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Abstract: This study employs copula functions to establish the dependency structure of the joint
distribution among rainfall intensity, wind speed, and wind direction in Qatar. Based on a Vine
Copula, the trivariate distribution between rainfall intensity, wind speed, and wind direction is
found to exhibit a root-mean-square error (RMSE) of 0.0072 on the observed vs. modeled cumulative
probabilities using ranked normalized observations. It is also found that the winter Shamal winds
are most pronounced during rainfall. However, a secondary component of easterly winds known as
the Kaus winds is also found to exert an important influence. This wind pattern is observable during
rainfall at all the selected stations, albeit with minor variations. It is also found that rainfall stations
where the rainfall is obstructed in any way from northwest to north and from east to southeast
significantly influence the rainfall measurements. Specific rain gauges in Qatar are found to be
situated in disrupted surroundings, such as meteorological stations close to passing traffic, where
road spray could infiltrate the rain gauge funnel, impacting the accuracy of rainfall measurements.
The study results necessitated the relocation of approximately half of these roadside gauges to mitigate
wind-induced biases from road spray. An evaluation of operations is recommended for approximately
80 meteorological stations responsible for measuring rainfall in Qatar. The methodology devised
in this study holds potential for application to other Middle Eastern countries and regions with
similar climates.

Keywords: intensity–duration–frequency; meteorological stations; precipitation; multivariate distri-
bution; Vine Copula; Bernstein Copula

1. Introduction

Precipitation data are used for numerous engineering and agricultural applications,
as noted by Haddad et al. [1]. Accurate precipitation measurement is vital for these appli-
cations, as mentioned by Sieck et al. [2]. Precipitation measurement can be significantly
impacted by a site’s environmental factors like wind exposure, topography, nearby obstruc-
tions like trees, and the level of urban development, as per Yang et al. [3]. It is crucial to
assess these factors thoroughly to ensure the accuracy of rainfall measurement. Further-
more, when situating instruments and auxiliary elements like solar panels, poles, electrical
boxes, and other equipment, it is essential to ensure that they do not obstruct or exert
influence on the precipitation measurements. For example, an unshielded weighing rain
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gauge may catch less than 50% of the actual solid precipitation when a wind speed is
higher than 5 m/s, according to Kochendorfer et al. [4], and for liquid hydrometeors, which
are prevalent in Qatar, the wind-induced error for an unshielded rain gauge is between
2 and 10%, according to Nespor and Sevruk [5]. The recommendations for a weather
(i.e., synoptic) station may differ from an urban hydrology rain gauge station. The World
Meteorological Organization (WMO) specifies requirements for typical weather stations in
a given national network WMO [6].

For example, if the exposure conditions are perfect, a rain gauge measures what falls
on the ground. However, this may not be the case, as the wind plays a significant role
in catching rainfall via a gauge; it is either due to changes in the airflow and turbulence
around the surrounding environment, the gauge opening, or the effect of the site on the
local wind trajectories. Shin et al. [7] examined the calibration of gauge rainfall based on
the wind effect.

The optimal location of the rain gauges concerning any obstacle on the meteorological
site depends on the prevailing wind direction and wind speed during rainfall. Therefore,
the rain gauge should be placed before the obstacle or barrier on a trajectory along the pre-
vailing wind direction during rain, thus minimizing the influence of any blocking elements.

Finding suitable locations for a rain gauge is challenging, particularly in urban areas
such as greater Doha. The Qatari climate is hot and arid. When it rains, extreme storms
are usually linked to local thunderstorms from October to April. Local thunderstorms are
most frequent over areas where intense solar heating creates strong convective airstreams,
as noted by Price [8]. Urban heat islands around cities (like Doha) also seem to increase
the likelihood of thunderstorms, as stated by Bornstein and Lin [9]. In practice, one should
work with suboptimal conditions in urban areas.

Figure 1 depicts an example of an existing meteorological station in Qatar that requires
redesigning. Here, the solar panels obstruct rain from the north, which is the prevailing
wind direction in this case. Also, the rain gauge is positioned too close to the road, posing
a risk of road spray from passing cars, especially during heavy rainfall and wind field
disturbances. Lastly, the mast on which the anemometer is mounted can create wind
turbulence around the rain gauge due to the short distance between the mast and the gauge.
It is advisable to position the rain gauge at a distance from the anemometer, typically
installed on a pole, to avoid interference with the measurements. The rain gauge ought to
be situated in a sheltered environment shielded from the wind while ensuring no direct
obstructions to enhance catch efficiency. Conversely, the wind gauge should be fully
exposed to the wind for accurate measurements. Typically, this is not an issue since the
anemometer is positioned 10 m above ground level. However, caution should be taken in
monitoring tall trees and obstacles caused by tall buildings.

Previous research on rainfall analysis in Qatar (e.g., Mamoon et al. [10]; Mamoon et al. [11])
ignored the impacts of wind fields on rainfall measurement. The absence of prior research
on wind speed and direction during rainfall in Qatar makes it challenging to assess the
impact of wind on historical rainfall measurements and make informed decisions about re-
designing or relocating existing meteorological stations. Knowledge of the joint distribution
between rainfall intensity, wind speed, and wind direction allows for optimizing existing
stations and installing new stations under these suboptimal conditions, thus minimizing or
eliminating the effects of splashing [6,12–15].

This paper introduces copula functions to establish the joint distribution among rainfall
intensity, wind speed, and wind direction. A copula is a distribution on the unit hypercube
with uniform margins. The copula allows for the separation of the marginal distribution of
the variables and the dependence structure between them. An important theorem is the
Sklar theorem, in which the joint distribution of a random vector can be expressed as a
function (termed copula) of the marginal distributions of each parameter in the random
vector Sklar [16].
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Figure 1. A roadside meteorological station in Qatar that measures temperature, humidity, 
visibility, precipitation, wind speed, and wind direction. Solar panels partly obstruct rainfall 
measurements from the north, and the pole creates turbulence around the gauge. 
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wind direction [18,19]. 

Figure 1. A roadside meteorological station in Qatar that measures temperature, humidity, visibility,
precipitation, wind speed, and wind direction. Solar panels partly obstruct rainfall measurements
from the north, and the pole creates turbulence around the gauge.

Copula functions are familiar within the insurance and banking sectors, particularly in
risk management and portfolio analysis, to describe financial risk dependency structures, as
noted in Kole et al. [17]. The use of copulas has also been introduced into the meteorological
domain. Studies have established relationships between meteorological parameters in the
field of wind energy, such as between wind speed and wind direction [18,19].

There have been previous applications of copula functions in rainfall analysis. Ex-
amples include Vernieuwe et al. [20], who analyzed rainfall models; Wang et al. [21], who
analyzed rainfall and temperature; Bi et al. [22], who examined rainfall, wind speed, and
wind direction; and Um et al. [23], who examined wind speed and precipitation data during
typhoons at the Jeju weather station in Korea. In other fields of hydrology, copula functions
have been applied. For example, Shaw and Chitra [24] examined droughts using Copula
functions. Vernieuwe et al. [20] and Bi et al. [22] introduced a Vine Copula to model the
dependence structure of the governing variables. A Vine Copula is a modeling approach
that utilizes copula functions to establish a graphical representation of the interdepen-
dence among the multivariate parameters. While copula functions are straightforward
for handling two-dimensional scenarios, Vine Copulas extend their utility by delineating
the multivariate dependence structure via a dependence tree for higher-dimensional cases.
Kurowicka and Joe [25] provided details of Vine Copulas. This study utilizes the so-called
D-vine. Each pair copula delineates the conditional dependence between two variables.
Vine Copulas allow each pair copula to be parameterized independently, enabling varying
strengths of dependence for each pair. This adaptability is the primary factor for applying
Vine Copulas in this study. The downside of Vine Copulas is the growth of pair copulas
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in terms of higher dimensions; however, there are methods to handle this, as noted by
Nagler et al. [14]. A Vine Copula of n parameters will have [n (n − 1)/2] pair copulas,
growing quadratically with the number of parameters. Vine Copulas are suitable for this
study as they are limited to only three parameters.

Besides [22], there have been very limited studies on applying copulas in rainfall
analysis covering wind speed, wind direction, and rainfall intensity. To fill this knowledge
gap, this study aims to examine the tri-variate distribution between rainfall intensity,
wind speed, and wind direction using Vine Copulas and also to recommend corrective
measures to enhance rainfall measurements in Qatar. It is expected that the outcomes of this
study will contribute towards more accurate design rainfall data for Qatar. The developed
methodology can easily be applied to other Middle Eastern countries.

2. Materials and Methods

This study focuses on Qatar. The precipitation, wind speed, and wind direction
measurements at 21 meteorological stations are obtained from the Qatari Civil Aviation
Authority. The fluctuations in yearly precipitation levels within Qatar are noteworthy,
as documented by Mamoon et al. [26]. While the average annual rainfall hovers around
75 mm in Doha, the observed annual precipitation in Doha varies from just a few millime-
ters to 303 mm, as described by the consulting engineering company COWI [27]. This
considerable variability in rainfall necessitates the utilization of an extended time series
to depict its statistical distribution accurately. The Mockus equation [28] was employed
in a prior rainfall study in Qatar, determining that a minimum of 15 years of rainfall data
is necessary for thorough statistical analysis, as detailed in the report by the consulting
engineering company MWH [29]. The Mockus equation is the most frequently employed
in hydrology. Applying an adequacy measure of a time series length poses challenges and
significantly depends on the statistical bias and accuracy criteria. The current study posits
that an effective description of precipitation requires more than 14 years of combined mea-
surements of precipitation, wind speed, and wind direction. It should be pointed out that
there is no time series exceeding 16 years, and only 6 stations out of the 21 meteorological
stations fulfill the 14-year requirement. Figure 2 depicts the location of the six (6) selected
stations for further analysis. Table 1 provides an overview of the individual stations with
acceptable measurement periods (>14 years) used in the study.

A quality assurance process (QA-tests) was conducted on available rainfall data.
Double Mass Curves (DMC), as described by Searcy and Hardison [30], were computed,
and F-statistics were computed at a 5% significance level to determine any critical slopes
in the recorded rainfall data. The station in Al Wakrah was excluded on this basis as the
change in slope of DMC was significantly higher than the expected value.

Furthermore, the rainfall data from the selected stations were compared, on an indi-
vidual basis, with the homogeneous region established under a previous project, the Qatar
Rainfall, and Runoff Project by COWI [27], using the Regional Frequency Analysis (RFA)
methodology as proposed by Hoskings and Wallis [31]. Establishing homogeneous regions
with all the selected rain gauges was possible as the heterogeneity statistics H values were
smaller than the recommended threshold of 1.00.

Throughout all the measurement points, relatively few interruptions occurred in
the wind measurements during the recording period, particularly affecting the station
at Qatar University. Thus, wind data from the nearby Al Wakrah station were utilized
as an infill to ensure the continuity of the time series of wind data at Qatar University
station. The distance between the two meteorological stations is relatively small (25 km),
and the circular correlation of the wind direction as quantified by the equation developed
by Jammalamadaka and Sarma [32]) is 0.78, indicating a robust and strong correlation
between the two stations.
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Umm Said 24°56′32.34″ N 51°34′6.51″ E 1 December 2007 31 March 2023 15.33 Passed 

Figure 2. Location of stations with long-duration wind speed, wind direction, and rainfall intensity
measurements fulfilling the requirements of 14 years of measurements. The numbers indicate zones
used by the Ministry in their planning.

Table 1. Overview of the individual stations used by the study.

Station Name Lat (N) Lon I Start Date End Date Period [Years] QA-Test

Abu Samra 24◦44′44.78′′ N 50◦49′23.45′′ E 1 March 2007 31 March 2023 16.08 Passed

Al Ghuwairiya 25◦50′26.47′′ N 51◦16′12.22′′ E 1 January 2009 31 March 2023 14.24 Passed

Al Wakrah 25◦11′34.02′′ N 51◦37′8.95′′ E 1 January 2009 31 March 2023 14.24 Failed

Mukenis-Al Karanaah 25◦6′13.41′′ N 51◦10′25.46′′ E 1 January 2009 31 March 2023 14.24 Passed

Qatar University 25◦22′56.34′′ N 51◦28′45.90′′ E 31 March 2007 31 March 2023 16.08 Passed

Umm Said 24◦56′32.34′′ N 51◦34′6.51′′ E 1 December 2007 31 March 2023 15.33 Passed

The meteorological stations in Qatar measure wind speed, direction, and rainfall for
each minute, but results are delivered for each hour. The wind speed is measured with a
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resolution of 0.1 m/s, and the wind direction is measured for every 10 degrees. The wind
direction measurements are in degrees bearing aligned to the north. Bearings are a measure
of direction, with north taken as a reference, having the measure as 000◦ (or 360◦). In many
procedures, such as those in R, the bearings need to be transformed from degrees to radians,
following the conventional measurement (in radians) based on the standard circle ranging
from −π to +π. The conversion process is outlined as follows:

θstd = θbearing − π (1)

where θstd is the standard measurement of radians (converted from degrees) for a unit
circle, and θbearing is the wind direction measurement in bearings.

The rainfall in Qatar is measured by tipping buckets with a resolution of 0.1 mm for
each tip for measurements from 2015 and onwards and 0.2 mm for historical records prior
to 2015. The wind speed and wind direction are computed at averages over one hour. The
rainfall is the accumulated rainfall for one hour. The wind data are measured at 10 m
altitude above ground and the rainfall by a gauge with an orifice level between 1.5 m and
1.7 m above ground.

Nonetheless, there are numerous instances where rainfall within a given hour is mini-
mal. The abundance of such occurrences, albeit limited, poses challenges in constructing
marginal distributions capable of encompassing the entire spectrum of measurements. The
prevalence of numerous small and inconsequential rainfall events outweighs the occur-
rence of more substantial rain events, so a threshold level to the rainfall measurements,
excluding hourly registrations with rainfall equal to 0.5 mm or less precipitation, was
introduced. These low-intensive precipitation registrations represent, on average, 12% of
the total rainfall measured for the individual time series. Table 2 provides an overview of
the hourly observations for the individual stations. As can be seen, Qatar is an arid country
with only a few annual rain events.

Table 2. Overview of the number of observations at the meteorological stations: The first column also
includes dry periods, the second column contains all observations with rainfall, and the third column
contains all observations where the rainfall exceeds the threshold of 0.5 mm/h.

Station Name Number of All
Observations

Number of
Observations
with Rainfall

Number of
Observations with
Rainfall Intensity

Exceeding the
Threshold 0.5 mm/h

Abu Samra 141,000 524 276

Al Ghuwairiya 124,872 759 234

Mukenis-Al Karanaah 124,872 759 233

Qatar University 141,000 1037 370

Umm Said 134,400 749 293

2.1. Methodology

This project employs copula functions to model the dependence between rainfall inten-
sity, wind speed, and wind direction. Specifically, it introduces the Vine Copula dependence
structure known as D-vine, expanding to a multivariate dependence structure incorporating
directional data as the conditional parameter. Bi et al. [22] and Vernieuwe et al. [20] applied
similar approaches to precipitation data. For dimensions n ≤ 4, only D-vine and C-vine
structures are available. Regular vines (or R-vines) can be used for higher dimensions;
however, R-vines are seldom applied due to the enormous number of possible R-vine tree
sequences Yu et al. [33]. An essential library in R allows researchers to model Vine Copulas
(e.g., the VineCopula package version 2.5.0 by Nagler et al. [34]). The depiction of the
relationship in terms of wind direction in rainfall analysis complexity arises from its cyclic
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nature. An R statistical package, Cylcop version 0.2.0, by Hodel and Fieberg [35], explicitly
addresses this cyclic aspect within wind parameters and extends the functionality of the
standard Copula R-package version 1.1-3. In this context, the Cylcop package version 0.2.0
is only used to establish the marginal distribution of the wind direction, offering functions
to optimize the partitioned Mixed Von Misses distribution.

The bivariate relationships between wind speed and wind direction and rainfall inten-
sity and wind direction utilize the Bernstein Copula function to describe the dependency
structure and are modeled using the R-package subcopem2D version 1.3 by Erdely [36].
Bernstein Copula is a special approximation using a polynomial approximation by Bern-
stein [37]. Pfeifer et al. [38] provide an example of fitting multivariate data utilizing
Bernstein Copulas, which is useful for introducing the practical use of Bernstein Copulas.

Figure 3 indicates a graphical representation of the D-vine dependence structure. The
first layer defines the univariate marginal distributions for the variable rainfall intensity
xr, wind direction given by the variable xd, and wind speed given by xw. The first layer
defines the first tree (T1). The second layer defines the bivariate distributions between
rainfall intensity, wind direction, wind speed, and wind direction. The second layer defines
the second tree (T2). The third layer defines the conditional distribution of the bivariate
distribution between rainfall intensity and wind speed under the condition of a given
wind direction.
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Figure 3. The D-vine dependence structure is applied to construct the multivariate distribution
between rainfall intensity, wind speed, and wind direction. T1 symbolises the first tree, and T2

the second.

The joint density function between rainfall intensity, wind speed, and wind direction
fr,d,w(xr, xd, xw) for the D-Vine dependence structure (Kurowicka and Joe [25]), as indicated
in Figure 3 below, can be formulated as follows:

fr,d,w(xr, xw, xd) = cr,d(Fr(xr), Fd(xd))cw,d(Fw(xw), Fd(xd))

cr,w|d

(
Fr|d(xr|xd), Fw|d(xw|xd)) f r(xr) fw(xw) fd(xd)

(2)

where fr(xr), fw(xw), fd(xd), and Fr(xr), Fw(xw), Fd(xd), are the marginal densities, respectively
distribution functions for rainfall intensity, wind speed, and wind direction. The bivariate
copulas cr,d and cw,d are copulas specifying the dependence structure between the pairs of
(rainfall intensity, wind direction) and (wind speed, wind direction). The two distribution
functions Fr|d(xr|xd) and Fw|d(xw|xd) are the conditional distribution functions of rainfall
intensity and wind speed, respectively, for a given value of the wind direction xd. Finally,
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cr,w|d is the copula of the joint distribution of rainfall intensity and wind speed for a given
value xd of the wind direction.

The steps involved in determining the multivariate distribution between rainfall
intensity, wind speed, and wind direction are presented below:

1. Determine the preferred marginal distributions for wind speed, wind direction, and
rainfall intensity.

2. Determine the preferred copula to describe the bivariate dependency between wind
speed and wind direction.

3. Determine the preferred copula to describe the bivariate dependency between rainfall
intensity and wind direction.

4. Determine the conditional marginal distributions between rainfall intensity and wind
speed under the condition of a given wind direction.

5. Combine the distributions as per Equation (2) to derive the trivariate distribution
between rainfall intensity, wind speed, and wind direction.

Following [22], we allow ourselves to carry out steps 1–5 independently of each other.
These steps are detailed below.

2.2. Marginal Distribution of Rainfall Intensity

The distribution of rainfall intensity is evaluated against 66 different probability distri-
butions using the software EasyFit® version 5.6 for all five sites. Ranking the distributions
based on the Chi-Square test, the preferred distributions among the five sites are found to
be Generalized Pareto and Log Pearson Type III, followed by the Frechet and the Wakeby
distribution. The Wakeby distribution is a four-parameter distribution, thus less preferred
when there is limited data (Rahman et al. [39]). In a previous study using 24 h rainfall, the
Pearson Type III distribution was preferred; hence, the Log Pearson Type III distribution
was chosen for this study.

The equation for the log Pearson type III distribution is given as [40]:

f (xr; α, β, γ) =
1

xrβΓ(α)

(
ln(xr)− γ

β

)α−1
exp

(
−
(

ln(xr)− γ

β

))
(3)

where xr is the stochastic rainfall observations in mm/h, and α, β, and γ are parameters
in the distribution. The parameters can be determined using the maximum likelihood
estimate (MLE), method of moments, or L-moments.

2.3. Marginal Distribution of Wind Speed

As for rainfall intensity, Easyfit® is utilized for analyzing wind speed data. Various
distributions are fitted to the observed data, and the most suitable marginal distribution
for wind speed data is determined using the Chi-Square test, which is suitable when the
distribution parameters are unknown and estimated from the sample data. Based on the
results, the three parameters GEV, the four parameters Johnson SB and Dagum are the
preferred distributions. Both Johnson SB and Dagum distributions are four-parameter
distributions. In cases with limited observations, a preference is often given to the 3-
parameter distribution, and to ascertain this preference, a likelihood ratio test (Wilks, [41])
can be conducted to establish that the 3-parameter distribution is favored over the 4-
parameter distribution. Although 2-parameter distributions like Rayleigh are available,
their applicability is constrained. Only one of the five stations seems to conform to these
distributions, resulting in sparse representation and hindering the derivation of meaningful
conclusions from these two-parameter distributions. In summary, the GEV distribution is
the preferred distribution.

The equation of the GEV distribution is given by

f (x) =
1
α

exp{−(1 + k)y − exp(−y)} (4)
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where y is given as

y =

{
1
k ln

{
1 + k (x−ξ)

α

}
(x−ξ)

α , f or k = 0
, f or k ̸= 0 (5)

where ξ is the location, α is the scale, and k is the shape parameter.

2.4. Marginal Distribution of Wind Direction

The marginal distribution for wind directional data is fitted to a Mixed von Misses
(MvM) distribution. MvM is a typical distribution used for directional data, as referred to
by Bentley [42]. Its density function is given by

fθ(θ; µ, κ) =
eκ cos(θ−µ)

2π I0(κ)
(6)

where fθ is the density distribution of the wind direction θ, κ, and µ are density parameters,
and I0 is the modified Bessel function of 0th order.

The mixed Von Misses of Mth separate segments by dividing the interval from [0,2π]
into N-subdivisions, each with separate κ and µ values, and the final distribution is given as

fθ(θ; µ, κ, w) =
M

∑
i=1

wi
eκi cos(θ−µi)

2π I0(κi)
(7)

where µ, κ, and w are vectors, µi, and κi are the parameters computed for the ith segment,
and wi is the weight factor given as

wi =
ni

∑M
i=1 ni

(8)

where ni is the number of observations within the considered segment, and M is the number
of segments.

Multiple segmentation setups were investigated, encompassing divisions into 3, 4,
5, and 6 segments. The Cylcop R-package offers a library for circular data, including
estimating the Mixed von Misses distribution.

2.5. Chi-Square (χ2) Test for the Marginal Distributions

All the above-mentioned marginal distributions will undergo a goodness-of-fit test.
The null hypothesis H0 posits that the observations adhere to the tested distribution,
while the alternative hypothesis H1 asserts that the observations deviate from the test
distribution. The study selects a significant level of α = 0.05 (5%). The χ2 test statistics
establish a histogram split in k bins, determining the actual number of observations in
each bin (minimum number of estimated observations should be 5) and comparing it with
the estimated observations per bin based on the distribution. The test statistics are given
as follows:

X2 =
k

∑
i=1

(Oi − Ei)
2

Ei
(9)

where Oi is the number of observations within bin number i, k is the number of bins, and
Ei is the expected number of observations based on the tested distribution. The critical χ2

test statistics are determined based on the significant level of 5% and compared with the
derived χ2 test sum from Equation (11).

While there is no definitive selection for the number of bins (k), various formulas exist
to determine this value based on the sample size (N). For instance, EasyFit utilizes the
following empirical formula:

k = 1 + log2N (10)
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This study used EasyFit results for the Chi-Square (χ2) test for the marginal distribu-
tions related to rainfall intensity and wind speed. A manual approach of selecting 12 bins
for all stations has been secured for the wind direction to fulfill the minimum requirements
of 5 expected number of observations per bin at all sites.

2.6. Bivariate Distribution between Wind Speed and Wind Direction during Rainfall

Establishing the bivariate distribution between wind speed and wind direction follows
Sklar’s theorem. A suitable copula function should be selected to describe the linear and
circular relationship between wind speed and wind direction. Suitable copulas include
Quadratic, Cubic, and Bernstein Copulas. With reference to Bi et al. [22] and Chen et al. [19],
comparing Quadratic and Bernstein Copulas for a similar study of wind speed and wind
direction, the Bernstein Copula was found to be most suitable. Accordingly, the Bernstein
Copula is applied in this study.

According to (Pfeifer and Regulina [43]), the Bernstein Copula function is defined as

Bn f (u1, . . . , ud) =
nd

∑
id=0

. . .
n1

∑
i1=0

(
i1
n1

, . . .
id
nd

) d

∏
j=1

(
nj
ij

)
u

ij
j
(
1 − uj

)nj−ij (11)

where Bnf is the Bernstein Copula function on the unit cube ∈ Cd = [0, 1]d, with the
dimension d ∈ N, u1, u2,. . ., ud are the parameters (ranked and normalized between 0 and
1), n1, n2, . . ., nd are the number of points (resolution) for each parameter.

For a few observations, an approximation using Beta distribution functions can be used
(Pfeifer and Regulina [43])—one Beta distribution for each normalized ranked parameter.
The proposed method is not scalable for many data, such as the one presented here. A
particular form of Bernstein Copula is the checkerboard copula, where an equidistant grid
for each parameter, as ranked normalized observations, is created, and uniform margins
are established. A practical example can be illustrated by following the procedure outlined
in Pfeifer et al. [38], which entails employing the Karush-Kuhn-Tucker optimization (KKT).
The referenced source also includes Octave code that demonstrates the optimization process.
For bivariate Bernstein Copula, an alternative is to use the subcopem2D library in R,
introduced by Erderly [36]. Both Pfeifer’s and Erderly’s methods were used, and similar
results were obtained for the simple example described in Pfeifer et al. [38].

Notice that copula functions are unsuitable for the usual applied Pearson’s correlation.
The Pearson correlation measures linear dependence, which is ill-suited for, e.g., circular
data; hence, the Pearson correlation cannot be used here. In addition, Pearson correlation is
unsuitable for our context, working with copula functions. The Pearson correlation remains
unaffected by changes in the univariate marginal distributions and can be influenced by
outliers, as pointed out by Schmid and Schmidt [44].

Alternatives to describe the dependence structure are Spearman’s rho, Kendall’s
tau (Kendall [45]), and Blomqvists beta (Blomqvist [46]). For example, for computing,
Spearman Rho refers to (Statistics How To [47]), Kendall’s tau (Statistics How To [48]), and
Blomqvists beta (Schmid and Schmidt [49]). Ranking of the observations is required for all
the procedures. It is especially problematic for the direction data, as they are measured with
discrete values for every 10 degrees (or every 0.1745 Rad). “Jitter” is applied to the data
to perform a complete ranking of the data. The library subcompen2D can automatically
introduce jitter; alternatively, R offers procedures for ranking applying jitter. It should be
noted that the coefficients are only provided with two decimal points, as the jitter caused
more minor deviations between the different simulations at the third decimal point.

For a bivariate Copula, Spearman’s rho correlation can be computed as Kiriliouk [50]:

ρ(C) = 12
∫ 1

0

∫ 1

0
(C(u1, u2)− u1u2)du1du2 (12)

where ρ is the Spearman rho correlation, C is the bivariate cumulative copula, and u1 and
u2 are the ranked and normalized wind speed and wind direction parameters.
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The Blomqvist beta coefficient can be computed as Nelsen [51]:

βC = 4·C(0.5, 0.5)− 1 (13)

where C is the cumulative copula function, and βc is Blomqvists beta coefficient.
For a continuous bivariate Copula, Kendall’s tau can be computed as (Nelsen [52]):

τ(C) = 4
∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1 (14)

where C is the cumulative copula function, and u1 and u2 are the ranked normalized
observations for the wind speed and direction.

When the copula is continuous, Equation (14) can be evaluated by rewriting the
integration with respect to the measure (copula) as a Riemann integral, where the Copula
density is multiplied by the integrand, deriving the equation as below:

τ(C) = 4
∫ 1

0

∫ 1

0
C(u1, u2)c(u1, u2)du1du1 − 1 (15)

where c(u1,u2) is the density of the bivariate copula. Equation (15) is resolved numerically
using the subcompen2D library for the Bernstein Copula.

2.7. Bivariate Distribution between Rainfall Intensity and Wind Direction

As for the wind speed and wind direction, a Bernstein Copula function follows Equa-
tion (11) and is fitted to the rainfall intensity and wind direction data. As noted before, the
Bernstein Copula is preferred when considering directional data, such as wind direction.

2.8. Conditional Distribution of Rainfall Intensity and Wind Speed for a Given Wind Direction

The last bivariate term in Equation (2) is the conditional distribution of rainfall intensity
and wind speed for a given wind direction. The directional data are discrete with an
increment of 10 degrees; hence, it is not possible to derive a continuous conditional density
for the rainfall intensity and wind speed. Furthermore, only the Qatar University station
has sufficient observations to split the observations into different wind directions. Even for
this station, the number of observations from east to south and south to west is limited.

The conditional analysis is divided into four segments, each representing 90 degrees:
the first covers wind directions from 0 to 90 degrees (north to east), the second covers wind
directions from 90 to 180 degrees (east to south), the third covers wind directions from 180
to 270 degrees (south to west) and the last segment wind directions from 270 to 360 (west
to north).

Initially, conditional marginal distributions are established. The log Pearson Type III is
assumed to be the preferred and verified for rainfall intensity under the condition of the wind
direction. The GEV distribution is assumed to be the preferred and verified for the wind speed
under the condition of the wind direction. The marginal distributions are used to determine
the distribution function and the parameters ur|d = Fr|d(xr|xd) and uw|d = Fw|d(xw|xd).

We consider the Copula functions available in R’s Vine Copula package (VineCopula),
see (Aas et al., [53]) and (Dissman et al., 2013, [54]). The Akaike Information Criterion
(AIC) is used to determine the most suitable copula function. There are 39 copula functions
from the different families, such as Gaussian, Student t, Clayton, Frank, Joe BB, and Tawn
type 1 and type 2. The AIC for the Archimedean Copula can be computed based on the
following equation:

AIC = −2
N

∑
i=1

ln(c(ui,1, ui,2|θ)) + 2k (16)

where N is the observations, c is the copula density function, ui,1 is the normalized ranked
parameter for the first dimension, ui,2 is the normalized ranked parameter for the second
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dimension, θ is the Archimedean Copula parameter, k = 1 for one parameter copula, and k
= 2 for two parameter copulas such as the t-copula, BB1-, BB6-, BB7-, and BB8-copula.

The preferred bivariate copula functions are determined for the individual directions.
Two of the segments (90–180 degrees and 180–270 degrees) lead to an independent result
(i.e., for the independent case, the joint probability can be derived from the marginal
distributions only). It is most likely caused by the few observations, especially for the
segment from 180 to 270 degrees. The other two segments derive the Joe Copula as the
preferred fit determined based on the lowest AIC values and goodness of fit. A single
parameter θ defines the Joe Copula and is given as

C(u1, u2) = 1 −
(
(1 − u1)

θ + (1 − u2)
θ − (1 − u1)

θ(1 − u2)
)1/θ

(17)

where C is the Joe cumulative copula function, u1 and u2 are the normalized ranked
parameters (normalized ranked rainfall intensity and wind speed), and θ is the parameter
of the Joe Copula function.

3. Results and Discussion
3.1. Marginal Distribution of Rainfall Intensity

Table 3 presents the results of fitting log Pearson type III (LP3) distribution to rainfall
intensity data at the five selected stations. The fitted distributions are compared to the
observed data. Figure 4 below indicates the results at the individual sites.

Table 3. Estimated Log Pearson Type III (LP3) density parameters and corresponding p-values and
χ2 sums for fitting rainfall intensity distribution.

Station Name α β γ p-Value X2 X2 Critical (α = 0.05)

Abu Samra 2.795 0.4766 −0.9084 0.2821 9.76 15.51

Al Ghuwairiya 2.302 0.5219 −0.7851 0.0610 14.91 15.51

Mukenis Al Karanaa 3.194 0.4526 −1.023 0.0589 13.59 15.51

Qatar University 2.798 0.4766 −0.9083 0.2402 10.37 15.51

Umm Said 3.490 0.4551 −1.069 0.0694 14.51 15.51

Average 0.1432 12.63 15.51

The LP3 distribution provides an excellent fit to the marginal distributions of the
rainfall intensity data at all stations, exhibiting an average p-value of 0.1432. The χ2 sum
at all stations is lower than the critical χ2 sum for a significance level α equal to 5%. Most
hourly rainfall observations in Qatar fall from 0 to 4 mm per hour, reflecting the typical
characteristics of an arid region. The Abu Samra station has slightly lower annual rainfall
than the other stations. Qatar’s south is more arid compared to its north.

3.2. Marginal Distribution of Wind Speed

Table 4 summarizes the MLE estimation of the GEV distribution parameters to fit wind
speed data. The estimated distributions are compared to the observed histogram values.
Figure 5 presents results at the individual sites.

The marginal distributions of wind speed data demonstrate a good fit with the GEV
distribution across all stations, showing an average p-value of 0.65 below the 5% significance
level limit.

Most wind speeds, measured at 10 m altitude, are concentrated around 2–8 m/s. The
Abu Samra station is more wind-exposed, with a fatter tail in the distribution. Most of
the wind comes from the northwest (N-W), and the station at Abu Samra is located on the
western coastline, thus making it more exposed to wind due to the relatively longer fetch
along the prevailing wind direction.
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Figure 4. Marginal distribution of the rainfall intensity for the five stations: Abu Samra (upper left),
Al Ghuwayriya (upper right), Mukenis-Al Karanaah (mid left), Qatar University (mid right), and
Umm Said (bottom left). The green curve indicates the observed values as a histogram, and the black
line is the theoretically derived marginal distribution.
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Figure 5. Marginal distribution of the wind speed for the five stations: Abu Samra (upper left), Al
Ghuwayriya (upper right), Mukenis-Al Karanaah (mid left), Qatar University (mid right), and Umm
Said (bottom left). The green curve indicates the observed values as a histogram, and the black line
is the theoretically derived marginal distribution.

In a similar study, Um et al. [23] found that the marginal distributions of wind speed
and precipitation data during typhoons at the Jeju weather station in Korea can be described
by the generalized extreme value, generalized logistic, and generalized Pareto and Weibull
distributions. In another study, Bi et al. [22] adopted the generalized extreme value, Gumbel,
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Frechet, Weibull, and Gamma distributions as marginal distributions to fit rainfall intensity
and wind speed data recorded at Yangjiang City, Guangdong Province, China.

Table 4. Estimated GEV density parameters and corresponding p-values and χ2 sums in fitting the
wind speed data.

Station Name ξ (Location) α (Scale) k (Shape) p-Value X2 X2 Critical (α = 0.05)

Abu Samra 4.6690 3.1204 −0.0801 0.9215 3.20 15.51

Al Ghuwairiya 3.6053 2.2580 −0.0688 0.8267 4.32 15.51

Mukenis Al Karanaa 3.5319 1.9980 0.0352 0.7740 4.05 15.51

Qatar University 2.8214 1.8082 0.0288 0.4524 7.81 15.51

Umm Said 3.4199 1.6947 −0.0217 0.2828 9.75 15.51

Average 0.6515 5.83

3.3. Marginal Distribution of Wind Direction

Given the 10-degree resolution of the wind direction data, translating to 36 intervals,
the station Al Ghuwairiya, with only 234 readings averaging 6.5 observations per interval,
necessitated a reduction in the number of bins to 12 for the χ2 test to ensure a minimum of
five (5) estimated observations in each bin. The outcomes concerning the p-value and χ2

values dividing the observations and estimates into 12 bins for comparing observations with
distinct Mixed von Mises (MvM) distributions under various segmentations are presented
in Table 5; MvM-3 indicates a Mixed von Mises distribution with three segments, MvM-4
with four segments, and so forth. The number of partitions is the same across all the sites.
The distributions are determined based on the MLE method. The optimal fit was achieved
using a Mixed von Mises (MvM) model of six segments with an average p-value of 0.897
(89.7%), well above the 5% significance level. All proposed segmentations are above the 5%
significance level, but the MvM-6 is preferred.

Table 5. Chi-square and p-values for the Mixed von Misses distribution with divisions into 3, 4, 5,
and 6 segments to fit wind directional data with 12 bins.

Station Name MvM-3 MvM-4 MvM-5 MvM-6

p-Value X2 p-Value X2 p-Value X2 p-Value X2 X2 Critical
(α = 0.05)

Abu Samra 0.708 6.32 0.685 6.54 0.687 6.52 0.863 4.65 16.92

Al Ghuwairiya 0.722 6.16 0.909 4.02 0.828 5.07 0.914 3.96 16.92

Mukenis Al Karanaa 0.972 2.78 0.966 2.93 0.973 2.77 0.979 2.56 16.92

Qatar University 0.553 7.81 0.611 7.24 0.584 7.50 0.892 4.28 16.92

Umm Said 0.424 9.14 0.424 9.14 0.806 5.30 0.836 4.97 16.92

Average 0.676 6.44 0.719 5.97 0.776 5.43 0.897 4.08

Table 6 indicates the Mixed von Mises distribution parameters (µ, κ, and the weight
w) for each station’s individual segments (1–6) in the MvM-6 distribution to fit wind
directional data. The estimated distributions are compared to the observed histogram
values. Figure 6 below shows results at the individual sites.
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Table 6. Overview of the estimated MvM-6 distribution parameters at the different stations.

Segment Abu Samra Al Ghuwairiyah Mukeynis Al Karanaah Qatar University Umm Said

µ κ w µ κ w µ κ w µ κ w µ κ w

1 −0.4132 6.0448 0.4251 −1.1131 18.6038 0.1557 −2.8757 13.1470 0.0488 −2.8459 13.2362 0.0628 −1.1938 0.7405 0.2802

2 0.5412 1.4308 0.1568 −0.2385 8.6024 0.1353 −1.8918 2.6354 0.1169 −1.4947 4.1703 0.0912 −0.1431 8.4372 0.3506

3 1.4743 0.1904 0.0889 0.4395 1.8221 0.2865 −0.3289 5.7281 0.3557 −0.6628 7.1227 0.3494 1.0123 4.0224 0.1331

4 1.5361 30.8243 0.0590 1.3006 77.8444 0.0588 0.3043 53.8937 0.1077 0.3154 7.1536 0.1593 1.3267 122.0460 0.0778

5 1.6481 0.1102 0.1371 1.9794 27.8985 0.0968 0.9901 6.1351 0.2202 1.3113 4.2433 0.2198 1.3967 3.6699 0.1188

6 2.3210 0.2815 0.1330 2.9926 1.2796 0.2671 2.0826 14.4063 0.1507 2.3898 10.1177 0.1176 3.1315 33.0517 0.0395
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Figure 6. Marginal distribution of the wind direction for the five stations: Abu Samra (upper left), Al
Ghuwayriya (upper right), Mukenis-Al Karanaah (mid left), Qatar University (mid right), and Umm
Said (bottom left). The green curve indicates the observed values as a histogram, and the black line
is the theoretically derived marginal distribution.

The predominant wind direction during rainfall spans from the northwest to the
north sector, as reflected in the marginal wind direction distribution. It is noticeable that
there is a significant secondary wind component during rainfall coming from the east to
the southeast. For instance, at Abu Samra, situated in the southern region, the easterly
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component is notably less pronounced as compared to the other stations. In contrast, at Al
Ghuwairiya, the easterly component is just as prominent as the northerly wind component
during rainfall events.

3.4. Bivariate Distribution between Wind Speed and Wind Direction

Table 7 provides an overview of the Spearman Rho, Kendall’s Tau, and the Blomqvist
Beta of the observed data, and Table 8 the same parameters for the Bernstein Copula to
describe the bi-variate distribution between wind speed and wind direction data. All
the bivariate distributions fit the individual stations well, comparing the histograms in
the Supplementary Section with Figures 7 and 8. Figures 7 and 8 illustrate the results of
the estimated bivariate densities based on Bernstein Copula functions at the individual
sites, shown as 3D graphics and corresponding contours with indications of individual
observations. The corresponding histograms are indicated in the Supplementary Section
(see Figure S1).
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Figure 7. Bivariate density function of the wind speed and wind direction based on Bernstein 
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Figure 7. Bivariate density function of the wind speed and wind direction based on Bernstein Copula
functions shown as 3D-plots for the five stations: Abu Samra (upper left), Al Ghuwayriya (upper
right), Mukenis-Al Karanaah (mid left), Qatar University (mid right), and Umm Said (bottom left).
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Figure 8. Bivariate density function based on Bernstein Copula functions of the wind speed and 
wind direction, shown as contour plots for the five stations: Abu Samra (upper left), Al Ghuwayriya 
(upper right), Mukenis-Al Karanaah (mid left), Qatar University (mid right), and Umm Said 
(bottom left). The orange points are individual observations of wind speed and wind direction. The 
orange dots are the observations. 

Table 7 provides the sampled correlation statistics for the individual stations’ 
observed wind speed and wind direction data. 

  

Figure 8. Bivariate density function based on Bernstein Copula functions of the wind speed and
wind direction, shown as contour plots for the five stations: Abu Samra (upper left), Al Ghuwayriya
(upper right), Mukenis-Al Karanaah (mid left), Qatar University (mid right), and Umm Said (bottom
left). The orange points are individual observations of wind speed and wind direction. The orange
dots are the observations.

Table 7 provides the sampled correlation statistics for the individual stations’ observed
wind speed and wind direction data.

For the cyclic directional data, the Bernstein Copula functions (Table 8) provided an
excellent result, used for the bivariate distributions between rainfall intensity and wind
direction and wind speed and wind direction and in the final tri-variate distribution. The
Joe Copula was the preferred copula function for the fit of the data between rainfall intensity
and wind speed. The Joe Copula is a part of the Archimedean family of copula. It was
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noted that most of the observations of rainfall intensity and wind speed indicated most of
the probability mass was located around the low rainfall intensity (0.6–2 mm/h) and for
the wind speeds from 2 to 8 m/s, which was noticeable for all the stations.

Table 7. Overview of Spearman’s rho correlation, Kendall’s Tau, and Blomqvist’s Beta of the observed
wind speed and direction data.

Station Name Abu Samra Al Ghuwairiya Mukenis-Al
Karanaah Qatar University Umm Said

Dep. Structure parameter

Sampled Spearman Rho (ρ) −0.23 0.05 −0.19 0.06 0.06

Sampled Kendall’s Tau (τ) −0.17 0.04 −0.13 0.04 0.03

Blomqvist Beta (β) −0.22 0.01 −0.20 −0.02 0.04

Table 8. The Spearman Rho, Kendall’s Tau, and Blomqvist Beta for the Bernstein Copula for wind
speed and wind direction.

Station Name Abu Samra Al Ghuwairiya Mukenis-Al
Karanaah Qatar University Umm Said

Dep. Structure parameter

BC Spearman Rho (ρ) −0.21 0.04 −0.16 0.05 0.05

BC Kendall’s Tau (τ) −0.15 0.02 −0.12 0.02 0.03

BC Blomqvist Beta (β) −0.19 0.02 −0.13 0.03 0.03

3.5. Bivariate Distribution between Rainfall Intensity and Wind Direction

The Spearman’s rho, Kendall’s tau, and Blomqvist beta are computed for the rainfall
intensity and the wind direction data. Table 9 provides an overview of the correlations.
Bernstein copula correlation structure shown in Table 10 is similar to the sampled correlation
structure in Table 9. Similarly, the Bernstein copula preserves the correlation structure for
the rainfall intensity and wind direction data. The ranked correlation between rainfall
intensity and wind direction is weak and close to a fully independent case. All the bivariate
distributions appear to fit the individual stations well. The bivariate distributions between
rainfall intensity and wind direction fit the individual stations well. Figures 9 and 10
illustrate the results of the estimated bivariate densities based on Bernstein Copula functions
at the individual sites, shown as 3D graphics and corresponding contours with indications
of individual observations of rainfall intensity and wind direction. The corresponding
histograms are indicated in the Supplementary Section (see Figure S2). The goodness-of-fit
measures can be found in Genest et al. [55] but were not implemented in this current study.

Table 9. Overview of Spearman’s rho correlation, Kendall’s Tau, and Blomqvist’s Beta of the observed
rainfall intensity and wind direction data.

Station Name Abu Samra Al Ghuwairiya Mukenis-Al
Karanaah Qatar University Umm Said

Dep. Structure parameter

Sampled Spearman Rho (ρ) 0.00 −0.02 −0.06 0.02 0.02

Sampled Kendall’s Tau (τ) 0.00 −0.02 −0.04 0.01 0.01

Blomqvist Beta (β) −0.02 −0.03 −0.06 −0.03 −0.02
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Table 10. The Spearman Rho, Kendall’s Tau, and the Blomqvist Beta for the Bernstein Copula for
rainfall intensity and wind direction data.

Station Name Abu Samra Al Ghuwairiya Mukenis-Al
Karanaah Qatar University Umm Said

Dep. Structure parameter

BC Spearman Rho (ρ) 0.02 −0.03 −0.05 0.01 0.01

BC Kendall’s Tau (τ) 0.00 −0.03 −0.05 0.00 0.01

BC Blomqvist Beta (β) 0.01 −0.02 −0.05 0.00 −0.02
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Figure 10. Bivariate density function based on Bernstein Copula functions of the rainfall intensity and
wind direction, shown as contour plots for the five stations: Abu Samra (upper left), Al Ghuwayriya
(upper right), Mukenis-Al Karanaah (mid left), Qatar University (mid right), and Umm Said (bottom
left). The orange points are individual observations of wind speed and wind direction. The orange
dots are observations.

3.6. Rainfall Intensity under the Condition of the Wind Direction

Table 11 indicates LP3 distribution parameters (refer to Equation (3)) for the conditional
marginal distributions for the rainfall intensity under the condition of each of the four
directional segments. Table 12 indicates the GEV parameters (refer to Equations (4) and (5))
for the conditional marginal distributions for the rainfall intensity under the condition of
each of the four directional segments:



Water 2024, 16, 1257 23 of 28

Table 11. The marginal LP3 distribution of the rainfall intensity under the condition of the wind
direction for the Qatar University station. The column NEvents indicates how many events are
observed for each wind direction shown in the first column.

Direction
(Bearing Degrees) α β γ NEvents

N-E (0–90 degrees) 1.872 0.690 −0.826 109

E-S (90–180 degrees) 5.617 0.278 −1.209 69

S-W (180–270 degrees) 0.902 0.960 −0.552 35

W-N (270–360 degrees) 5.476 0.314 −1.271 157

Table 12. The marginal GEV distribution of the rainfall intensity under the condition of the wind
direction for the Qatar University station. The column NEvents indicates how many events are
observed for each wind direction shown in the first column.

Direction
(Bearing Degrees) ξ (Location) α (Scale) k (Shape) NEvents

N-E (0–90 degrees) 2.938 1.850 −0.045 109

E-S (90–180 degrees) 2.963 1.873 −0.020 69

S-W (180–270 degrees) 2.418 1.570 0.226 35

W-N (270–360 degrees) 2.764 1.774 0.069 157

Table 13 indicates the results from simulating the different Joe Copula functions for
the individual wind directions.

Table 13. The Joe Copula functions for the bivariate distribution between rainfall intensity and wind
speed for a given wind direction.

Direction
(Bearing Degrees) Preferred Copula Copula Parameter θ Blomqvist β Kendall’s τ NEvents

N-E (0–90 degrees) Joe Copula 1.294 0.14 0.14 109

E-S (90–180 degrees) Independent 1.000 0.00 0.00 69

S-W (180–270 degrees) Independent 1.000 0.00 0.00 35

W-N (270–360 degrees) Joe Copula 1.083 0.04 0.05 157

The strongest ranked correlation is seen for the wind direction between 0 and 90
degrees (north to east). The precision of the model for the ranked normalized observations
is shown in Figure 11 below. The figure shows the empirical values of the trivariate
cumulative distribution alongside the paired values of the fitted distribution for all points
in the dataset. The plot indicates a good fit between the model and the observed value.
As per [22], the RMSE value is used as a measure of the model fit. An RMSE of 0.0072 on
the observed vs. modeled cumulative probabilities using ranked normalized observations
is derived for the trivariate distribution. For an alternative measure for model fit for
multivariate distributions, please refer to [56], and specifically for copulas, refer to [57].

The conditional distributions for establishing the tri-variate distribution required
more data as the conditional directions required dividing the wind directions into four
segments (0–90 degrees, 90–180 degrees, 180–270 degrees, and 270–360 degrees). Only the
Qatar University station would contain enough data (370 data points) to carry out such an
analysis and still have a reasonable amount of data representing each of the four segments
(see the population sizes under Table 2). Yet, the least populated segment for the Qatar
University station contained only 35 data points. The tri-variate distribution has only been
established for the Qatar University station.
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4. Conclusions

This study adopted Vine Copulas to model the dependence structure among rainfall
intensity, wind speed, and wind direction at a Qatari rainfall station. The fitted model
exhibited an RMSE value of 0.0072 on the observed vs. modeled cumulative probabilities
using ranked normalized observations, which seems to be an excellent result. The plots of
the results support the finding of an excellent goodness of fit.

The northerly winds, commonly called the winter Shamal winds (Jerome [58]), are
most pronounced during rainfall in Qatar. However, a secondary component of easterly
winds known as the Kaus winds (also called Qaus or Qaws) (Rao et al. [59]) is also visible.
This wind pattern is observable at all the stations, albeit with minor variations. For instance,
at Abu Samra, situated in the southern region, the easterly component is notably less
pronounced than the other stations. In contrast, at Al Ghuwairiya, the easterly component
is just as prominent as the northerly wind component during rainfall. Extreme storms are
typically linked with local thunderstorms often associated with strong winds.

The study revealed that rainfall stations where the rainfall is obstructed from northwest
to north and from east to southeast would significantly influence the rainfall measurements
in Qatar. Furthermore, roadside stations with traffic passing where road spray can be borne
by the strong winds from north or east to southeast and influence the rainfall measurements
should be redesigned, moving the rain gauges further away from the road to avoid wind-
related bias.

A priority of operations has been proposed for the approximately 80 meteorological
stations in Qatar, where rainfall is measured based on the results from this study.

Furthermore, based on the findings of this study, the Ministry of Municipality in
Qatar is considering compensating the individual historical rainfall measurements for the
local wind conditions. An additional study will be required to outline the catch efficiency
of the rain gauges under different wind conditions. Furthermore, the Civil Aviation
Authority and the Ministry of Municipality in Qatar are installing a so-called Double
Fence Intercomparison Reference (DFIR) that shall act as a windbreaker, similar to what is
currently being used for wind-sensitive snow measurements (Golubev [60]). The intention
is to reduce wind bias in arid zones by installing an octagon DFIR structure. It is important
that the DFIR structure attenuates the wind around the rain gauge but does not block the
funnels of the rain gauge in any way. As a general rule outlined by WMO, the height of any
wind break h should be distanced approximately 2h from the gauge, forming an angle from
the top of the gauge to the top of the objects of 30 to 45 degrees (see Figure 13). The DFIR
structure will fulfill such WMO requirements [61]. It should be noted that only 15 years of
data are used in this study as longer data are not available in Qatar. This has introduced
uncertainty into the results, which should be kept in mind when interpreting the results of
this study.
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