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Abstract: The aim of this study was to model water reservoir site selection for a real world 

application in the administrative district of Debub, Eritrea. This is a region were scarcity of 

water is a fundamental problem. Erratic rainfall, drought and unfavourable  

hydro-geological characteristics exacerbates the region‘s water supply. Consequently, the 

population of Debub is facing severe water shortages and building reservoirs has been 

promoted as a possible solution to meet the future demand of water supply. This was the 

most powerful motivation to identify candidate sites for locating water reservoirs. A 

number of conflicting qualitative and quantitative criteria exist for evaluating alternative 

sites. Decisions regarding criteria are often accompanied by ambiguities and vagueness. 

This makes fuzzy logic a more natural approach to this kind of Multi-criteria Decision 

Analysis (MCDA) problems. This paper proposes a combined two-stage MCDA 

methodology. The first stage involved utilizing the most simplistic type of data aggregation 

techniques known as Boolean Intersection or logical AND to identify areas restricted by 

environmental and hydrological constraints and therefore excluded from further study. The 

second stage involved integrating fuzzy logic with the Analytic Hierarchy Process (AHP) 

to identify optimum and back-up candidate water reservoir sites in the area designated for 

further study.  
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1. Introduction  

The scarcity of water is a fundamental problem for Eritrea. Erratic rainfall exacerbates the country‘s 

unfavorable hydro-geological characteristics. Eritrea‘s geology, combined with the climatic conditions 

also affects the quality of the water—making it rich in salts and other natural pollutants [1]. The 

country has only two perennial river systems, the Setit River, which forms the country‘s border with 

Ethiopia and drains into the Nile basin, and the Gash Barka system, which collects the run-off water 

from the highlands. All the other rivers in the country are seasonal and carry water only after rainfall, 

which means that they are dry most of the year. As a result, the country has limited sources of fresh 

surface water, and although groundwater can be tapped, quantity and quality is usually poor [2]. 

Although the official average annual rainfall is estimated at 400–500mm, it has been erratic and less 

than above average for the last two years. The effect has been intense drought that is affecting  

two-thirds of the country, with water levels in wells and boreholes at an all-time low. In addition, the 

continuing repercussions of the 1998–2000 border war with Ethiopia resulted in 1.2 million internally 

displaced people, straining the already fragile infrastructure, including water and sanitation. According 

to the United Nations Development Programme (UNDP) and Human Development Report (HDR) data 

of 2002, only 57% of the Eritrean population has access to potable water. In addition, less than 9% of 

the population (3% in rural areas) has access to adequate sanitation services. Inadequate education in 

hygiene and sanitation has lowered the population‘s sanitary standards even further. At only 3%, 

Eritrea‘s rural sanitation is the second lowest in the world. Sanitation and hygiene promotion are not 

emphasized much in national programs, in part due to the water supply crisis triggered by the drought. 

Limited management and implementation capacity in both the public and private sectors is a major 

constraint for increasing coverage. As a result of the shortage of adequate water supplies, Eritrea 

continues to face a major public health problem caused by sickness and death from diarrhoea and other 

water borne, sanitation and hygiene related diseases. These problems have been confronting most parts 

of Eritrea for a long time and are today very evident in one of its administrative districts known  

as Debub. 

Water scarcity is one of the many challenges that people face in Debub. In most areas where water 

sources are available, they are usually located far from human settlements. As a result, the people, 

particularly women and children, have to walk for hours to reach shallow hand-dug wells or ponds, 

which they share with animals. These water sources dry up for most part of the year, and even when 

they are usable, they are often contaminated. As most of the time is spend looking for water, there is 

very little time left for other activities, such as education or working in the fields. The most affected 

have been those villages close to the Eritrea-Ethiopia border which were most severely affected by the 

border conflict between the two countries. In order to improve the livelihood of the people in Debub, 

the International Committee of the Red Cross (ICRC) and International Fund for Agricultural 

Development (IFAD) are working with the Eritrean Water Resources Department (EWRD) and the 
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locals to provide solar powered boreholes that can provide clean and safe water [3]. However, these 

water sources are benefitting a small portion of the total population in the district as demand exceeds 

supply. Consequently, the population of Debub is facing severe water shortages and building reservoirs 

has been promoted as a possible solution to meet the future demand of water supply. For the purposes 

of this research, reservoir means a construction that holds a volume of water and dam is the structure, 

which holds back the water [4]. This definition signifies the importance of examining both the 

reservoir and dam site locations, as one needs to know the capabilities of the foundations to withstand 

the weight of both the volume of water in the reservoir and the materials for dam construction. 

Therefore, choosing a suitable site is a crucial phase in reservoir construction. According to [5], a  

well-selected site will not only give the optimum benefits but its aesthetic value may also create a 

recreational area surrounding the reservoir.  

Identification of an optimum reservoir site is a decision making process that involves the 

consideration of diverse criteria. Prior to the United Nations Conference on Environment and 

Development in 1972, decision-makers prioritized the economic importance of a reservoir over other 

criteria. Since then, they have had to take into consideration the environmental impact of reservoirs, as 

well as the technical design and social factors. Consequently, it is clear that during the  

decision-making process, large volumes of data sets will have to be handled and analyzed. Taking 

these factors into consideration and the fact that information about water resources and the 

environment in general is inherently geospatial, [6], suggested the extensive use of Geographical 

Information Systems (GIS) tools, concepts and technologies to provide a framework for information 

integration, communication and collaboration, and decision support for the management of water 

resources data.  

Over the past few years GIS has established itself as an increasingly important tool for providing a 

comprehensive means of managing and handling water resources data in a way that cannot be 

accomplished manually. The large amount of data involved requires a GIS, as there may be thousands 

of features having a location, associated attributes, and relationships with other features. According  

to [7], GIS presents a means of browsing and reviewing the water resources data in color-coded 

formats, at the same time, offering a data-reviewing capability which supports both quality control and 

identification of errors. In addition, the visual capabilities offered by a GIS allows the user an 

opportunity to gain a better understanding of any patterns and trends which may exist within the data 

sets, in a way not possible if the data was represented only in tabular format. A GIS also provides 

analysis capabilities. The attribute data can be accessed by software and used as input to various 

modeling procedures to generate derived products that can be used to come up with decisions related 

to water resource management. These decisions are typically guided by multiple objectives and 

multiple stakeholder groups with divergent interests, which may involve technical, economic, 

environmental or social issues. Therefore, it is clear that the issues to be considered in developing 

efficient strategies to water resources management are numerous, and their relationships are extremely 

complicated [8,9]. As a result, decision makers are now looking beyond just using the conventional 

GIS tools, by integrating the efficient data manipulation and visual presentation capabilities of GIS 

with Multi-criteria Decision Analysis (MCDA), a group of conventional and tailored techniques that 

can aid decision–makers in dealing with the difficulties they encounter in handling large amounts of 

complex information at the same time [8,10-12]. In MCDA, all parties are required to explicitly state 
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their preferences through a structured process, making it possible to identify any areas of agreement or 

disagreement. Because of its transparency, MCDA is now a preferred alternative when it comes to 

making decisions involving more than one or more parties with multiple perspectives.  In addition to 

being transparent, MCDA is now considered as one of the better techniques around because it offers 

accountability to decision procedures which according to [13] and [14] may otherwise have unclear 

motives and rationale. Accountability is achieved by being able to explicitly state the reasons for 

choosing an option and also being able to audit past decisions.  

Since the 1960s the number MCDA techniques has increased. These techniques have provided 

decision makers with limitless options for finding solutions in a multi-criteria environment. Several 

researchers have conducted comparative studies of these techniques to a single problem in water 

resources management. These studies have often shown that MDCA techniques are in close agreement 

and there is no clear advantage to be gained in using one technique over the others [15,16]. One of 

these most commonly applied techniques encountered whilst reviewing the relevant literature is the 

Analytic Hierarchy Process (AHP), which was introduced by [17]. The principle of AHP is to 

systematically break down a problem into its smaller and smaller constituent parts and then guide 

decision makers through a series of pairwise comparison judgments to express the importance of the 

elements in the hierarchy [18,19]. These judgments are then translated to numbers, which are then 

referred to as the weights. Assigning weights using pairwise comparison will most likely reduce bias in 

the weights, making AHP a more effective MCDA technique [20,21]. Several authors have also 

supported the way weights are assigned in the AHP technique, and have highlighted that it might be 

the reason the pairwise comparison method was incorporated in the GIS Analysis Decision Support 

module in the IDRISI
32

 raster based software package [22,23]. However, within the literature it is felt 

that the conventional AHP technique of expressing decision maker‘s judgments in the form of single 

numbers does not fully reflect a style of human thinking in the real-world system. There is some 

inherent uncertainty and imprecision associated with the decision making process, which needs to be 

adequately handled. This uncertainty can be linked to the characteristics of the decision maker. An 

approach which can tolerate this vagueness or ambiguity is therefore required. According to [24], a 

possible approach is to apply a special kind of vagueness called fuzziness, which is based on the fuzzy 

set theory proposed by [25]. The fuzzy approach allows decision makers to give interval judgments, 

which can capture a human‘s appraisal of ambiguity when complex multi-attribute decision making 

problems such as water reservoir siting are considered. According to [26] and [27], integrating fuzzy 

logic into the AHP process will give a much better and more exact representation between criteria and 

alternatives. It is therefore the intent of this research to use a methodology that integrates GIS, fuzzy 

logic and the traditional AHP to model optimum sites for locating water reservoirs in Debub, Eritrea. 

To enhance the GIS-based Fuzzy AHP model to be used in this research, sensitivity analysis will be 

used to assess its robustness and any uncertainties in the output results. This is a prerequisite since it 

will help in determining the reliability of the model. We hope that findings from this study will serve 

as a point of reference for a more detailed investigation into site selections and planning for reservoirs 

in the Debub administrative district in Eritrea. 
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2. Materials and Methods  

This section describes the combined methodology used in this research. Firstly, a brief description 

of the study site is given followed by a detailed description of the steps adopted in the methodology. 

These include description and pre-processing of constraint and factor criteria; using Boolean 

Intersection to identify unsuitable and suitable areas for further study; and integrating fuzzy logic with 

the AHP to identify candidate sites within the suitable area. 

2.1. Study Area 

Debub is a 1st level administrative district in Eritrea, and is also known as the Southern region. This 

region is situated at altitudes between 900 and 3,100 metres and lies along a portion of the national 

border with Ethiopia. It shares its western border with the region of Gash-Burka, its north with Maakel 

and its eastern with the Semienawi Keih Bahri region (Figure 1). The region has an estimated 

population of 755, 379 spread over an area of around 8,000 square kilometres. 

Figure 1. Study area. 
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Climate in the study area is subtropical with distinct dry winters and rainy summer seasons. The 

mean annual rainfall ranges between 300 and 700 mm with mean annual temperatures exceeding 22 
o
C. 

The region receives rainfall from the southwest Monsoon, from April to September. Some of the rain 

falls in April/May while the main rain starts in June, with the heaviest precipitation in July and August. 

The region has two main rivers, Mereb and Beleza, whilst all the other rivers in the region are seasonal 

and carry water only after rainfall, which means they are dry most of the year. As a result, the region 

has limited sources of fresh surface water, and although groundwater can be tapped, quantity and 

quality is usually poor. To meet future demands, the strategy is to harness as much seasonal water 

flows as possible, store them, then direct them where they are needed. Agriculture is the main stay of 

the population where the predominant farming system is small scale mixed production 

(crops/livestock). Crop cultivation in the study area is predominantly subsistence based. 

2.2. Data Collection 

GIS data sets used in this study were extracted from 1:25,000 national topographical maps as well 

as 1:250,000 geological maps. These include: permanent and seasonal river networks, geology and 

location of faults, road network, soil types, location of forest, agricultural areas, distribution of rainfall, 

urban and rural areas, political boundaries and a 50 meter resolution Digital Terrain Model (DTM), 

from which the elevation and slope data layers were derived. 

2.3. Steps of the Methodology 

After collecting the above mentioned datasets, the methodology of this study was divided into a 

two-stage process. The first stage involved utilizing the most simplistic type of data aggregation 

techniques known as Boolean Intersection or logical AND to identify areas restricted by environmental 

and hydrological constraints and therefore excluded from further study. The second stage involved 

integrating fuzzy logic with the Analytic Hierarchy Process (AHP) to identify candidate water 

reservoir sites in the area designated for further study. 

2.4. First Stage: Using Constraints to Identify Acceptable and Unacceptable Areas 

This stage involved utilizing exclusionary criteria (also known as constraints) in preliminary 

screening to exclude unacceptable areas for siting a water reservoir. These areas are locations where 

due to environmental and hydrological concerns were rejected for the purpose of siting a water 

reservoir. A diagrammatic representation of the steps taken to accomplish this first-stage is shown in 

Figure 2. 
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Figure 2. Steps to identify acceptable and unacceptable areas. 

 

In this study, the constraints were; river network, agricultural areas and forest reserves. The 

processing of input layers to create maps for the constraint criteria was carried out in IDRISI
32

, a raster 

based
 

software package. The data layers were first converted from vector to raster model, in a process 

known as rasterization. Each data layer was then converted to a Boolean map by assigning an index 

value of ―1‖ to areas deemed suitable for siting a water reservoir, while unsuitable areas were assigned 

an index value of ―0‖. A detailed description of the constraint layers is discussed as follows. 

2.4.1. River network 

The basic consideration when planning to construct a water reservoir is that it must be located on a 

river and not on dry land. The river network criterion (Figure 3a) was therefore used as a constraint. 

An index value of ―1‖ was assigned to areas through which rivers in Debub pass, hence suitable for 

constructing a reservoir, whilst the other areas, considered to be unsuitable, were assigned an index 

value of ―0‖. 
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Figure 3. Constraint criteria. 

 

2.4.2. Agricultural areas 

Up to 80% of the population in Debub depends on agriculture for their livelihood. The agricultural 

system consists of rain fed crop systems using traditional methods with very low input levels; irrigated 

systems using mainly spate irrigation to grow cereals, vegetables and citrus fruits (bananas and 

mangos), and; agro-pastoralists (cattle, sheep and goats) and nomadic pastoralists systems (camels). 

However, agriculture like many other sectors has been seriously affected by a combination of war, 

recurrent droughts and degraded lands. This has led to severe food shortages, and by 2002, Debub‘s 

agricultural sector was making a negative contribution to Eritrea‘s trade balance [28]. Currently, the 

region relies heavily on imports and food aid. Taking this into consideration, this study ensured that all 
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areas currently under rain fed or irrigated crop farming were excluded as potential reservoir sites. As a 

result, all agricultural areas as shown in Figure 3b were assigned an index value of ―0‖ whilst the other 

areas considered suitable were assigned an index value of ―1‖. 

2.4.3. Forest reserves 

In recent years, the disastrous environmental impact of large water reservoirs such as dams and 

lakes has drawn heavy criticism. According to [29], experts now admit that clearing forest reserves to 

make way for the construction of reservoirs is extremely destructive to our already fragile ecosystems 

equilibrium. The negative impact is far-reaching, unpredictable, usually irreversible, and can neither be 

adequately assessed nor quantified. The Debub region is semi–arid to arid, with rare patches of forest 

cover (Figure 3c), which are already degraded and placed under increasing human and livestock 

pressures for firewood, construction materials, grazing and agriculture. As a result, there is a need to 

protect as much forest cover as possible so that there is no loss of any available rare species of flora 

and fauna unique to the area. To put this into practice, areas covered by forests were assigned an index 

value of ―0‖ to represent their unsuitability whilst the other areas considered to be suitable for locating 

a water reservoir were assigned the index value ―1‖. 

2.4.4. Creating an overall constraint map 

After reducing the constraint maps to Boolean images, all the layers were assigned an equal weight 

as they were considered to be equally important. The Boolean images were subsequently overlaid 

consecutively; by using the Boolean Intersection or Logical AND technique available in the  

Multi-criteria Evaluation (MCE) module of the IDRISI
32

 software package. This technique is 

considered to be a very extreme form of decision making in which a location must meet every criterion 

for it to be included in the decision set. According to [30], Boolean Intersection overlay selects 

locations based on the most cautious strategy possible and hence considered a risk-averse technique. It 

can be represented mathematically by Equation 1. 

 (1)  

where, is the overall suitability index value (0 or 1), is the suitability index value for each 

constraint criterion (0 or 1) and  is the number of constraint criteria. 

The result was a single suitability Boolean map in Figure 4, showing areas restricted by 

environmental and hydrological constraints and therefore excluded from the study area. It also shows 

the areas identified for further consideration. 





n

i

ibSI
1

SI b

n



Water 2011, 3                            

 

 

263 

Figure 4. Areas excluded from water reservoir siting. 

 

2.5. Second Stage: Fuzzy Analytical Hierarchy Process (FAHP) 

This second stage of the methodology adopted the use of the AHP to identify various potential sites 

within the acceptable area identified for further study in Figure 4, according to their suitability for the 

construction of a water reservoir. The AHP is an iterative technique, which consists of a number of 

stages that can be modified to suit a particular problem. For this research, the stages followed in 

implementing the AHP are shown in Figure 5. 
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Figure 5. AHP model. 
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2.5.1. Identifying the objective/s  

These are statements relating to what the decision makers seek to achieve in a particular 

circumstance. For this research, the objective was to identify suitable sites for constructing water 

reservoirs whilst at the same time taking into consideration the various environmental, hydrological, 

economic, social and institutional implications of choosing those particular locations.   

2.5.2. Criteria description, application and pre-processing 

Fourteen (14) criteria considered as factors affecting the location of a water reservoir were adopted 

in this study. Taking into consideration that it is very difficult to acquire spatial information in 

underdeveloped countries such as Eritrea, the selection of these criteria was also influenced by their 

availability as GIS datasets. Data processing of all factor maps was done in the IDRISI
32

 software 

package. Of the main input layers, the 90 meter DTM was in raster format, whilst the rest were vector 

datasets. The raster dataset was imported into the IDRISI
32

 software package using the ARCRASTER 

function. Five input layers, slope, elevation, risk of erosion, water discharge and wetness index were 

then extracted or calculated from the 90 meter DTM. Slope was derived by using the SLOPE surface 

analysis feature extraction function, whilst the DTM was taken as the representation of elevation since 

it is a continuous surface made up of height values. An erosion risk map was created by identifying 

areas of steep slopes and highly erosive soils, and then using the CROSSTAB function to produce a 

map showing areas at risk of erosion where steep slopes and highly erosive soils coincide. The water 

discharge layer was created by first creating a runoff grid from the DTM using the RUNOFF surface 

analysis feature extraction function, and then using Equation 2 in order to have its units in m
3
/s. 

])[365*24*60*60/(])
2

[][()/
3

(arg smpixeleachofareamgridrunoffsmedischWater   (2)  

To calculate the wetness index on a pixel by pixel basis, Kirkby‘s formula shown by Equation 3 

was utilized. 

ln( )
tan

, ( ) ,

a
Wetness index

Where a upslope area runoff grid area of each pixel

slope grid in radians







 



 (3)  

IDRISI
32 

is primarily a raster based geo-software package, with most of its functions and commands 

performing best on raster-based datasets. Vectors are mainly used to get data from other sources into 

IDRISI
32

 and to serve as overlays for better visual orientation. In addition to this, since the slope, 

elevation, risk of erosion, water discharge and wetness index data sets were already in raster format, it 

was only logical for all vector datasets imported into IDRISI
32

 using the SHAPEIDR function, to be 

converted to raster format in a process called rasterization. This was done by first creating a blank 

raster grid using the INITIAL command. An existing grid (in this case, the DTM) was used to provide 

the size of this new raster. The vector datasets were then rasterized onto the blank raster grid. For 

vector datasets in which features were stored as points, lines or polygons, rasterization was achieved 

by making use of the POINTRAS, LINERAS and POLYRAS commands respectively. Buffer zones 

were then created around each data layer, to determine the safe distances at which a reservoir can be 
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sited. To do this, the DISTANCE operator was first used to calculate the distances away from the 

features in each layer. The RECLASS function was then used to determine the buffer zones, and 

information regarding their sizes was compiled from case studies provided within the relevant 

literature as cited in [5,29,31-33]. Each zone was assigned a class between 1 and 5 depending on its 

suitability for siting a water reservoir. The higher the score is, the more suitable the area is for siting a 

water reservoir. The data layers, their buffer sizes and class allocations are summarized in Table 1. A 

detailed description of the data layers is found in [34]. 

Table 1. Summary of the input layers used in this research. 

Layer name Source map Buffer zone Ranking 

Slope 50 m DTM ≤ 12° 5 

12°–20° 4 

20°–25° 3 

25°–30° 2 

≥30° 1 

Elevation 50 m DTM ≤1,300 m 1 

≥2,600 m 

1,300 m–1,600 m 2 

1,600 m–2,000 m 3 

2,000 m–2,400 m 4 

2,400 m–2,600 m 5 

Bedrock Type 1: 250,000 scale Geological map Archean Lower complex 1 

Precamb-Undifferentiate 2 

Basalt 3 

Trias-sandstone 4 

Quart-Conglomerates 5 

Precamb-granitoids 

Distance from fault lines 1: 250,000 scale Geological map ≤20km 1 

20 km–30 km 2 

30 km–40 km 3 

40 km–50 km 4 

≥50 km 5 

Soil 1: 250,000 scale Geological map Livosol 5 

Vertic-Cambisol 4 

Cambisol 3 

Fluvisol 2 

Lithosol-Cambisol 1 

Annual Rainfall 

Water Discharge 

1: 25,000 scale topographical map 

50 m DTM 

300 mm–500 mm 1 

500 mm–700 mm 5 
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Table 1. Cont. 

Layer name Source map Buffer zone Ranking 

Water Discharge 50m DTM ≤2 m3/s 1 

2 m3/s–10 m3/s 2 

10 m3/s–26 m3/s 3 

26 m3/s–46 m3/s 4 

≥46 m3/s 5 

Distance from main and secondary 

tarmac roads 

1: 25,000 scale topographical map ≤500 m 1 

≥2,500 m 

500 m–1,000 m 2 

1,000 m–1,500 m 3 

1,500 m–2,000 m 4 

2,000 m–2,500 m 5 

Distance from motorable dirty, gravel 

roads and footpaths 

1: 25,000 scale topographical map ≤1,000 m 5 

1,000 m–2,000 m 4 

2,000 m–3,000 m 3 

3,000 m–4,000 m 2 

≥4,000 m 1 

Distance from urban areas 1: 25,000 scale topographical map ≤10.0 km 1 

≥15.0 km 

10.0 km–10.5 km 2 

10.5 km–11.0 km 3 

11.0 km–11.5 km 4 

11.5 km–15.0 km 5 

Distance from rural areas 1: 25,000 scale topographical map ≤5.0 km 1 

≥10.0 km 

≤5.0 km 2 

≥10.0 km 3 

5.0 km–5.5 km 4 

5.5 km–6.0 km 5 

Eritrea-Ethiopia border 1: 25,000 scale topographical map Senafe, Tsorona, Adi 

Quala and Maimine  

sub-districts 

1 

Other sub-districts 5 

Criteria and their relevant buffer zones had to be identified from within the relevant literature 

because at the time of carrying out this research, Eritrea did not have clearly defined regulations on 

water reservoir siting. According to [28], water resources management projects in Eritrea used to be 

run by the Water Resources Department (WRD), but are now managed at regional level after the 

decentralization of services in 1996. These regional authorities do not have the capacity to run these 

projects and in cases where they do, they often lack the necessary authority to make effective decisions 

as there is no formal legislation at either national or regional level regarding water rights. As a result 

ground rules for the actual water allocation and resources management are not clearly defined. Because 

of the lack of a promulgated, effective water law, activities in the water sector are still uncoordinated. 
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2.5.3. Establishing decision hierarchy  

The decision hierarchy model of water reservoir siting was structured as in Figure 6. The hierarchy 

consists of the main objective at the top (Water Reservoir Siting), followed by three levels of hierarchy. 

The 14 criteria (also known as factors) used in this research were divided into four main groups; 

environmental, hydrological, economic and institutional factors, to form the second hierarchy. These 

were further split into ten factors of which, four were environmental (Topography, Geology, Soil and 

Risk of erosion), three were hydrological (Annual rainfall, Water discharge and Wetness index), two 

were economic (Distance from roads and Distance from settlements) and one was institutional  

(Eritrea-Ethiopia border) to form the third hierarchy. The final hierarchy was formed by dividing the 

topography, geology, distance from roads and distance from settlements factors. Topography was 

divided into slope and elevation sub-factors. Geology was divided two sub-factors, bedrock type and 

fault lines. The distance from roads factor was also divided into two, that is, distance from main and 

secondary tarmac roads and distance from motorable dirty gravel roads and footpaths sub-factors. 

Finally the distance from settlements factor was divided into the distance from urban areas and 

distance from rural areas sub-factors. The examined criteria were selected based on the relevant 

literature [5,29,31-33]. 

2.5.4. Constructing pairwise comparison matrices 

Weights were applied to each criterion identified in Table 1 to reflect their relative importance. By 

assigning quantitative weights it was possible to make important criteria have a greater impact on the 

outcome than other criteria. There are a number of alternative techniques for assigning weights. In 

ideal situations it is desirable to apply some or all of the techniques, however, practical constraints 

limited the number of techniques used in this research to one, the pairwise comparison method. This 

technique involves the comparison of each criterion against every other criterion in pairs. It can be 

effective because it forces the decision maker/s to give thorough consideration to all elements of a 

decision problem. By contemplating different consideration issues through personal experience, 

knowledge and understanding of the decision making problem, a set of pairwise comparison matrices 

were constructed for each of the lower hierarchical levels—one matrix for each element in the level 

immediately above. An element in the higher hierarchical level was considered to be the governing 

element for those in the lower level since it contributed to it or affected it in one way or the other.  In 

addition, in a complete simple hierarchy, every element in the lower level affects every element in the 

upper level. Therefore, the elements in the lower level were then compared to each other based on their 

effect on the governing element above. This yielded a square matrix of judgements; in which pairwise 

comparison was done in terms of which element dominated the other. In the traditional AHP, these 

judgements are then expressed as integers according to scale values 1–9 as summarised in  

Table 2 [12]. 
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Figure 6. Hierarchy model for water reservoir siting. 
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Table 2. Scale of relative importance. 

Intensity of 

relative 

importance 

Definition Explanation 

1 Equal importance Two activities contribute equally to the 

objectives 

3 Moderate importance of one over another Experience and judgment slightly favour one 

activity over another 

5 Essential or strong importance Experience and judgment strongly favour one 

activity over another 

7 Demonstrated importance An activity is strongly favoured and its 

dominance is demonstrated in practice 

9 Extreme importance The evidence favouring one activity over 

another is of the highest possible order of 

affirmation. 

2, 4, 6, 8 Intermediate value between the two 

adjacent judgments 

When compromise is needed. 

Reciprocals of 

above non-zero 

numbers 

If an activity has one of the above 

numbers (e.g., 3) compared with a second 

activity, then the second activity has the 

reciprocal value (i.e., 1/3) when compared 

to the first.  

 

However, within the literature it is felt that the conventional AHP technique of expressing decision 

maker‘s judgements in the form of single numbers does not fully reflect a style of human thinking in 

the real-world system. There is some inherent uncertainty and imprecision associated with the decision 

making process, which needs to be adequately handled. This uncertainty can be linked to the 

characteristics of the decision maker. An approach which can tolerate this vagueness or ambiguity is 

therefore required. According to [24], a possible approach is to apply a special kind of vagueness 

called fuzziness, which is based on the fuzzy set theory proposed by [25]. The fuzzy approach allows 

decision makers to give interval judgements, which can capture a human‘s appraisal of ambiguity 

when complex multi-attribute decision making problems such as water reservoir siting are considered. 

This approach was adopted for this research, resulting in the uncertain comparison judgements being 

represented by a special class of fuzzy numbers known as Triangular Fuzzy Numbers (TFNs). When 

using TFNs, the decision maker‘s judgement is represented as an interval defined by three real 

numbers or parameters, expressed as ( , , ), where  is the lowest possible value,  is the 

middle possible value and is the upper possible value in the decision maker‘s interval judgement. 

Each TFN is associated with a triangular membership function, which describes the TFN domain. 

Triangular membership functions can be represented mathematically and graphically by Equation 4 

and Figure 7 respectively as follows: 

l m u l m

u
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 (4)  

Figure 7. Fuzzy triangular number. 

 

Using Equation 4, TFNs used to represent vague data were then defined in the order . 

Linguistic variables, which are variables whose values are expressed in linguistic terms, were also used 

by the decision makers in situations not well defined to be reasonably described by conventional 

quantitative expressions [35,36]. The proposed TFNs and matching linguistic variables related to 

Saaty‘s scale of preference values in Table 2, along with their membership functions are provided in 

Table 3. 

Table 3. Proposed TFNs, linguistic variables and membership functions. 

Saaty’s scale 

of relative 

importance 

Definition Membership function Domain TFNs scale  Linguistic 

variables 

 Just equal   (1.0, 1.0, 1.0) Just equal 

1 Equal 

importance 

  (1.0, 1.0, 3.0) Least 

importance 

3 Moderate 

importance of 

one over 

another 

  

(1.0, 3.0, 5.0) 

Moderate 

importance   

5 Essential or 

strong 

importance 

  

(3.0, 5.0, 7.0) 

Essential 

importance   

7 Demonstrated 

importance 

  
(5.0, 7.0, 9.0) 

Demonstrate 

importance   

















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0
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),,( uml

),,( uml

)13/()3()(  xxA 31  x

)13/()1()(  xxA 31  x

)35/()5()(  xxA 53  x

)35/()3()(  xxA 53  x

)57/()7()(  xxA 75  x

)57/()5()(  xxA 75  x

)79/()9()(  xxA 97  x
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Table 3. Cont. 

Saaty’s scale 

of relative 

importance 

Definition Membership function Domain TFNs scale  Linguistic 

variables 

9 Extreme 

importance 

  (7.0, 9.0, 9.0) Extreme 

importance 

Reciprocals of 

above non-

zero numbers 

If an activity 

has one of the 

above numbers 

(e.g., 3) 

compared with 

a second 

activity, then 

the second 

activity has the 

reciprocal value 

(i.e., 1/3) when 

compared to the 

first.  

  Reciprocals of above; 

 

 

By using TFNs, the fuzzy judgement matrices , used to construct pairwise comparisons for 

criteria at each level of the hierarchy, were of the form: 

 

The number of comparisons at each hierarchy level was determined by the formulae , 

where is the total number of criteria.  

2.5.5. Determining weights of criteria 

After pairwise comparisons, the weights of the criteria were determined. Within the literature, 

different methods have been proposed for determining weights of criteria in a fuzzy comparison matrix. 

This research utilized the Fuzzy Extent Analysis (FEA) method proposed by [37]. The steps of [37] 

FEA are as follows: 

First step: Normalized values of row sums, also known as values of fuzzy synthetic extent where 

computed for each of the of fuzzy judgement matrices in Tables 4–12, by making use of fuzzy 

arithmetic operations and Equation 5. 
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 (5)  

Where  denotes the extended multiplication of two fuzzy numbers. To obtain , the fuzzy 

addition operation was applied to the fuzzy numbers in the fuzzy judgement matrices, such that, 

 (6)  

To obtain , the fuzzy addition operation was applied to the column values in the 

matrix obtained from Equation 6, followed by computation of the inverse of the resulting vector such 

that, 

 (7)  

Step 2: This step involved taking two criteria at a time and then using their normalized TFN‘s obtained 

from Equation 5, to determine the degree of possibility of one criterion fuzzy number‘s being greater 

than or equal to the other criteria fuzzy number‘s . This can be represented by Equation 8  

as follows: 

 
(8)  

Which can be equivalently expressed as, 

 (9)  

Where  

In order to compare, , both the values of and were computed.  

Step 3: The basic principles in Step 2 were then extended to calculate the degree of possibility of, , 

of one criterion, being greater than all the other convex fuzzy numbers, , of other criteria. 

This can be defined as follows, 

 (10)  

By taking the minimum values in the degree of possibility sets created from Equation 10, it was 

possible to determine a weight vector, , as follows, 

 (11)  
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Step 4: The normalized weight vectors for each fuzzy comparison matrix, , at each level of the 

hierarchy were then determined by normalizing the weight vector, . In other literature‘s this process 

is known as de-fuzzification and involves dividing each value in the weight vector, , by their total 

sum as follows, 

 
(12)  

The calculated weight (W) for each factor in the hierarchy is shown in the last column for  

Tables 4 to 12. 

Table 4. The pairwise comparison matrix A—B1—4. 

A B1 B2 B3 B4 W 

B1 1,1,1 1.0,3.0,5.0 3.0,5.0,7.0 5.0,7.0,9.0 0.47577462 

B2 0.20,0.33,1.0 1,1,1 1.0,3.0,5.0 3.0,5.0,7.0 0.33803709 

B3 0.14,0.20,0.33 0.20,0.33,1.0 1,1,1 1.0,3.0,5.0 0.15026848 

B4 0.11,0.14,0.20 0.14,0.20,0.33 0.20,0.33,1.0 1,1,1 0.03591981 

FCR = 0.016, A = Water reservoir site suitability, B1 = Environmental factors, B2 = Hydrological factors, B3 = Economic 

factors, B4= Institutional factors, W is the weight of B1, B2, B3 and B4 to A. 

V(SB1 ≥ SB2, SB3, SB4) = 1; V(SB2 ≥ SB1, SB3, SB4) = 0.710498; V(SB3 ≥ SB1, SB2, SB4) = 0.31584;  

V(SB4 ≥ SB1, SB2, SB3) = 0.075498 

Table 5. The pairwise comparison matrix B1—C1—4. 

B1 C1 C2 C3 C4 W 

C1 1,1,1 1.0,3.0,5.0 3.0,5.0,7.0 5.0,7.0,9.0 0.47577462 

C2 0.20,0.33,1.0 1,1,1 1.0,3.0,5.0 3.0,5.0,7.0 0.33803709 

C3 0.14,0.20,0.33 0.20,0.33,1.0 1,1,1 1.0,3.0,5.0 0.15026848 

C4 0.11,0.14,0.20 0.14,0.20,0.33 0.20,0.33,1.0 1,1,1 0.03591981 

FCR = 0.016, B1 = Environmental factors, C1 = Topography, C2  = Geology, C3 = Soil, C4 = Risk of erosion, W is the 

weight of C1 - C4 to B1. 

V(SC1 ≥ SC2, SC3, SC4) = 1; V(SC2 ≥ SC1, SC3, SC4) = 0.710498; V(SC3 ≥ SC1, SC2, SC4) = 0.31584;  

V(SC4 ≥ SC1, SC2, SC3) = 0.075498 

Table 6. The pairwise comparison matrix, B2—C5—7. 

B2 C5 C6 C7 W 

C5 1,1,1 1.0,3.0,5.0 3.0,5.0,7.0 0.573609394 

C6 0.20,0.33,1.0 1,1,1 1.0,3.0,5.0 0.375520014 

C7 0.14,0.20,0.33 0.20,0.33,1.0 1,1,1 0.050870592 

FCR = 0.012, B2 = Hydrological factors, C5 = Annual rainfall, C6 = Water discharge, C7= Wetness Index, W is the 

weight of C5 – C7 to B2. 

V(SC5 ≥ SC6, SC7) = 1; V(SC6 ≥ SC5, SC7) = 0.654662; V(SC7 ≥ SC5, SC6) = 0.088685 
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Table 7. The pairwise matrix, B3—C8, C9. 

B3 C8 C9 W 

C8 1,1,1 0.20,0.33,1.00 0.299775028 

C9 1.0,3.0,5.0 1,1,1 0.700224972 

FCR = 0.000, B3 = Economic factors, C8 = Distance from roads, C9 = Distance from settlements, W is the weight of C8 

and C9 to B3. 

V(SC8  ≥ SC9) = 0.428112; V(SC9  ≥ SC8) = 1 

Table 8. The pairwise matrix, B4—C10. 

B4 C10 W 

C10 1,1,1 1 

FCR = 0.000, B4 = Institutional factors, C10 = Eritrea – Ethiopia border, W is the weight of C10 to B4 

Table 9. The pairwise comparison matrix, C1—D1, D2. 

C1 D1 D2 W 

D1 1,1,1 1.0,3.0,5.0 0.700224972 

D2 0.20,0.33,1.0 1,1,1 0.299775028 

FCR = 0.0000, C1 = Topography, D1 = Slope, D2 = Elevation, W is the weight of D1 and D2 to C1. 

V(SD1  ≥ SD2) = 1; V(SD2 ≥ SD1) = 0.428112 

Table 10. The pairwise comparison matrix, C2—D3, D4. 

C2 D3 D4 W 

D3 1,1,1 1.0,3.0,5.0 0.700224972 

D4 0.20,0.33,1.00 1,1,1 0.299775028 

FCR = 0.0000, C2 = Geology, D3 = Bedrock type, D4 = fault lines, W is the weight of D3 and D4 to C2 

V(SD3  ≥ SD4) = 1; V(SD4  ≥ SD3) = 0.428112 

Table 11. The pairwise comparison matrix, C8—D5, D6. 

C8 D5 D6 W 

D5 1,1,1 0.20,0.33,1.00 0.299775028 

D6 1.0,3.0,5.0 1,1,1 0.700224972 

FCR = 0.0000, C8 = Distance from roads, D5 = Distance from main and secondary roads, D6 = Distance from 

motorable gravel, tracks, trench lines and footpaths, W is the weight of D5 and D6 to C8.  

V(SD5  ≥ SD6) = 0.428112;  V(SD6  ≥ SD5) = 1 

Table 12. The pairwise comparison matrix, C9—D7, D8. 

C9 D7 D8 W 

D7 1,1,1 0.20,0.33,1.00 0.299775028 

D8 1.0,3.0,5.0 1,1,1 0.700224972 

FCR = 0.0000, C9 = Distance from settlements, D7 = Distance from urban areas, D8 = Distance from rural areas, W is 

the weight of D7 and D8 to C9 

V(S D7  ≥ S D8) = 0.428112; V(S D8  ≥ S D7) =1 
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2.5.6. Calculating the Fuzzy Consistency Ratio 

To determine whether consistency was maintained in assigning the weights as described in  

section 2.5.5, a ratio known as the Fuzzy Consistency Ratio (FCR), was calculated. The algorithm used 

in this research is that proposed by [38], which is based on the preference ratio concept. The steps of 

the algorithm are as follows; 

Step 1: A fuzzy matrix  was defined such that: 

 (13)  

where is the weight for the j
th

 criteria or attribute, for , and are the TFN‘s in the fuzzy 

judgement matrix. 

Step 2: values in each i
th 

row of the matrix  were summed, as follows, 

 (14)  

Step 3:  values were then calculated such that 

 (15)  

Step 4: The Consistency Index (CI) was then calculated as follows: 

 (16)  

Step 5: The FCR was then calculated using the following formula: 

 (17)  

where RI is the random consistency index, which was obtained from Table 13. 

Table 13. Random Indices for Consistency Check. 

n 2 3 4 5 6 7 8 9 10 

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 

n = dimension of judgement matrix 

Step 6: Because TFN‘s were used to represent the vagueness in the judgement matrix, the FCR values 

obtained from Equation 17 were in the form of a set with 3 values. The FCR was determined as a 

preference ratio, which according to [39], is defined as the percentage of the ith fuzzy number within a 

set being the most preferred one. This ratio is expressed by Equation 18 as follows. 

 (18)  

where  and  are values in the FCR set obtained from Equation 17. 
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The preference ratio should be about 10%, or less for the weights to be acceptable, otherwise the 

decision maker may need to re-examine the judgment process of assigning the weights. Fortunately, 

the preference ratio values (also known as FCR values in this study) of all comparisons made for the 

criteria at each hierarchical level (Tables 4 to 12) were lower than 10%, which indicated that the 

weights were acceptable. This procedure sometimes requires several interaction and adjustment until 

an acceptable consistency ratio is achieved. This could be done by revising the manner in which 

questions are asked in making the pairwise comparisons. If this should fail to improve consistency then 

it is likely that the problem should be more accurately structured; that is, grouping similar elements 

under more meaningful criteria [40,41].  

2.5.7. Calculating the final weights of each input layer 

The weight (Wf) of every lastest factor in Figure 6 to the main objective of the hierarchy (A) was 

calculated by normalizing the weight (W) of each factor shown in Tables 4 to 12. This was done by 

multiplying the weight of a factor in the lower level by that of the element/s in the upper level as long 

as they are directly related as in the hierarchical structure. For example, to get the final weight of the 

slope input layer (represented by D1 in the hierarchy), the following formulae was used, 

 

This was done for all the input layers and the results are shown in Table 14. The sum of the final 

weights is 1, a requirement which must be fulfilled during the process of assigning weights. 

Table 14. Final criteria weights for all factors. 

Goal A Hierarchy B Hierarchy C Hierarchy D Wf 

A B1 C1 D1 0.15850397 

      D2 0.067857523 

    C2 D3 0.112616811 

      D4 0.048212659 

    C3 - 0.071493929 

    C4 - 0.017089732 

  B2 C5 - 0.193901251 

    C6 - 0.126939693 

    C7 - 0.017196147 

  B3 C8 D5 0.013503887 

      D6 0.03154285 

    C9 D7 0.03154285 

      D8 0.073678891 

  B4 C10 - 0.035919806 

Wf is the final weight of each input layer 

AObjectivetoBofWeightBtoCofWeightCtoDofWeightDofweightFinal 111111 
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2.5.8. Calculating the overall fuzzy consistency ratio 

The overall fuzzy consistency ratio of the hierarchy was checked by multiplying each Consistency 

Index (CI) by the priority of the corresponding criterion and adding them together. The result was then 

divided by the same type of expression using the Random consistency Index (RI) corresponding to the 

dimensions of each matrix weighted by the priorities as before. This is represented by  

Equation 19 below. 

 (19)  

The CI values for each pairwise comparison matrix in Tables 4–12 were obtained from Equation 16. 

The corresponding RI values for each matrix were then obtained by looking them up in Table 13. By 

inputting the weight, CI and RI values into Equation 19, an overall FCR of 0.018 was obtained. The 

FCR was less than 0.10 and therefore consistency was achieved in determining the final weights of the 

input layers. 

2.5.9. Standardizing and ensuring correct polarity of input layers 

Before aggregating the input layers in a MCDA process, they must be on the same scale. This 

process in commonly known as standardization or normalization and involves assigning the same 

dimensionless continuous scale, either 0–255 or 0–1, to all the input layers. According to [20], this 

process expresses the unit of measurement of each factor map as belonging to a set ranging from 0.0 to 

1.0 or 1 to 255, indicating a variation from non-belonging to complete-belonging (or least suitable to 

most suitable). In this research, each input layer was divided into 5 classes, a process which helped to 

standardize the layers since they all were now using the same 1–5 dimensionless scale, indicating a 

variation from least suitable site to most suitable site. In addition, all the input layers had all the classes 

representing the same levels of suitability in the same order, that is, class 1 representing least 

suitability and class 5 being the most suitable. This ensured that all the input layers had the same 

‗polarity‘ since the class levels were all increasing in the same direction (that is, low class value = bad 

and high class value = good). 

2.5.10. Aggregation 

Once the criteria maps (factors and constraints) had been developed and the associated weights 

assigned to each input layer, an evaluation (or aggregation) stage was undertaken to combine the 

information from the various factors and constraints. The MCE module in the IDRISI
32

 software 

package offers three methods for the aggregation of multiple criteria: Boolean Intersection, Weighted 

Linear Combination (WLC), and the Ordered Weighted Average (OWA). WLC was chosen as the 

method of aggregation at this stage of the research. As shown in Equation 20, this method multiplies 

each standardised factor map by its factor weight then sums the results.  

 (20)  
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This process was done on a pixel by pixel basis and yielded a suitability map with the same range of 

values as the standardized factor maps that were used. The factor maps were first converted to byte 

binary format before being used in Equation 20. The result was then multiplied by the constraint map 

from Figure 4 to ―mask out‖ the areas unsuitable for siting a water reservoir. The constraint map was a 

binary coded image showing all areas in Debub were siting of a water reservoir was simply not 

possible due to environmental and hydrological factors as zero (0) values whilst the other areas were 

shown as one (1). Thus Equation 20 was modified as follows, 

intS W x c where c constra ji i j j    (21)  

The final output of Equation 21 was a map showing a number of suitable sites for locating water 

reservoirs in classes 1 to 5.  

2.5.11. Sensitivity analysis 

A success in the application of the decision model used in identifying the candidate water reservoir 

sites was determined through sensitivity analysis. According to [42], sensitivity analysis is a 

prerequisite for enhancing GIS-based MCDA since it determines the reliability of the models through 

assessment of uncertainties in the output results. With growing interest in extending GIS to support 

MCDA methods, sensitivity analysis is now crucial in model evaluation that tests the robustness of a 

model and the extent of output variation when parameters are systematically varied over a range of 

interest. In this research, sensitivity analysis was performed by changing each of the input criteria by 

±5 percent increments. This method is known as ―One at a Time‖, better known as the OAT method. It 

is easy to implement, computationally cheap and has been frequently applied in various fields where 

models are employed [43].  

2.5.12. Volume calculation 

Following sensitivity analysis, sites in classes 5, 4 and 3 were then grouped together and considered 

to be the best, whilst those in classes 2 and 1 were considered as the good sites. The result was a map 

with sites divided into 2 discrete categories: best water reservoir sites and good water reservoir sites. In 

addition to the criteria and constraints used in identifying candidate sites, reservoir siting is also 

affected by the volume of water that can be stored at a particular location. To get the volume of water 

that can be stored at a site, the methodology described by [44] was adopted. [44] developed an  

area-volume relationship whose theoretical derivation was based on the shape of a reservoir as being a 

square-based, top down pyramid that is diagonally cut in half as in Figure 8. 

Figure 8. Reservoir model. 

 

Source: [44] 
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From Figure 8, the volume of a reservoir of any shape was then modelled and a formula was 

derived as follows, 

 (22)  

To determine the precision of the model, [44], utilized a widely used model efficiency measure  

of [45] to evaluate the goodness of fit between measured and modelled volumes using Equation 22. 

The results indicated that the model represented by Equation 22 explains 97.5% of the measured 

variance despite the variety of reservoir shapes used in the research. It is because of this that  

Equation 22 was used in this research to calculate the volume of water that could be stored at each site.  

3. Results and Discussion  

3.1. Candidate Water Reservoir Sites in Suitability Classes 

This research was carried out to identify candidate sites for locating water reservoirs in the 

administrative district of Debub in Eritrea. The final output of Equation 21, was the first map output 

showing the candidate sites in 5 classes of suitability. Figure 9 shows the location of the sites, whilst 

Table 15 summarizes the number of sites in each class. 

Figure 9. Candidate water reservoir sites in suitability classes. 

 

The spatial pattern of the identified sites in Figure 9 strongly reflects the influence of the river 

network data layer, which was one of the three constraints used in this study. This led to all sites being 

located along the perennial and seasonal rivers. In addition, the candidate sites also satisfied the other 

two constraints used in this study as they are located outside the forest reserves and agricultural areas. 

This is mainly due to the fact that the Boolean Intersection overlay technique used to combine the 
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constraint data layers is considered to be a very extreme form of decision making in which a location 

must meet every criterion for it to be included in the decision set. According to [30], Boolean 

Intersection overlay selects locations based on the most cautious strategy possible and hence is 

considered a risk-averse technique. 

Table 15. Number of sites in each class. 

Class Number of sites 

1 7 

2 11 

3 18 

4 2 

5 4 

In terms of individual locations, the sites are evenly distributed across the whole region. However, 

when it comes to class distributions, the pattern is uneven. This is attributed mainly to the factors used 

in the AHP and the resulting weights associated with them. Sites in class 4 and 5 are located along the 

seasonal rivers in the south of the May Aini sub-district, and are in close proximity, with the maximum 

distance between sites being 10 km. These locations are characterised by altitudes of between 2,000 

and 2,600 metres, with suitable flat to moderate slopes of between 1° and 20°. In addition to the 

combination of high shear strength metamorphosed quartzite, sandstone and basalt rocks in these 

locations, the soils there are mainly very clayey, making them sticky when wet hence have poor 

drainage, which makes them more suitable as solid foundations for a water reservoir. As for sites in 

class 3, they are located in all the sub-districts and have the greatest number (18 in total) as shown in 

Table 15. These are followed by sites in class 2, which are as nearly distributed as those in class 3 

though fewer in total (11 sites). The least suitable sites (class 1) numbered 7 in total. They are confined 

to sub-districts (Segneneity, Adi Keyh and Senafe) in the western part of the region were rainfall is 

between 300 and 500 mm, slopes are very steep (30°–40°) and are prone to slope failure, altitude is 

either too low (940–1,300 metres) or too high (2,600–3,008 metres), the soil is mainly course textured 

and highly permeable sand and newly weathered and weathering soils with two fault lines cutting 

across the area. Within the literature, the view is that areas inhibiting these characteristics should rarely 

be used for the construction of large structures requiring a solid foundation, such as a water reservoir. 

The candidate sites identified and shown in Figure 9 are on a continuous dimensionless scale 

ranging from 1 to 5, indicating a variation from least suitable to most suitable site. This is one of the 

characteristics of the Weighted Linear Combination (WLC) technique, which was used to aggregate 

the constraints and factor maps used in this study. This technique was mainly chosen over others 

because it avoids the hard decisions of defining any particular area as absolutely suitable or not, but 

rather uses a continuous scale to represent suitability. According to [5], this technique is a much better 

representation of the way major decisions are made in reality. This is also aided by the fact that the 

WLC method allows weights to be assigned to factors. Weights were assigned to the factors using a 

series of pairwise comparison judgments to express the relative strength of each of the factor maps. 

Pairwise comparison allows one to consider two factors at a time, which reduces the complexity of the 

decision making process. Assigning weights using pairwise comparison was more suitable than direct 
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assignment of the weights, because one can check the consistency of the weights by calculating the 

consistency ratio. The largest weight of relative importance was assigned to slope and least relative 

importance to distance from main and secondary tarmac roads. This could be associated with the fact 

that the slope of the land is a crucial factor as far as construction costs and safety are concerned, 

because very steep slopes usually lead to higher excavation costs and are also susceptible to slope 

failure. Assigning weights to factors allows them to trade-off or compensate each other, for example, a 

high-factor weight can trade-off or compensate for poor scores on other factors, even if the unweighted 

suitability score for that highly-weighted factor is not particularly good. This is possible whilst 

maintaining variability in the continuous suitability data. In this research, a low suitability aggregate in 

one factor for any given area was compensated for by a high suitability aggregate in another factor. For 

example, areas with a slope factor with high suitability were compensated for by a low suitability in 

the distance from small roads and fault lines factors. In the resultant image, that location had a high 

suitability score. This gave more allowance in the selection for the suitability areas. Thus, the WLC 

method is considered to be an averaging technique and balances between extreme risk taking and risk 

aversion [22]. 

3.2. Decision Model Robustness 

A success in the application of the decision model used in identifying the candidate water reservoir 

sites in Figure 9 was determined through sensitivity analysis, which was performed by changing the 

weight of each input criteria by ±5 percent increments. Table 16 represents the total number of sites in 

each class relative to the changes in the weights of the input factor maps. Base is the output using the 

original weights as shown in Table 16, D1 5% is the change in the slope factor map by 5 percent, and 

so forth. 

Table 16. Results of sensitivity analysis. 

Criteria Weight increments Class 

1 2 3 4 5 

Base  7 11 18 2 4 

D1 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

D2 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

D3 +5% 9 14 20 2 5 

−-5% 7 11 16 4 5 

D4 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

C3 +5% 7 11 18 2 4 

−-5% 7 11 18 2 4 

C4 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

C5 +5% 11 14 22 5 2 

−5% 5 11 15 2 3 

C6 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 
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Table 16. Cont. 

Criteria Weight increments Class 

1 2 3 4 5 

Base  7 11 18 2 4 

C7 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

D5 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

D6 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

D7 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

D8 +5% 9 11 20 2 4 

−5% 7 11 16 2 4 

C10 +5% 7 11 18 2 4 

−5% 7 11 18 2 4 

With the aid of results from Table 16, it was seen that; there were no sites that moved more than one 

suitability class from its original class in the base run; the annual rainfall factor (C5) had the highest 

sensitivity, followed by bedrock type (D3) and distance from rural areas (D8) factors; the annual 

rainfall factor (C5) was the most sensitive criterion, which caused greater suitability class 

modifications when its weight was increased by +5%; class 3 appeared to be more sensitive to criteria 

weight changes than the other classes. Despite the slight changes in the output results, the variation in 

the weights of the input factor maps had a small impact on the number of sites in each of the five 

classes, suggesting that the base results were independent of any changes in the weights of the input 

layers. This highlighted the robustness of the model, and was a confidence building measure with 

regard to the model credibility. 

3.3. Final Suitability Maps 

Following sensitivity analysis, sites in classes 5, 4 and 3 were then grouped together and considered 

to be the best, whilst those in classes 2 and 1 were considered as the good sites. The result was a map 

with sites divided into 2 discrete categories: best water reservoir sites and good water reservoir sites 

(Figure 10). 

Reservoir siting is also affected by the volume of water that can be stored at a particular location. 

To calculate the volume of water that can be stored at each of the sites in Figure 10, the methodology 

described by [44] was adopted. According to volume calculation, the best possible water reservoir sites 

are shown in Figure 11a, whilst the good possible water reservoir sites are shown in Figure 11b. The 

―best‖ candidate sites in Figure 11a are considered as the optimum locations for a water reservoir, 

whilst the ―good‖ candidate sites in Figure 11b are the back-up sites. Back-up sites can be used if the 

optimum sites are found to be unsuitable after further studies. 
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Figure 10. Final suitability map. 

 

Figure 11. (a) Best water reservoir sites; and (b) Good water reservoir sites. 
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Figure 11. Cont. 

 

The volumes in different classes in each sub-district are then summarised in Table 17. The best 

reservoir sites account for 57.14% and the good reservoir sites account for 42.86% of the total number 

of candidate sites identified. Furthermore, for both the best and good sites, most of the candidate 

reservoir locations have volumes less than 1,000,000 m
3
, with the May Aini sub-district having most 

optimum sites in this category. It can also be seen that, of the 12 sub-districts in Debub, Emni Haili, 

May Aini and Mendefera do not have back-up sites, which may be used in case the optimum sites are 

found to be unsuitable after further studies. However, the May Aini sub-district may take comfort from 

the fact that it has 8 optimum candidate sites, of which some of them can be used as the back-up sites. 

As the volume increases, only four optimum sites in four different sub-districts (Dekemhare, Maimine, 

May Aini and Mendefera) have the potential to store more than 10,000,000 m
3
 of water. 

 

 

 

 

 

 

 

 

 



Water 2011, 3                            

 

 

286 

Table 17. Number of sites in each sub-district according to volume calculation. 

Sub-district Best water reservoir sites Good water reservoir sites 

2,500 < V <  

1 × 10
6
 

1 × 10
6
 < V 

< 1 × 10
7
 

1 × 10
7
 < V  

< 5 × 10
7
 

V > 5 × 10
7
 

2,500 < V  

< 1 × 10
6
 

1 × 10
6
 < V  

< 1 × 10
7
 

1 × 10
7
 < V  

< 5 × 10
7
 

V > 5 × 10
7
 

Adi Keyh  1   3    

Adi Quala 1    1    

Areza 1 1   2    

Dbarwa 3    1    

Dekemhare    1 1    

Emni Haili  1       

Maimine 1 1  1 3    

May Aini 7  1      

Mendefera   1      

Segeneity  1   1 2   

Senafe  1   2 1   

Tsorona 1    1    

         

Total 14 6 2 2 15 3 0 0 

4. Summary and Conclusions 

This research presented a case study that integrated GIS, fuzzy logic and the traditional AHP in 

identifying optimum and back-up candidate sites for locating water reservoirs in the administrative 

district of Debub, Eritrea. The process was carried out in two stages. The first stage involved utilizing 

the most simplistic type of data aggregation techniques known as Boolean Intersection or logical AND 

to identify areas restricted by environmental and hydrological constraints and therefore excluded from 

the study area. Three constraints; forest reserves, agricultural areas and river network, were used in this 

first stage. The second stage involved identifying candidate water reservoir sites in the remaining area 

by integrating fuzzy logic and the traditional AHP, a decision making technique. Using AHP, a 

hierarchy model was proposed to incorporate information from environmental, hydrological, economic 

and institutional factors, and offer reference for water reservoir site selection in the future. Because this 

study took into account criteria representing the views and values of different stakeholders, the process 

by which the model selected water reservoir sites is suitable for other case studies, which require 

multi-stakeholder engagement and community participation. According to [13], participatory 

approaches are complimentary, not oppositional, to decision support tools such as the AHP. A total of 

14 criteria were used as input into the AHP. Weights were assigned to each criterion to reflect their 

relative importance. By assigning quantitative weights it was possible to make important criteria have 

a greater impact on the outcome than other criteria. It was at this stage of the research were the 

concepts of fuzzy logic were introduced. It was felt that assigning weights using single numbers was 

not an appropriate abstraction of the way humans make judgements in reality. With fuzzy logic, it was 

possible to adequately handle the inherent uncertainty and imprecision associated with the decision 

making process of assigning weights. The fuzzy approach allowed judgements to be made as a set of 

intervals in order to capture a human‘s appraisal of ambiguity when faced with complex multi-attribute 
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decisions. Weights were assigned to the factors using a series of pairwise comparison judgment 

matrices. Pairwise comparison allows one to consider two factors at a time, which reduces the 

complexity of the decision making process. Assigning weights using pairwise comparison was more 

suitable than direct assignment of the weights, because one can check the consistency of the weights 

by calculating the consistency ratio. By allowing decision makers to explicitly state and weight their 

decision criteria through a structured process, and making it possible to identify areas of agreement or 

disagreement, the fuzzy AHP achieved transparency. It was also recognized that assignment of factor 

weights was based on previous knowledge of the factor characteristics and those of the study area, as 

well as the experience of the experts involved in the weight assignment process.  

Before aggregating the criteria, a classification scheme was applied to each criterion, by assigning 

buffer zones to suitability classes between 1 and 5, with 1 being the least suitable and 5 the most 

suitable. Once all the criteria were appropriately classed, the WLC technique was chosen as the 

appropriate method to aggregate the factors and constraints data layers. The output was the map shown 

in Figure 9, showing candidate water reservoir sites on a continuous dimensionless scale ranging from 

1 to 5, indicating a variation from least suitable to most suitable site. A total of 42 sites were identified. 

As detailed in the methodology, sites in classes 5, 4 and 3 were then grouped together and 

considered to be the best or optimum sites, whilst those in classes and 2 and 1 were considered as the 

good or back-up sites. The result was the map shown in Figure 10, with sites divided into 2 discrete 

categories: best water reservoir sites and good water reservoir sites. However, selection of suitable 

water reservoir sites is also affected by the volume of water they can store. The methodology described 

by [44] was adopted in the calculation of the possible volume of water that can be stored at a particular 

site. The formulae required the use of the site area (Equation 22). In determining the areas, raster cells 

had to be converted to vector polygons, a process which results in loss of information. This is an 

indication that the calculated areas of the potential reservoir sites are an approximation of their true 

area. Since errors tend to propagate, it is more likely that errors in determining the areas of reservoir 

sites also introduced some error in the volume calculation. Thus, the calculated volumes of the sites are 

an approximation of their true value.  

In addition, according to [46], results from all MCDA methodologies are bound to be associated 

with a certain amount of uncertainty, which emanates from the following elements: criterion 

uncertainty, assessment uncertainty, and priority uncertainty. Additional uncertainty and errors can be 

also linked to data sources and lineage. This research used data from different sources with different 

levels of accuracy. For instance, the boundary of the agricultural areas map used in this study is 

slightly different from the other map layers, and may have introduced errors such as slivers when 

overlaid with other layers with polygon data features. Therefore, errors and uncertainty from any map 

layer will propagate through the modelling process, and when combined with errors from other layers, 

may root erroneousness in the final output (decision result) map. As a result, errors in the water 

reservoir site suitability map can be seen as inherent errors from criterion map layers. Thus, it is 

important to highlight that results obtained from this research should be taken with great care and more 

should be done to try and quantify the errors. 

It is unfortunate that field studies could not be carried out to verify and further investigate the 

suitable sites identified in this research as the process was beyond the economic costs and capability of 

the researchers. It is however important to realize that GIS analysis is not a substitute for field analysis; 
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however, it does identify areas that are more suitable and directs efforts to these areas rather than areas 

that are unsuitable or restricted by regulations or constraints. As a result, this work could be taken 

further by conducting field validation in order to compare and technically evaluate all the candidate 

sites in terms of their environmental impact assessment, from which the top ranking sites will undergo 

further geotechnical and hydro-geological detailed investigations. 
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