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Abstract: Drought, as a recurring extreme climatic event, inflicts diverse impacts on ecological
systems, agricultural productivity, water resources, and socio-economic progress globally. Discerning
the drought patterns within the evolving environmental landscape of the Yellow River Basin (YRB)
is imperative for enhancing regional drought management and fostering ecological conservation
alongside high-quality development. This study utilizes meteorological drought indices, the Stan-
dardized Precipitation Evapotranspiration Index (SPEI) and the self-calibrating Palmer Drought
Severity Index (scPDSI), for a detailed spatiotemporal analysis of drought conditions. It examines the
effectiveness of these indices in the basin’s drought monitoring, offering a comprehensive insight into
the area’s drought spatiotemporal dynamics. The findings demonstrate the following: (1) SPEI values
exhibit distinct fluctuation patterns at varying temporal scales, with more pronounced fluctuations at
shorter scales. Drought years identified via the 12-month SPEI time scale include 1965, 1966, 1969,
1972, 1986, 1997, 1999, 2001, and 2006. (2) A modified Mann–Kendall (MMK) trend test analysis
of the scPDSI time series reveals a worrying trend of intensifying drought conditions within the
basin. (3) Correlation analysis between SPEI and scPDSI across different time scales yields correlation
coefficients of 0.35, 0.54, 0.69, 0.76, and 0.62, highlighting the most substantial correlation at an annual
scale. Spatial correlation analysis conducted between SPEI and scPDSI across various scales reveals
that, within diverse temporal ranges, the correlation peaks at a 12-month time scale, with subsequent
prominence observed at 6 and 24 months. This observed pattern accentuates the applicability of
scPDSI in the monitoring of medium- to long-term drought phenomena.

Keywords: meteorological drought; SPEI; scPDSI; Yellow River Basin (YRB)

1. Introduction

Drought, a pervasive and recurrent natural hazard, profoundly impacts diverse facets
of human endeavors globally [1,2]. The Intergovernmental Panel on Climate Change,
in its Sixth Assessment Report, emphasizes that climate change is intensifying drought
conditions worldwide through elevated temperatures and shifting precipitation patterns [3].
Particularly, in China, drought emerges primarily due to inadequate precipitation, amongst
other contributing elements. Drought’s hallmark characteristics include its high frequency,
prolonged duration, and extensive impacts. It represents a cumulative process where
a persistent deficit in regional surface water, primarily influenced by precipitation and
evapotranspiration, takes a central role amidst various meteorological factors [4,5]. The
frequent and enduring nature of drought not only precipitates significant economic losses
but also triggers a cascade of adverse effects such as acute water shortages, accelerated
land desertification, and an increased incidence of sandstorms and dust storms [6–8].
Consequently, timely and precise drought monitoring is imperative for the judicious
management of regional water resources, bolstering socio-economic progress, and fostering
the sustainable development of the ecological environment.
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Drought manifests in four principal forms: socioeconomic, agricultural, hydrological,
and meteorological. Typically, the onset of other drought types is heralded by a meteorolog-
ical drought, which usually precedes them [9–11]. Typically, a diminution in precipitation
precipitates the onset of a meteorological drought. This sequence of events invariably leads
to a reduction in soil moisture levels, thereby impeding the effective irrigation of crops
and consequently instigating agricultural drought due to diminished crop yields. When
it progresses to a certain stage, such conditions can culminate in a decrease in river flows
or reservoir storage levels, thereby triggering a hydrological drought. These cascading
effects extend to the socio-economic realm, where the fundamental water requirements of
society and the economy are unmet, ultimately resulting in a socio-economic drought char-
acterized by substantial losses in human life, property, and overall societal and economic
stability. Consequently, an in-depth examination of meteorological drought is instrumental
in enhancing our knowledge and understanding of various other drought typologies.

The meteorological drought index serves as an indispensable instrument for the moni-
toring, early warning, and quantitative assessment of drought severity. Prominent indices
such as the Standardized Precipitation Index (SPI) [12–14], Standardized Precipitation
Evapotranspiration Index (SPEI) [15–22], and the Palmer Drought Severity Index (PDSI) are
extensively utilized in current drought studies [22–28]. Due to their distinct foundational
backgrounds and drought-inducing factors, these indices vary in regional suitability. Con-
sequently, the accurate analysis of regional drought characteristics hinges on the judicious
selection of appropriate drought indices. The PDSI, introduced by Palmer in 1965 [29],
represents a sophisticated meteorological drought index. It integrates a range of critical
factors, including historical precipitation patterns, water supply–demand equilibrium, and
both actual and potential evapotranspiration rates. Despite its comprehensive approach,
the PDSI falls short in capturing the multi-dimensional characteristics of drought phenom-
ena. In an enhancement to the original model, the self-calibrating Palmer Drought Severity
Index (scPDSI) has been developed [23,30–35]. This advanced index dynamically adjusts
PDSI parameters in response to specific climatic data from individual stations, thus offering
a more tailored and effective tool for assessing local climate conditions [36]. Furthermore,
the SPEI further broadens the scope by incorporating variables such as temperature and
precipitation, addressing the multi-scale dimensions of drought, and providing a more
holistic understanding than the SPI [37,38]. Acknowledging the intricate genesis and di-
verse factors influencing drought, our study extensively employs both scPDSI and SPEI
indices to meticulously investigate the spatial and temporal dynamics of drought within
the designated study region.

In conventional methodologies, drought indices are often derived from meteorological
station data or through interpolation within a specified region, a process that can intro-
duce discontinuities at the boundaries. Addressing this limitation, this study not only
investigates drought issues in the target area through remote sensing techniques but also
innovates by selecting stations within designated buffer zones along the boundaries for
refined interpolation. The Yellow River Basin (YRB) has a long-documented history of
recurrent drought episodes, significantly impinging on the subsistence environment of its
local populace. These drought events have precipitated a suite of detrimental outcomes,
encompassing the diminution of agricultural output, cessation of river flows, and degrada-
tion of ecological systems. Collectively, these issues have emerged as principal constraints,
impeding the trajectory of sustainable economic and societal advancement in the region.
Given the recurring nature of droughts in the YRB, a thorough examination of these phe-
nomena is imperative. The research objectives of this paper are (1) to conduct a detailed
evaluation of the spatiotemporal dynamics of drought within the YRB; and (2) to perform
an in-depth comparative analysis of the SPEI and scPDSI drought indices, assessing their
efficacy in precisely depicting the drought characteristic of this vital geographical area.
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2. Data and Methods
2.1. Study Area

The Yellow River, which has a total length of 5464 km and is the second-longest river
in China after the Yangtze River and the fifth-longest river in the world, arises from the
Bayankala Mountains in Qinghai Province, China [39,40]. The YRB is located between 96◦

and 119◦ east longitude and 32◦ and 42◦ north latitude, with a length of about 1900 km
from east to west and a width of about 1100 km from north to south. The YRB is in the
mid-latitude zone, where atmospheric circulation and monsoon circulation have a relatively
complicated impact (as depicted in Figure 1). As a result, there are significant differences
in climate between the basin’s various regions, as well as significant annual and seasonal
changes in climate elements. The YRB experiences dry winters and springs marked by
drought and rainy summers and autumns, with precipitation from June to September
making up roughly 70% of the entire year’s total and precipitation from July to August
in the summer exceeding 40% of the total. The drought situation in the YRB has become
increasingly serious in recent years, severely restricting the sustainable development of
the economy and society; therefore, analyzing the drought occurrence and development
pattern in the YRB is of great significance in strengthening regional drought monitoring and
management and promoting the ecological protection and high-quality development of the
YRB. Table 1 presents the designations and corresponding abbreviations for the various
sub-regions within the YRB.
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Table 1. Sub-regions of the YRB.

Subzones

above Longyangxia (AL) inward flowing (IF)

Longyangxia to Lanzhou (LL) Longmen to Sanmenxia (LS)

Lanzhou to Hekou (LH) Sanmenxia to Huayuankou (SH)

Hekou to Longmen (HL) below Huayuankou (BH)



Water 2024, 16, 791 4 of 17

2.2. Data

The selected meteorological dataset comprises monthly-scale observations from 120
meteorological stations across the Yellow River Basin and its surrounding areas, spanning
the period from 1961 to 2017. This dataset includes parameters such as rainfall, average air
temperature, maximum air temperature, minimum air temperature, wind speed, and sun-
shine hours. Self-calibrating Palmer Drought Severity Index (scPDSI) data were obtained
from the Koninklijk Netherlands Meteorological Institute (KNMI) website of the Climate
Research Unit (CRU) (http://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=
scpdsi (accessed on 12 June 2023)), which is globally gridded at a spatial resolution of 0.5◦.
Moreover, in the discussion section, the utilized SPEI dataset, characterized by a 3-month
temporal resolution, is derived from the SPEI global database (SPEIbase). This repository
furnishes comprehensive and dependable insights into global drought conditions, featuring
a spatial resolution of 0.5 degrees and a temporal update frequency of once per month.
The database encompasses a broad spectrum of SPEI temporal scales, varying from 1 to 48
months, thereby facilitating a nuanced understanding of drought dynamics over varying
periods (http://climexp.knmi.nl/ (accessed on 18 June 2023)).

2.3. Methodology
2.3.1. Standardized Precipitation Evapotranspiration Index (SPEI)

In this study, the SPEI and PDSI drought indices were used to jointly investigate the
drought conditions in the YRB, respectively. Vicente-Serrano et al. (2010) enhanced the SPI
drought index by incorporating the potential evapotranspiration element, thereby develop-
ing the SPEI, which is adept at providing a precise representation of meteorological drought
conditions [19]. In the computation of the SPEI, the prevailing methodologies for estimating
potential evapotranspiration are the Thornthwaite and Penman–Monteith equations [41–49].
While the Thornthwaite approach, predominantly based on temperature, is extensively
utilized in the existing literature, it offers a limited scope. The Penman–Monteith formula,
in contrast, presents a more holistic approach by integrating both thermal and aerodynamic
factors, thus providing a comprehensive assessment of potential evapotranspiration. This
study, therefore, adopts the Penman–Monteith equation, recognizing its superior capacity
to capture complex climatic interactions. The SPEI is then meticulously calculated, focusing
on the extent to which the difference between the potential evapotranspiration and precipi-
tation, as derived from the Penman–Monteith method, deviates from the mean state. This
approach enables a detailed evaluation of the drought distribution characteristics, offering
insights into its hydro-meteorological dynamics. Table 2 delineates the delineation criteria
for various drought categories as defined by the SPEI and scPDSI indices [50,51].

Table 2. Categorization of Drought Severity Using SPEI and scPDSI Indices.

Drought Category SPEI scPDSI

No Drought >−0.5 >−1.0

Mild Drought (−1.0, −0.5] (−2.0, −1.0]

Moderate Drought (−1.5, −1.0] (−3.0, −2.0]

Severe Drought (−2.0, −1.5] (−4.0, −3.0]

Extreme Drought ≤−2.0 ≤−4.0

2.3.2. Self-Calibrating Palmer Drought Severity Index (scPDSI)

Palmer (1965) developed the PDSI drought index, which is based on the theory of
water balance and takes past precipitation, soil water, runoff, and evapotranspiration
processes into consideration [29]. Wells et al. (2004) developed the scPDSI by incorporating
an automatic correction procedure for the persistence and climate weighting factors in
the PDSI construction [36]. This resulted in a scPDSI that is site-specific and improves
the PDSI’s sensitivity to various wet and dry spaces. In order to achieve drought early

http://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=scpdsi
http://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=scpdsi
http://climexp.knmi.nl/
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warning and disaster prevention and mitigation under changing environments, it is crucial
to combine scPDSI, which is more applicable in different climate regimes, and SPEI, which
has multi-time scale characteristics, to jointly analyze and identify the drought status
and drought events, etc., in the YRB. In this study, we employ the metric of drought
frequency to evaluate the prevalence of drought occurrences in the Yellow River Basin.
Drought frequency is quantitatively defined as the proportion of the total time period
during which drought conditions are observed within a specific region. The methodology
for its computation is articulated as follows:

F =
t
T
× 100% (1)

In the aforementioned equation, F denotes the drought frequency, quantified as a percentage
(%); t signifies the temporal extent of drought occurrences; and T represents the aggregate
duration under consideration.

2.3.3. Methodology for Trend Detection

The Modified Mann–Kendall (MMK) trend test represents a significant advancement
over the conventional Mann–Kendall method. This refined approach adeptly mitigates the
influence of autocorrelation within data series, thereby markedly augmenting the test’s
analytical prowess [52]. As a robust non-parametric methodology, MMK is exceptionally
adept at discerning underlying trends within time series data. Its efficacy and versatility
have led to its widespread adoption, particularly in the realms of hydrology and meteorol-
ogy, where it has become a cornerstone tool for time series analysis. In light of its analytical
robustness, this study opts for the MMK method to conduct trend analysis. For a detailed
understanding of the computational procedures, readers are referred to the methodologies
outlined in the relevant literature [53,54].

3. Results
3.1. Drought Assessment Based on the SPEI Index

SPEI can be calculated over different time scales, reflecting short-term and long-
term moisture conditions. Figure 2 presents the interannual variability of SPEI values
across various temporal scales within the YRB, specifically at 1-month, 3-month, 6-month,
12-month, and 24-month intervals. The blue bars represent SPEI values greater than 0,
while the red bars indicate SPEI values less than 0. The graphical representation indicates a
trend of diminishing fluctuation amplitudes with increasing temporal scales. Shorter time
scales, ranging from 1 to 3 months, are predominantly indicative of vegetation’s immediate
response to hydric stress, which is critically relevant to agricultural practices as such short-
term drought conditions can significantly impact crop productivity. The intermediate time
scales of 3 to 6 months strike a balance by capturing the influences of both precipitation
and temperature fluctuations. In contrast, scales extending to 12 months and beyond are
demonstrative of the prolonged effects of drought, contributing to a more comprehensive
understanding of the overarching drought trends. Utilizing the SPEI-12 on an annual scale,
years with values below −0.5 are identified as experiencing drought. Accordingly, drought
events were recorded in 1965, 1966, 1969, 1972, 1986, 1997, 1999, 2001, and 2006. Notably, the
drought of 1997 emerged as the most severe, with 1965 following in severity.

In order to investigate the spatial and temporal characteristics of drought frequency
within the YRB, this study computes the drought frequencies of various magnitudes
using the SPEI-3 derived from regional meteorological stations. Subsequently, the kriging
interpolation technique is employed to map and analyze the variations in drought frequency
across the entirety of the YRB (as shown in Figure 3). The figure illustrates that the drought
frequency variation within the YRB spans from 31% to 34%. Interpolation results indicate
that the frequency in the LL region is comparatively higher, suggesting a relatively stable
pattern of minimal fluctuation throughout the area.
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In order to more precisely determine the distribution characteristics of drought levels
across various regions, we analyzed the mean drought grades recorded at meteorological
stations within each respective subzone, as demonstrated in Figure 4. The distinctive
characteristics associated with varying drought levels are depicted in the accompanying
figure. The analysis presented in the figure indicates that, based on the average values
derived from meteorological stations within each respective subzone, the BH region exhibits
the highest incidence of drought frequency, followed by the LL region, whereas the IF region
demonstrates the lowest frequency. In summary, each area predominantly experiences
mild droughts, with frequencies ranging between 14.91% and 16.23%. Moderate droughts
occur with the next highest frequency. In contrast, the occurrences of the other two drought
severity levels are comparatively lower, particularly for extreme droughts, which manifest
at a rate of approximately 1%.
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3.2. scPDSI-Based Drought Analysis

Figure 5 illustrates the variation in drought distribution across the YRB as determined
by the scPDSI. It represents the mean scPDSI values calculated for each quarter and annually
over an extended period from 1961 to 2017. On the seasonal scale, the YRB exhibits relatively
uniform mean scPDSI values across different seasons: −0.98 in spring, −1.04 in summer,
−1.06 in autumn, and −1.01 in winter. This indicates a negligible variation in the seasonal
mean values of SPEI within the basin. The scPDSI values for each district were acquired by
calculating the mean value of the scPDSI on an annual basis for each subzone: LH: −1.06;
HL: −0.87; IF: −0.94; LS: −0.96; LL: −1.35; BH: −0.71; SH: −1.44; AL: −1.06. Based on
the analysis of statistical average values, the SH and LL regions are notably more arid in
comparison. However, when viewed on an annual scale, the HL, IF, LS, and BH regions
exhibit no significant signs of drought conditions.

A Modified Mann–Kendall (MMK) trend test is utilized to analyze the trend of drought
conditions in the YRB. The occurrence of positive values in the data signifies a trend towards
increased humidity, whereas negative values are indicative of a shift towards more arid
conditions. The analysis becomes notably significant when the absolute value of the Z-score
surpasses thresholds of 1.65, 1.96, and 2.58, corresponding to the trend successfully meeting
the criteria for significance at confidence intervals of 90%, 95%, and 99%, respectively. This
indicates a robust and reliable understanding of the drought trends at these confidence
levels. Employing a MMK trend analysis, this study presents a detailed spatiotemporal
mapping of the monthly gridded drought trends within the YRB, as demonstrated in
Figure 6. The resultant maps, illustratively depicted in the subsequent figures, encapsulate
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the trends from January to December. A rigorous statistical approach was applied to
calculate the mean values of the trend characteristics for each month, utilizing the scPDSI
as the reference metric. The computed MMK trend characteristic values were as follows:
−1.25 in January, −1.16 in February, −1.27 in March, −1.41 in April, −1.11 in May, −0.97
in June, −1.28 in July, −1.45 in August, −1.23 in September, −1.08 in October, −1.15 in
November, and −1.08 in December. The uniformly negative values across all months
robustly indicate a consistent downward trajectory in the PDSI. This finding signifies an
alarming, yet statistically significant, trend towards escalating drought conditions within
the YRB, warranting immediate attention and action in the context of regional water
resource management and climate adaptation strategies.
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3.3. Comparative Evaluation of Two Drought Indices

In this study, we conduct an advanced analysis of the drought dynamics within the
YRB, utilizing two sophisticated meteorological drought indices. The SPEI is employed,
offering a holistic approach that integrates critical climatic factors, notably precipitation
and temperature. SPEI is able to encapsulate multiple temporal scales, providing a nu-
anced understanding of drought patterns. In contrast, the scPDSI is also applied, which
comprehensively accounts for variables such as antecedent precipitation, potential evapo-
transpiration, and soil moisture content. Therefore, both indices are used to analyze the
drought conditions in the YRB.

In this research, we executed a correlation analysis juxtaposing the scPDSI with
the SPEI across diverse temporal scales, 1 month, 3 months, 6 months, 12 months, and
24 months, as illustrated in Figure 7. Both of these drought indices corroborate the occur-
rence of a significant drought event within the YRB in 1997, aligning with the observed
realities. The year 1997 marked the onset of the most profound drought recorded in the
basin’s history, characterized by the lowest annual precipitation levels and sustained ele-
vated temperatures across vast swathes of the region. The derived correlation coefficients
(r) were found to be 0.35, 0.54, 0.69, 0.76, and 0.62 for each respective time scale, as illus-
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trated in the figure. These findings elucidate that the correlation is comparatively weakest
on the 1-month scale. Conversely, the correlation reaches its zenith on an annual basis.
This pattern is sequentially followed in terms of strength by the 6-month, 24-month, and
3-month intervals. Such results offer insightful implications for understanding the tempo-
ral dynamics of drought severity and their interactions with varying climatic indices. The
concurrent utilization of both indices in this research offers a comprehensive and detailed
analysis of the drought conditions prevalent in the YRB, paving the way for more informed
water resource management and climate resilience strategies in this crucial geographic region.
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In an effort to conduct a more nuanced comparative analysis of the capabilities of the
SPEI and scPDSI drought indices in representing drought characteristics within the YRB,
this study involved the construction of correlation plots between various scales of SPEI
and scPDSI across numerous stations. Subsequently, we employed kriging interpolation on
these station-specific correlations to produce a comprehensive map. The analysis revealed
distinct correlation ranges between the indices at different scales: the correlation between
SPEI-1 and scPDSI was found to be between 0.23 and 0.36 (as depicted in Figure 8a); for
SPEI-3 and scPDSI, it ranged from 0.24 to 0.52 (Figure 8b); for SPEI-6 and scPDSI, it showed
a correlation spread from 0.37 to 0.63 (Figure 8c); for SPEI-12 and scPDSI, it extended
from 0.40 to 0.67 (Figure 8d); and, finally, SPEI-24 and scPDSI exhibited a correlation
range of 0.25 to 0.66 (Figure 8e). The aforementioned findings reveal that, according to the
station-based correlation charts, the greatest correlation is observed at a 12-month time
scale across various temporal ranges, followed sequentially by 6 months and 24 months.
This pattern underscores the suitability of scPDSI for monitoring medium- to long-term
drought phenomena, a characteristic attributable to its inherent lagged autocorrelation
properties. Zhao et al. [55] conducted a comprehensive analysis of the temporal scale
differences between scPDSI and SPEI in the context of drought monitoring across various
Chinese regions. Their findings revealed that the maximum correlation between scPDSI
and SPEI, specifically over a period ranging from 9 to 19 months, was observed across
diverse geographical areas. This observation is in concordance with the results delineated
in the current study, reinforcing the robustness and consistency of these findings within the
broader research landscape.
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To gain a more comprehensive understanding of the correlations within diverse sub-
regions, we calculated the average correlations for each sub-region, drawing from the data
illustrated in the preceding chart, and synthesized these findings into Figure 9. This metic-
ulous analysis uncovers a significant correlation between SPEI-12 and scPDSI, highlighting
a notable interconnection. Moreover, when examining across varied temporal scales, it
becomes apparent that certain sub-regions, namely LS, IF, HL, and BH, exhibit remarkably
robust correlations. This insight is of paramount importance for the strategic formulation
of bespoke drought mitigation strategies in these specific sub-regions. Such strategies are
aimed at substantially diminishing the prevalence of drought-induced calamities and si-
multaneously bolstering the overall capacity for a more effective and responsive adaptation
to these environmental challenges.
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4. Discussion

Although interpolation analysis on the station-based SPEI values was conducted
earlier in our study, it is important to note that such interpolated outcomes are susceptible
to variations induced by topographical features and spatial station distribution. To mitigate
these effects and enhance the robustness of our analysis, we have conducted a comparative
assessment, juxtaposing SPEI values calculated at station level with those derived from
0.5-degree-resolution gridded SPEI datasets over a temporal scale of 3 months. Figure 10
presents the time series analysis of SPEI values computed from station data juxtaposed
with those obtained from gridded datasets, spanning from 1961 to 2017 in the YRB. The
depicted correlation coefficient of 0.93 signifies a robust congruence between the two
datasets, substantiating the efficacy of gridded SPEI values in capturing the hydrological
dynamics of the region. This high fidelity suggests that gridded SPEI data are well suited
for future evaluations of drought conditions within the basin.
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Following the temporal series analysis of SPEI values computed from station-based
measurements versus gridded datasets, we sought to elucidate the spatial applicability of
gridded data within our study domain. This involved leveraging station data to extract
corresponding values from the gridded dataset at precise locations. Correlation coefficients
were then calculated for each station in relation to its respective gridded data point. Em-
ploying the kriging interpolation technique, this process culminates in Figure 11, which
illustrates the spatial correlation of gridded SPEI data across the study area. The analysis
depicted in Figure 11 reveals a discernible spatial gradient in correlation levels, extending
from the northwest towards the southeast, with an increasing trend in correlation coeffi-
cients that range between 0.61 and 0.88. Within the delineated sub-regions of the study area,
the correlation levels are ranked as follows: BH (0.865) > SH (0.858) > LS (0.845) > HL (0.817)
> IF (0.749) > LH (0.736) > AL (0.729) > LL (0.713). This demonstrates a commendable
degree of correlation between the Standardized Precipitation Evapotranspiration Index
(SPEI) values derived from station data and those obtained from grid-based datasets. Con-
sequently, for subsequent drought assessments at the grid scale, grid-based data emerge as
a viable analytical resource. Nevertheless, it is pertinent to note that the resolution of grid
data currently prevalent for drought assessments is comparatively coarse, necessitating
enhancements for precise evaluations in smaller catchments or scenarios demanding higher
resolution data.
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5. Conclusions

Most of the YRB is located in the arid and semi-arid regions of China, characterized
by a fragile ecological environment that supports a vast economic scale and a large popu-
lation. Therefore, analyzing the patterns of drought occurrence and development in the
YRB under changing environmental conditions is of significant importance for enhancing
regional drought monitoring and management and for promoting ecological protection and
high-quality development in the basin. In this study, the YRB is the research subject, em-
ploying the meteorological drought indices SPEI and scPDSI to analyze the spatiotemporal
variations in drought conditions. It delves into the utility of SPEI and scPDSI for effective
drought monitoring in the basin, providing a comprehensive and methodical exploration
of the drought’s spatiotemporal dynamics. The following conclusions were drawn:

(1) The SPEI demonstrates distinct fluctuation patterns at varying temporal scales, with
shorter scales exhibiting more pronounced amplitude variations. An analysis of
drought occurrences through SPEI over these scales highlights several critical drought
years in the YRB, specifically 1965, 1966, 1969, 1972, 1986, 1997, 1999, 2001, and 2006.
Furthermore, when the SPEI is computed on a three-month time scale, it reveals
that the frequency of drought events in the basin oscillates between 31% and 34%,
underscoring the variability and intensity of drought conditions within this region.

(2) In our study, the MMK trend test was applied to the scPDSI time series, revealing a con-
cerning upward trend in the severity of drought conditions across the YRB. Furthermore,
the regional scPDSI values were derived from the calculation of mean annual scPDSI
values for each sub-region, yielding the following: LH: −1.06; HL: −0.87; IF: −0.94; LS:
−0.96; LL: −1.35; BH: −0.71; SH: −1.44; AL: −1.06. These figures notably highlight the
regions of SH and LL as experiencing markedly more severe drought conditions.

(3) A comprehensive correlation analysis was carried out between scPDSI and SPEI
across multiple temporal scales, including 1 month, 3 months, 6 months, 12 months,
and 24 months. This analysis yielded correlation coefficients (r) of 0.35, 0.54, 0.69,
0.76, and 0.62, respectively. These findings underscore a significant insight: the
correlation between scPDSI and SPEI reaches its apex on an annual scale, whereas
it is relatively minimal on a monthly scale. The correlation analysis of SPEI and
scPDSI across different scales in spatial terms indicates that, within various temporal
extents, the 12-month time scale exhibits the highest correlation, followed by 6 months
and 24 months. This pattern underscores the suitability of scPDSI for monitoring
medium- to long-term drought phenomena, a characteristic attributed to its inherent
lag autocorrelation properties.
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