
Water 2011, 3, 132-145; doi:10.3390/w3010132 

 

water 
ISSN 2073-4441 

www.mdpi.com/journal/water 

Article 

Soil Water Surplus in Salado River Basin and Its Variability 

during the Last Forty Years (Buenos Aires Province, Argentina) 

Olga Eugenia Scarpati 
1,2,

*, Liliana Beatriz Spescha 
3
, Juan Alberto Forte Lay 

1
  

and Alberto Daniel Capriolo 
1
 

1 
National Council of Scientific and Technical Research, Avenue Rivadavia 5485, Buenos Aires, 

1424, Argentina; E-Mails: jaflay2004@yahoo.com.ar (J.A.F.L.);  

albertocapriolo@yahoo.com.ar (A.D.C.) 
2 

Geography Department, Humanities and Education Sciences Faculty, National University of La 

Plata, 48 Street, La Plata, Buenos Aires, 1900, Argentina 
3 

Faculty of Agronomy, University of Buenos Aires, Avenue San Martín 4453, Buenos Aires, 1417, 

Argentina; E-Mail: spescha@agro.uba.ar  

* Author to whom correspondence should be addressed; E-Mail: olgascarpati@yahoo.com.ar. 

Received: 11 November 2010 / Accepted: 30 December 2010 / Published: 18 January 2011 

 

Abstract: Soil water surplus and deficit occur frequently in Buenos Aires province in 

Argentina. This paper analyses the soil water surplus in a sub-area, the Salado River basin, 

in the period 1968–2008. This basin is divided in seven drainage areas, delimitated 

according to the National Water Resources. The series of soil water surplus data were 

adjusted by means of the theoretical normal cubic-root probability distribution, and the 

mean areal soil water surplus value of 300 mm was considered as a threshold above which 

floods can cause severe damage. An increase in the frequency of extreme events and in 

their tendency exists during the recent years, coherent with the increase of precipitation 

recorded in the region. The statistical significance of the results was assessed using the 

Mann Kendall and MAKESENS tests. The results showed a relevant temporal variability, 

but did not show significant tendencies.  
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1. Introduction 

The Salado River is located in the Buenos Aires (hereafter, BA) province, in eastern Argentina, and 

flows eastwards to the Atlantic Ocean. Its basin is an almost flat region with a mean gradient of 0.25‰ 

from west to east, and covers a wide region known as the Pampas Plain or Pampean flatlands. The 

basin is roughly rectangular, and its coordinate margins are: 34°30'S and 38°10'S for the latitude, and 

63°23'W and 56°41'W for the longitude. In recent decades, there were several episodes of soil water 

surplus (sws, hereafter), caused mainly by intense rainfall [1-3]. 

The goal of this paper is to analyze the evolution of annual sws in the period 1968–2008, 

considering seven drainage areas corresponding to the Salado River basin (BA province, Argentina), in 

order to determine the areas with the highest frequencies of occurrence. 

The BA province is a large plain with an elevation of less than 300 m. The Tandilia and Ventania 

hills, located in the southern part of the region, reach 520 m and 1240 m, respectively. The Salado 

River basin covers 91,505 km
2
, and the homonymous river—more than 700 km long—is the most 

important. Its main affluents are the Las Flores and Vallimanca streams. The drainage system consists 

of meandering rivers partially connected to permanent and seasonal lagoons. The low regional terrain 

slope favors the retention and storage of rainwater for long periods, mainly in the soil, over the 

floodplain and in shallow lagoons.  

Historically, this region was characterized by long periods of water deficit, persistent droughts and 

high temperatures, interspersed with periods of heavy rainfall that cause severe floods. Since grain 

production in the Salado River basin accounts for 30% of the national production, that of meat for 25% 

and the agro-industrial products of vegetal origin exceeds 60%, it is evident that these natural 

phenomena can have a relevant impact on the national economy. 

The climate of the area is temperate and humid, with warm summers and cool winters. Mean annual 

temperatures oscillate between 13 °C and 16 °C. The temperature of the warmest month (January) 

ranges between 20 °C and 23 °C, while that of the coldest month (July) between 7 °C and 9 °C. 

Annual precipitation varies from 1000 mm in the north-eastern part of the region to 700 mm in the 

south-west. The largest precipitation events are usually generated by the contrast between the warm 

and humid air mass originating from the semi-permanent anticyclone over the Atlantic Ocean and the 

cold air mass flowing from the south-west. 

The sws is the quantity of rainwater that remains over the soil surface when the water infiltration is 

null because the soil storage capacity is achieved. This water often cannot infiltrate because the water 

table is too close to the surface, and there are many depressed areas in the Pampean flatlands. Thus, 

vertical rainfall and evapotranspiration fluxes are more important than horizontal water movements or 

surface and subsurface flows in flat regions like the study area. The level of the water table is high 

during periods of sws, eventually rising to the surface, thereby increasing the flood potential as well as 

the extension of lakes, ponds and surface impoundments. Nowadays, such a situation occurs more 

frequently over the Pampean flatlands as a result of the increased precipitation, as the studies 

performed during the last decades [4-6]. 

According to Barros et al. [7] subtropical Argentina, Paraguay and southern Brazil recorded more 

precipitation during summer in the last decades of the XX century, and the interannual variability also 

increased. During this season, a low-level convergence area, a high-level divergence area and an 
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intense convection develop in the northern part of this macro-area, forming the South Atlantic 

Convergence Zone (SACZ), which has a relationship with the interannual precipitation variability in 

the same area. 

Kruse et al. [8] described the relationship between precipitation, evapotranspiration, soil water 

storage, sws, the water table, subsurface and surface runoff under different scenarios in the  

north-western BA province, finding a good temporal relationship between water table levels and sws. 

Events of sws occur almost every year, regardless of the ENSO phase, but are particularly intense 

during the El Niño phase [9]. The differences between the rainfalls in the two ENSO phases appear 

most evident in the northern BA province, where they reach values of 100 mm, suggesting that the El 

Niño phase seems to control the magnitude and spatial extent of the sws. In particular, the  

north-eastern BA reveals high risks of saturated soils and floods in general during the autumn, and in 

particular during the years characterized by the El Niño phase. 

2. Materials and Methods 

This section is divided in several parts related to the different sources of information and 

methodologies utilized in the elaborations. 

Figure 1 represents the geographical location of the BA province, and reports also the reticular 

composition of the basin. 

Figure 1. Buenos Aires province and the Salado river basin. 
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2.1. Data and Meteorological Stations 

Daily precipitation data for the period 1968–2008 were provided by the National Meteorological 

Service—SMN (29 stations) and by the National Institute of Agronomic Technology—INTA (five 

stations). The meteorological stations were selected according to their long record, homogeneity and 

historical development.  

Figure 2 shows the studied area and reports the position of the meteorological stations used in the 

work, which are listed in Table 1. 

Table 1. Denomination and code of the meteorological stations used in this study. 

Number Station Number Station 

1 San Pedro INTA 18 Daireaux 

2 Pergamino INTA 19 Santa Teresita  

3 Junín 20 Azul 

4 San Miguel 21 Olavarría 

5 Mariano Moreno 22 Tandil 

6 Aeroparque J. Newbery 23 Villa Gesell 

7 Buenos Aires 24 Coronel Suarez 

8 Ezeiza 25 Laprida 

9 General Villegas 26 Pigüé 

10 La Plata 27 Benito Juárez 

11 Nueve de Julio 28 Balcarce INTA 

12 Punta Indio 29 Bordenave INTA 

13 Pehuajó 30 Coronel Pringles 

14 Trenque Lauquen 31 Mar del Plata 

15 Las Flores 32 Tres Arroyos 

16 Bolivar 33 Bahía Blanca 

17 Dolores 34 Hilario Ascasubi 

INTA 

2.2. Basic Hydrological Concepts  

The aim of this work is the evaluation of the soil water budget on a daily basis, considering the 

daily precipitation as input data. The daily mean potential evapotranspiration, two soil hydrologic 

values (the field capacity and the permanent wilting point) and the corresponding drought levels, 

evaluated according to the method used by [10,11], were calculated for each station. 

Daily sws data were thus obtained using the method of [12] which, in turn, is based on the method 

of Thornthwaite and Mather for evaluating the soil water balance (Equation 1) on a daily basis. The 

input data required are the measured precipitation and the daily mean potential evapotranspiration. The 

latter was estimated using the Penman-Monteith method [13]. 
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Figure 2. The locations of the meteorological stations. 

0      50     100 Km.

64°                         62°                          60°                          58°

64°                       62°                      60°                       58°                         56°

33°

35°

33°

37°

39°

41°

35°

37°

39°

41°

1

2

BUENOS  AIRES  PROVINCE

ATLANTIC OCEAN

3

8
5

4

7

6

10

12

17

19

23

15

28
31

32

33

34

29
26

24

30

25
27

21
20

22

18

16
14

13

11

9

N

 

The soil water balance equation used in the model is:  

PP – EP + ∆ St + Su + Def = O (1)  

where PP is the daily precipitation, EP the daily mean potential evapotranspiration, ∆ St the soil water 

storage variation, Su the sws and Def the soil water deficit.  

In the following step, the annual values were evaluated by summing the daily soil water balance, 

and were aggregated in annual areal values; thus, allowing the evaluation of the annual sws on  

areal basis.  

The annual water balance and the sws were then analyzed in order to find the possible tendencies. 

As the sws values do not have normal distribution, the annual series were adjusted by using an empiric 

distribution of frequencies (normal cubic-root probability distribution). This operation allowed 

analysis of the normal distribution of the sws, calculation of the mean value relative to the studied 

period, and the probability of occurrence of 50% to be obtained. 
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2.3. The Salado River Basin 

The Salado river basin was considered subdivided in seven drainage areas, according to National 

Water Resources [14], as indicated in Table 2 and displayed in Figure 3.  

Table 2. Drainage areas studied in the Buenos Aires province. 

Drainage area Name 

S1 Northwestern area of the Salado River basin 

S2 Central area of the Salado River basin 

S3 Salado River mouth 

S4 Southern area of the Salado River basin and northern area of Vallimanca River basin 

S5 Southern area of the Salado and Vallimanca Rivers basins 

S6 Western Channels area south of the Salado River 

S7 Channels area south of the Salado River 

Figure 3. Drainage areas of the Salado River basin. 
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2.4. Map Graphical Representation 

Maps showing the sws for every year of the studied period were created using the software 

SURFER 8.0, which allows isoline maps of the sws to be drawn. 

2.5. Soil Water Surplus 

The obtained maps allowed the spatial distribution of the annual sws to be detailed. The mean areal 

value was calculated for each of the drainage sub-areas mentioned in Table 2, and the sequence of 

these annual values of sws was used to study their temporal distribution. An annual mean areal value 

of 300 mm was considered as a threshold of sws, above which there is a relevant probability that 

floods can cause severe damage. 

2.6. Statistical Analysis 

The non parametric Mann-Kendall test was applied to the complete series of data. In addition, an 

Excel template, called MAKESENS and described in [15], was used for detecting and estimating 

trends in the time series of annual values of sws. This procedure is based on the nonparametric Mann-

Kendall test for the trends, and the nonparametric Sen’s method for estimating the magnitude of the 

trend. In detail, in the first step, the Mann-Kendall test allows detection of a monotonic trend in the 

time series of data without seasonal or other cycles. Subsequently, the Sen’s method tries to fit the data 

with a linear model, reported in Equation 2, where t is the time expressed in years:  

f(t) = Qt + B (2)  

where Q is the slope and B the offset to be determined. Finally, MAKESENS evaluates the test 

statistical significance using the α levels 0.001, 0.01, 0.05 and 0.1 [16]. 

The Sen’s method gives the following results, depending on the number of years n: 

 Test Z for the trend assessment: if the number of samples n is greater than 10, the value of the 

statistic test Z is displayed. The absolute value of Z is compared to the standard normal 

cumulative distribution for assessing the presence of a trend at the selected significance level α, 

while a positive (negative) value of Z indicates an upward (downward) trend. 

 Statistical significance: α represents the smallest significance level at which the null hypothesis 

(absence of trends) must be rejected. If n is lower than 10, the test uses the S statistic, while if n 

is larger or equal to 10, the test uses the Z (normal) statistic. To show the significance levels, 

the following symbols are used: 

*** existence of a trend with level of significance α = 0.001; 

**  existence of a trend with level of significance α = 0.01; 

*  existence of a trend with level of significance α = 0.05; 

+  existence of a trend with level of significance α = 0.1. 

 Estimate with the Sen’s method of the slope Q in Equation 2: Q represents the annual rate of 

variation of the areal sws, and is thus expressed in mm/year: 

Qmin99: estimate of the lower limit of Q with a 99% confidence interval (α = 0.1); 
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Qmax99: estimate of the upper limit of Q with a 99% confidence interval (α = 0.1); 

Qmin 95: estimate of the lower limit of Q with a 95% confidence interval (α = 0.05); 

Qmax95: estimate of the upper limit of Q with a 95% confidence interval (α = 0.05). 

 Estimate with the Sen’s method of the constant B in Equation 2: B represents the mean annual 

areal value at the beginning of the observations, and is expressed in mm: 

Bmin99: estimate of the lower limit of B with a 99% confidence interval (α = 0.1); 

Bmax99: estimate of the upper limit of B with a 99% confidence interval (α = 0.1); 

Bmin95: estimate of the lower limit of B with a 95% confidence interval (α = 0.05); 

Bmax95: estimate of the upper limit of B with a 95% confidence interval (α = 0.05); 

3. Results and Discussion 

Figure 4 shows the spatial distribution of the mean areal annual sws for two years (2001 and 2002) 

in which there were relevant values of sws that caused major floods in the Salado River basin.  

Figure 4. Spatial distribution of the mean areal annual sws of the Salado River basin. 
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Figure 5 reports the temporal distribution of the annual mean areal values of soil, while Figure 6 

shows the mean decadal values, starting from 1969, averaged over each drainage area. 

The maximum value refers to the third drainage area (S3) in 1993 (600 mm), and the second 

maximum to the seventh drainage area in 1980. The former value is in agreement with those found by 

Scarpati et al. [17,18] and Gonzalez and Fernandez [2], who studied the floods of the Salado  

river basin. 
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Figure 5. Annual distribution of soil water surplus (sws) in the seven drainage areas. 
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Figure 6. Mean decadal soil water surpluses of each drainage area studied. 
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The obtained results can be summarized in this way: 

1. 1968 to 1980: the values of sws were generally small;  

2. 1980 to 1995: in several years, the threshold of 300 mm was exceeded, including the two 

cases above mentioned; 

3. 1995 to 1999: only the second and fourth drainage areas exceeded 300 mm, in 1997;  

4. 2000 to 2002: almost all drainage areas, except the fifth, showed large values; 

5. 2003 to 2008: the sws values never reached the 300 mm threshold, and are very similar to 

the first cycle.  

Figure 6, grouping the decadal values relative to all drainage areas, can exalt the different behavior 

of the values during the studied period, which can be summarized in the following way: 
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 S1 always shows values lower than 200 mm, and the minimum was observed during the  

second decade;  

 S2 always shows values higher than 200 mm, and the maximum was observed during the 

second decade; 

 S3 shows a high value during the second decade, but the maximum corresponds to the third; 

 the maxima of S4 and S5 are recorded during the second decade, and high values are also 

observed in the third; 

 S6 and S7 values show the smallest inter-decadal variations among all drainage areas. 

Table 3. Annual values of soil water surplus lower than 100 mm (yellow boxes), larger 

than 300 mm (orange boxes) and larger than 500 mm (grey boxes) for the seven drainage 

areas. The last column reports the number of drainage areas showing sws larger than  

300 mm. The last two lines report the number of stations in which annual sws was larger 

than 300 mm (last row) and lower than 100 mm (second last row). 

Year Drainage area 

S1 S2 S3 S4 S5 S6 S7 N 

1968 40 80 80 80 60 80 80  

1969 200 200 120 150 120 200 160  

1970 80 80 100 80 150 200 100  

1971 250 300 200 150 100 260 220  

1972 80 100 200 100 80 300 200  

1973 300 400 180 350 150 100 100 3 

1974 100 100 100 80 100 100 100  

1975 300 350 200 250 150 200 280 2 

1976 150 150 180 100 100 200 200  

1977 80 150 200 150 100 260 260  

1978 250 300 300 300 250 300 300 5 

1979 0 0 0 0 0 0 0  

1980 150 400 400 450 300 500 560 6 

1981 100 100 150 100 80 100 100  

1982 140 250 300 100 150 300 200 2 

1983 50 150 150 200 150 200 160  

1984 200 250 200 200 180 300 200 1 

1985 150 400 500 300 280 400 300 5 

1986 100 250 200 450 350 200 180 2 

1987 250 350 280 450 150 200 280 2 

1988 80 180 180 100 80 100 100  

1989 80 100 100 80 100 80 80  

1990 250 200 400 150 100 400 250  

1991 150 200 200 180 150 200 140  

1992 80 200 300 200 300 300 300 4 

1993 300 500 600 400 300 400 400 7 

1994 80 150 300 100 100 300 160 2 

1995 150 200 180 150 50 100 100  

 



Water 2011, 3                            

 

142 

Table 3. Cont. 

Year Drainage area 

S1 S2 S3 S4 S5 S6 S7 N 

1996 80 150 80 200 150 80 180  

1997 180 300 150 350 200 200 200 2 

1998 80 80 200 200 150 180 180  

1999 100 80 150 80 50 140 80  

2000 250 300 280 300 200 200 200 2 

2001 550 450 380 300 250 300 400 6 

2002 250 500 500 450 300 500 500 6 

2003 100 200 200 200 100 260 220  

2004 80 80 150 100 80 100 100  

2005 80 100 200 100 80 200 100  

2006 100 100 180 100 80 100 100  

2007 200 200 280 100 100 280 140  

2008 50 50 100 80 50 100 80  

Events below 100 mm threshold 19 13 7 16 20 12 13 100 

Events above 300 mm threshold 4 12 10 11 5 12 6 60 

Table 3 summarizes the number of years with low (lower than 100 mm) and high (higher than  

300 mm) sws, for each drainage area. The second and sixth areas show the maximum number (12) of 

high sws, while the minimum value of cases is shown by the first area. Generally, there were a larger 

number of cases with low values of sws than with high values of sws, but this general distribution was 

different in the different drainage areas. For instance, the fifth and first areas show a clear prevalence 

of the years characterized by low sws, while the third area shows a prevalence of years with high sws.  

The Mann-Kendall test revealed that the trends observed are statistically significant only for the 

third drainage area, at the level of 95% (Table 4). 

Table 4. Statistical significance of the soil water surplus (sws) trends according to the 

Mann-Kendall test. 

Mann-Kendall test for the trend 

Drainage 

area 

N cases Confidence 

Levels p = 95% 

τ 

 

Significance 

S1 41 +0.213 –0.213 –0.015 no 

S2 41 +0.213 –0.213 –0.020 no 

S3 41 +0.216 –0.216 +0.185 yes 

S4 41 +0.213 –0.213 +0.061 no 

S5 41 +0.213 –0.213 –0.010 no 

S6 41 +0.213 –0.213 +0.010 no 

S7 41 +0.213 –0.213 –0.015 no 

As the results of the application of MAKESENS test were similar to those of the Mann-Kendall test, 

only the details relative to the only statistically significant trend, i.e., that of the third drainage area, are 

reported (Figure 7 and Table 5).  
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Table 5. Drainage area 3 (S3) results for MAKESENS test. 

Name S3 

Test Z 1,27 

Significance > 0.1 

Q 1.32E + 00 

Qmin99 –1.00E + 00 

Qmax99 5.88E + 00 

Qmin95 0.00E + 00 

Qmax95 4.76E + 00 

B 1.70E + 02 

Bmin99 2.09E + 02 

Bmax99 9.18E + 01 

Bmin95 2.00E + 02 

Bmax95 1.14E + 02 

Figure 7. Trend statistics of annual soil water surplus (sws) using the Mann-Kendall test 

and Sen’s slope. 
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For sake of completeness, the Sen’s estimates for the slope of the linear trends relative to the other 

drainage areas, considered non significant, are: for S1, 100 mm/year; for S2, 200 mm/year; for S4,  

150 mm/year; for S5, 120 mm/year; for S6, 200 mm/year; and for S7, 180 mm/year. The trend of S3 

area varies from 169 to 222 mm/year. 

4. Conclusions 

The soil water surplus relative to the period 1968–2008 was analyzed in seven drainage areas of the 

Salado River basin. The annual mean areal value of 300 mm for sws was considered as the threshold 

above which subsequent floods can cause damages. The maximum value present in the series of data 

was 600 mm. The seven drainage areas in which the Salado River basin has been subdivided show 
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different annual mean sws values, as well as a different number of events, thus the flood or drought 

risk differs between the different areas. 

The decade 1979–1988 showed the highest values in every drainage area, except for S1 and S3. The 

temporal variability of the sws was evidenced by the choice of five periods related to the cycles 

visualized through the studied period, and they could be connected to climate change. The behavior of 

the sws data of drainage area 3 (Salado River mouth) is the only one with statistical significance. 

As a general conclusion, an increase of the frequency of sws values above the 300 mm threshold in 

the period 1968–2008 was identified. The years 1968 and 2008 showed the smallest sws values during 

the whole analyzed period, and 2008 registered the worst drought in the last 40 years.  

The years showing the maximum values of sws were 1983, 1985, 1993, 2001 and 2002. 

The third drainage area (Salado River mouth) showed the highest sws value (600 mm), followed by 

the second area (Central area of the Salado River basin) and the seventh (Channels area south of the 

Salado River). The sixth area (Western Channels area south of the Salado River) registered the largest 

frequency of sws values higher than 300 mm (12 events).  

Since 1980, the sws values experienced important fluctuations. An increasing tendency during the 

last years is observed and it is coherent with the increase in precipitation.  
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