15.5 33.9 44.6 

Gunpowder Creek at Camp 

Ernst Rd.
 2
 

03277075 94.8 16.7 Forest 52.9 20.7 21.9 

Twelvemile Creek at Hwy 1997
2
 03238745 101.0 1.7 Forest 11.3 43.0 38.5 

Harrods Creek at Hwy 329
3
 03292470 182.1 1.4 Forest 8.7 39.9 48.3 

Floyd’s Fork at Fisherville
3
 03298000 357.4 2.4 Forest 13.2 39.9 41.9 

1
 Forest indicates forest dominated; grass indicates grass dominated; forest/grass indicates an approximate equal amount of both. 
2
 Outer Bluegrass gage sites located near Cincinnati, OH, USA.  
3
 Outer Bluegrass gage sites located near Louisville, KY, USA.  
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Table 3 summarizes hydraulic geometry relationships for the Inner Bluegrass and Outer Bluegrass 

regions. The exponents for bankfull width, mean depth, and mean velocity followed the order of  

b > f > m. Pietsch and Nanson [22] and Park [53] noted that this was the typical nonlinear adjustment 

of a stream to downstream changes in discharge with width being the most sensitive of the three 

parameters and velocity the least. Fola and Rennie [10] confirmed such a relationship for clay-bed 

streams suggesting that lateral adjustment is the primary way cohesive-bed channels adjust to increases 

in discharge. Figure 4–Figure 9 show the relationship between the bankfull parameters cross-sectional 

area, width, mean depth, width-to-depth ratio, mean velocity, and slope and bankfull discharge for  

each region. 

The exponents or slopes of the hydraulic geometry equations show strong similarities to other 

values reported in the literature, as shown in Table 3. For bankfull cross-sectional area, a value of 

between 0.80 and 0.90 was expected for the exponent based on the theoretical and empirical values 

presented in the literature [5,23,30,48,54]. For the Inner Bluegrass, the exponent was 0.80; it was 0.83 

for the Outer Bluegrass. No statistical difference between the regions was found for bankfull  

cross-sectional area (p = 0.8626). With regards to bankfull width, an exponent between 0.45 and 0.53 

was expected based on theoretical and empirical values [5,23,30,48,54]. Park [53], however, did note 

that streams in humid temperate regions tended to have width exponents ranging between 0.4 and 0.8. 

The exponent for the Inner Bluegrass curve of 0.50 was within this range, while the exponent for the 

Outer Bluegrass was 0.44 was slightly lower than expected but in the range specified by Park [53]. A 

statistically difference was noted between the curves for the two regions (p = 0.0015). These results 

indicate that a change in bankfull width for a unit change in bankfull discharge is less for the Outer 

Bluegrass than for the Inner Bluegrass. As seen in Figure 5, for bankfull discharges less than 10 m
3
 s
−1
, 

streams in the Outer Bluegrass tended to be wider. When bankfull discharges exceeded  

about 20 m
3
 s

−1
, streams in the Inner Bluegrass had a greater tendency to be wider. For bankfull mean 

depth, theoretical and empirical values indicated that an exponent of about 0.37 should be  

expected [5,23,30,48,54]. Park [53] found that streams in humid temperate regions tended to have 

moderate depth exponents generally ranging between 0.2 and 0.6. Both the Inner Bluegrass and Outer 

Bluegrass had similar values of 0.30 and 0.39, respectively. The Inner Bluegrass exponent was quite 

similar than the exponent found by Wohl and David [30] for bedrock channels while the Outer 

Bluegrass exponent was quite similar to that found by Sherwood and Huitger [54] for Ohio streams. 

While no statistical difference was noted (p = 0.3132), streams in the Inner Bluegrass were slightly 

deeper than those of the Outer Bluegrass for the same discharge (Figure 6).  
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Table 3. Hydraulic geometry curves for equations 1, 2, 3, bankfull slope (Sbkf = tQ
z
), and width-to-depth ratio (Wbkf/Dbkf = xQ

y
).  

Qbkf represents bankfull discharge (m
3 
s
−1
), Abkf is bankfull cross-sectional area (m

2
), Wbkf is bankfull width (m), Dbkf is bankfull mean  

depth (m), Vbkf is bankfull mean velocity (m s
−1
), Sbkf is bankfull slope (m m

−1
), and Wbkf/Dbkf is bankfull width to depth ratio (m m

−1
). 

Source 

Abkf Wbkf Dbkf Vbkf Sbkf Wbkf/Dbkf 

g h R
2
 a b R

2
 c f R

2
 k m R

2
 t z R

2
 x y R

2
 

Inner Bluegrass 1.69 0.80 0.93 4.39 0.50 0.93 0.39 0.30 0.87 0.59 0.20 0.42 0.01 −0.32 0.72 11.39 0.20 0.73 

Outer Bluegrass 1.59 0.83 0.95 5.16 0.44 0.94 0.31 0.39 0.85 0.63 0.17 0.43 0.02 −0.51 0.65 16.72 0.05 0.06 

Sherwood and Huitger [54] 0.61 0.87 0.93 1.97 0.50 0.90 0.31 0.37 0.85 1.65 0.13 0.22 0.06 −0.48 0.30 6.40 0.14 0.30 

Wohl and David [30] - 0.80
3
 - 1.12 0.50 0.59 0.58 0.30 0.48 - - - 0.08 −0.33 0.28 1.96 0.19 0.09 

Leopold et al. [5]
1
 - 0.90  - - 0.53 - - 0.37 - - 0.10 - - −0.7 - - - - 

Leopold et al. [5]
2
 - 0.90

3
 - - 0.50 - - 0.40 - - 0.10 - - - - - - - 

Knighton [23] - 0.86
3
 - 2.61 0.50 - 0.31 0.36 - - 0.14 - - −0.2 - - - - 

Hey and Thorne [48] - 0.80
3
 - 3.67 0.45 0.79 0.33 0.35 0.80 - 0.20 - - - - - - - 

1
Theoretically derived equations for river in downstream direction.  

2
Empirically determined equations for river in downstream direction. 

3
Determined by adding b and f in same row. 
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Figure 4. Bankfull cross-sectional area vs. bankfull discharge for the Inner Bluegrass and 

Outer Bluegrass regions. 

 

Figure 5. Bankfull width vs. bankfull discharge for the Inner Bluegrass and Outer Bluegrass regions. 
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Figure 6. Bankfull mean depth vs. bankfull discharge for the Inner Bluegrass and Outer 

Bluegrass regions. 
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Figure 7. Bankfull width-to-depth ratio vs. bankfull discharge for the Inner Bluegrass and 

Outer Bluegrass regions. 

 

Figure 8. Bankfull mean velocity vs. bankfull discharge for the Inner Bluegrass and Outer 

Bluegrass regions. 
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Figure 9. Bankfull slope vs. bankfull discharge for the Inner Bluegrass and Outer 

Bluegrass regions. 

 

The reason for the width-to-depth ratio variation at these three sites is not known, but it is 

hypothesized to be related to physiographic conditions. For example, Chenoweth Run like Goose 

Creek (03292474) is a highly urbanized watershed. The width of the two streams differs (13.6 m at 

Chenoweth Run; 9.5 m at Goose Creek). While both streams have similar bankfull discharges  

(4.7 m
3
 s

−1
 at Chenoweth Run; 4.7 m

3
 s

−1 
at Goose Creek) and drainage areas (14.2 km

2
 at Chenoweth 

Run; 15.5 km
2 
at Goose Creek), the level of imperviousness is quite different (33.9 percent at 

Chenoweth Run; 11.1 percent at Goose Creek) (Tables 1 and 2). Both Cianfrani et al. [55] and  

Doll et al. [56] found that urbanization increased bankfull channel width as compared to rural streams 

in the Piedmont region of the U.S. Contrary, Annable et al. [57] found that urbanization did not result 

in significant channel enlargement for streams in Ontario, Canada. In this study, no trends between 

percent imperviousness and bankfull width were found for the Outer Bluegrass (Figure 10), so it is 

likely that the level of urbanization is not the controlling factor for bankfull width. Yet, the question 

remains as to why the site on Chenoweth Run was wider than expected, and hence produced such a 

high width to depth ratio. One possibility has to do with riparian vegetation. Hession et al. [49] and 

Anderson et al. [58] noted that riparian vegetation type exerts an influence on channel width.  

Hession et al. [49] found that channels with forested riparian buffers were wider than those with 

grassed riparian buffers. Anderson et al. [58] found that the effect of riparian vegetation type was 

dependent on watershed size and channel width. For watershed areas greater than 10 km
2
, as is the 

case for both Chenoweth Run and Goose Creek, thick forested riparian buffers were associated with 

narrower channels while grassed and non-forested riparian buffers were associated with wider 

channels. While both sites had a forested riparian buffer, visual observation indicated that woody 

Bankfull Discharge (m
3 
s
-1
)

0.1 1 10 100 1000

B
an
k
fu
ll
 S
lo
p
e 
(m

 m
-1
)

0.0001

0.001

0.01

0.1

Inner Bluegrass

Outer Bluegrass

Inner Bluegrass Regression

Outer Bluegrass Regression



Water 2011, 3              

 

 

942

vegetation at Goose Creek was much thicker than that at Chenoweth Run. This difference in riparian 

vegetation thickness may have resulted in a wider channel at Chenoweth Run due in part to differences 

in rooting depth and density.  

Figure 10. Imperviousness vs. bankfull width for the Inner Bluegrass and Outer Bluegrass regions. 
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The R
2
 values for the bankfull parameters cross-sectional area, width, mean depth, and slope 

indicate that bankfull discharge explains a large amount of the variability in the morphology of both 

the Inner Bluegrass and Outer Bluegrass streams. The R
2
 values for width to depth ratio indicate a 

good fit for the Inner Bluegrass. However, the R
2
 values for bankfull mean velocity for the Inner 

Bluegrass and Outer Bluegrass as well as width-to-depth ratio for only the Outer Bluegrass indicated a 

poorer fit. While the values of the exponents of the bankfull mean velocity hydraulic geometry 

equations were similar to those found by in the literature [5,23,48,54], the low R
2
 values were due to 

scatter in the data. Channel characteristics such as roughness factors associated with bed material, 

bedforms, vegetation, and slope influence mean velocity [46]. It is likely that combinations of these 

factors are the cause of the scatter associated with bankfull mean velocity. As for width-to-depth ratios 

for the Outer Bluegrass, local geologic variations, coupled with riparian vegetation thickness, is 

suspected to be the reason for the scatter in these data.  

Based on the continuity equation, multiplying the coefficients for bankfull width, mean depth, and 

mean velocity resulted in a value of 1.0 for both the Inner Bluegrass and Outer Bluegrass. Summing 

the exponents for these same parameters also resulted in a value of 1.0 for both regions. These results 

agree with work by Leopold and Maddock [4] in their development of hydraulic geometry theory. 

3.2. Bankfull Return Intervals 

Bankfull return intervals ranged from < 1.01 to 1.27 years for the Inner Bluegrass region and  

from < 1.01 to 1.23 years for the Outer Bluegrass. These return intervals are less than the average 

value of 1.5 years presented by Leopold et al. [5]. Powell et al. [14] found that the bankfull return 

interval ranged from 0.6 to 1.4 years for large rivers (drainage area of 75 km
2
 or greater) in Ohio.  

Metcalf et al. [44] also found bankfull return intervals in these ranges for the northern regions of 

Florida. Such return intervals also agree with values found by stream restoration practitioners working 

in the Inner Bluegrass and Outer Bluegrass [59]. 

4. Conclusions  

Twenty-seven USGS gaged stream reaches were surveyed to determine their bankfull dimensions, 

discharges, and return intervals for this study. These data were used to develop bankfull hydraulic 

geometry relationships for the Inner Bluegrass and Outer Bluegrass regions of Kentucky. Exponents of 

the developed curves agree well with theoretical and empirically-derived values in the  

literature [5,23,30,48,54]. With the exception of bankfull width and width-to-depth ratio, the Inner 

Bluegrass and Outer Bluegrass hydraulic geometry curves were statistically similar. While Johnson 

and Fecko [34] found that a single equation could be used to scale bankfull width for the Valley Ridge, 

Appalachian Plateau, and New England physiographic regions, such was not the case with the Inner 

Bluegrass and Outer Bluegrass regions. Inner Bluegrass streams tended to be more narrow and deep 

for bankfull discharges less than 10 m
3
 s

-1
 and wider and shallower for bankfull discharges greater  

than 20 m
3
 s

−1
. Three sites within the Outer Bluegrass strongly influenced the width and width-to-

depth relationships. Removing these three sites produced an Outer Bluegrass curve (revised  

coefficient x = 11.23; revised exponent y = 0.20) that was equivalent to the Inner Bluegrass curve. 

However, removing these points did not result in the same width relationship between the Outer 



Water 2011, 3              

 

 

944

Bluegrass (revised coefficient a = 4.43; revised exponent b = 0.49) and Inner Bluegrass regions (p = 

0.0015). Based on the strong similarities in coefficient and exponent values for the width hydraulic 

geometry relationships between the two regions when the three sites were removed, this lack of 

difference is thought to be a false.  

Development and comparison of hydraulic geometry relationships for the Inner and Outer 

Bluegrass regions highlighted the importance of local-scale geology and riparian vegetation on the 

channel dimensions bankfull width and depth, even for relatively small physiographic regions. For the 

Inner Bluegrass where geologic variations were small, width-to-depth ratio showed little variation in 

scaling with discharge. However, for the Louisville area of the Outer Bluegrass region where the 

geology is more variable, the scatter was greater in the width-to-depth relationship. Based on the 

influence of geology, even within a physiographic region, it is recommended that additional research 

be conducted to develop hydraulic geometry relationships for other physiographic regions, particularly 

in karst-influenced areas.  

Practitioners involved in stream assessment and restoration are guided to separate hydraulic 

geometry relationships on a physiographic region basis. However, this study suggests that in some 

instances, evaluation is needed on a watershed basis within a physiographic region while in others, 

curves across hydrophysiographic regions may not differ. Understanding the extent to which hydraulic 

geometry relationships are applicable is warranted, particularly in karst settings.  

It has been postulated that streams in karst-influenced areas would have smaller discharges, and 

hence smaller channel dimensions, than streams in non-karst areas with the same drainage areas due to 

a suspected greater extent of discharge conveyance via subsurface conduits [39]. The results of this 

study suggest that this may not necessarily be the case for the Inner Bluegrass and Outer Bluegrass 

regions. For example, hydraulic geometry curves for the karst-influenced Inner and Outer Bluegrass 

regions (average of 14.1 and 8.8 percent imperviousness, respectively) have similar exponents and 

coefficients to those presented Harman et al. [60] for the rural streams in the Piedmont of North 

Carolina, an area that does not have karst features [61]. For a 25 km
2
 drainage area, the Inner 

Bluegrass relationships predict values of bankfull discharge, cross-sectional area, width and mean 

depth of 7.1 m
3
 s

−1
, 8.3 m

2
, 11.6 m, and 0.7 m, respectively. For the Outer Bluegrass, these values are 

9.1 m
3
 s

−1
, 9.7 m

2
, 13.5 m, and 0.8 m, respectively. For the North Carolina Piedmont, these values are 

13.0 m
3
 s

−1
, 9.2 m

2
, 9.8 m, and 0.9 m, respectively. On the other hand, the scaling relationships 

developed by Wohl and David [30] for bedrock channels world-wide would predict a much greater 

bankfull discharge (62.4 m
3
 s

-1
), smaller width (8.5 m), and greater depth (1.9 m) than the Inner 

Bluegrass and Outer Bluegrass relationships. These differences may be related to climatic and riparian 

vegetation influences. Both the Piedmont of North Carolina and the Bluegrass Region of Kentucky 

have similar climates and vegetation types whereas many of the sites studied by Wohl and David differ 

markedly (e.g., western U.S.). As such, the karst-influenced streams in this study may scale in a 

similar manner to other streams in differing physiographic regions, but similar climatic patterns, 

despite the degree of karst-influence. Additional research on the potential influence of varying extents 

of karst on hydraulic geometry relations is warranted. 
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