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Abstract: Flood control operation of cascade reservoirs is an important technology to reduce flood
disasters and increase economic benefits. Flood forecast information can help reservoir managers
make better use of flood resources and reduce flood risks. In this paper, a hierarchical pre-release
flood operation rule considering the flood forecast and its uncertainty information is proposed for
real-time flood control. A many-objective optimization model considering the cascade reservoir’s
power generation objective, flood control objective, and navigation objective is established. Then, a
region search evolutionary algorithm is applied to optimize the many-objective optimization model
in a real-world case study upstream of the Yangtze River basin. The optimization experimental results
show that the region search evolutionary algorithm can balance convergence and diversity well,
and the HV value is 40% higher than the MOEA/D algorithm. The simulation flood control results
of cascade reservoirs upstream of the Yangtze River demonstrate that the optimized flood control
rule can increase the average multi-year power generation of cascade reservoirs by a maximum of
27.72 × 108 kWh under the condition of flood control safety. The rules proposed in this paper utilize
flood resources by identifying runoff forecast information, and pre-release to the flood limit level
145 m before the big flood occurs, so as to ensure the safety downstream and the dam’s own flood
control and provide reliable decision support for reservoir managers.

Keywords: flood control operation; many-objective problem; flood forecasting; inflow uncertainty;
two-stage reservoir operation model

1. Introduction

Among various hydro-meteorological disasters, floods are one of the most destructive
disasters in the world [1], which often cause large numbers of casualties and economic
losses [2]. With the development of the social economy, urbanization, and the increase in
population, it is anticipated that the occurrence rates and intensity of floods will increase,
which may cause more economic losses [3,4]. The construction and development of cascade
reservoirs are the main measures to reduce and resist flood disasters, and the operation
rules of cascade reservoirs play an important role in real-time flood control [5]. However,
most of the early conventional reservoir operation rules, such as operation graph and the
design flood control rules [6], only give a simple decision direction (e.g., outflow or output)
based on the current reservoir state and do not take into account future forecast scenarios
and their uncertain information. Climate change has led to anomalous fluctuations in
extreme streamflow from global river systems, and the superposition of human activities
such as damming has compounded the changes in extreme streamflow, affecting floods
and river ecosystems [7]. Therefore, there is an urgent need to optimize the original
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scheduling and operation rules for reservoir clusters so that they can be more adapted to the
present environment.

With the development of optimization theory [8,9], more and more researchers have
begun to study reservoir optimization operation rules [10,11]. According to the existing
literature, there are mainly two approaches for obtaining optimal reservoir operation
rules. One approach is to use data mining methods to derive optimal decision rules
based on deterministic reservoir optimization operation solutions, such as fuzzy inference
systems [12], extreme learning machines [13], and the Bayesian deep learning method [14].
However, these data-to-data-driven methods simply capture the correlations between
data, and the parameters of the model have no practical meaning, which may confuse
reservoir operation managers. Another approach is to predefine the form of the rules
and parameterize them, such as curves or tables, and then optimize the parameters in the
rules by optimization algorithms [15]. During the last decades, different kinds of reservoir
operation rules and optimization algorithms have been proposed to improve the benefits
of reservoir real-time operation and management [16–18]. A multi-objective energy storage
operation chart (ESOC) optimization model considering ecological flow was proposed
for large-scale mixed reservoirs. Their study showed that the ESOC optimization model
was able to determine the multi-objective Pareto fronts of different minimum discharges
of upstream reservoirs, which significantly improved the power generation benefit of
the traditional reservoir operation chart [19]. A hierarchical flood operation rule (HFOR)
and a multi-objective cultured evolutionary algorithm were proposed for flood resource
utilization [20], and the experimental results showed that the optimized HFORs could
improve power generation under the premise of ensuring flood control safety. An adaptive
hybrid differential evolution algorithm was proposed to optimize the operating rules
of multi-reservoir hydropower generation systems [21], and the proposed optimization
algorithm could generate significantly more hydropower energy.

These studies indicate that we can define a new reservoir operation rule or improve
the traditional reservoir operation rule and use optimization algorithms to optimize these
rules to improve the objectives of the cascade reservoirs. However, most of these reser-
voir operation rules lack the consideration of forecasted reservoir inflow and forecasting
uncertainty [22]. With the development of computer science, more and more hydro-
logical forecasting models and forecasting uncertainty estimation methods have been
proposed [23–26]. To consider inflow forecast information in reservoir operation rules, a
two-stage reservoir operation model with hedging rule policies that explicitly includes
uncertain future reservoir inflow was proposed [27,28]. In recent years, reservoir hedging
rule policies have been applied to various tasks of reservoirs. For example, optimal hedging
rules were developed using hydroeconomic and mathematical analyses for reservoir flood
control operations [29]. An analytical framework for flood water conservation was pro-
posed to derive hedging rules, which showed how much flood water could be conserved
for use after the flood season through the hedging rules [30]. An improved aggregated
hedging rule was proposed for a multi-reservoir water-supply system, which could im-
prove both water supply quality and hydropower generation of the multi-reservoir [31]. A
two-stage metaheuristic mixed-integer nonlinear programming approach was proposed to
extract optimum hedging rules for multi-reservoir systems, which significantly reduced
the magnitude of failures during drought periods [32].

Inspired by hedging rule policies and the approach for optimizing reservoir operation
rules by optimization algorithms, we propose a many-objective optimization model of
a hierarchical pre-release flood control operation rule (HPFOR) that considers inflow
forecast uncertainty. The inflow uncertainty is represented by a multi-step daily inflow
forecast model [33] with a probabilistic streamflow forecasting method [34]. The HPFOR
is optimized by the region search evolutionary algorithm (RSEA) [35]. The innovation
of this study is the construction of a hierarchical forecast pre-discharge operation mode
considering runoff forecast uncertainty, by a two-stage model and uncertainty analysis,
and optimizing the parameters by an evolutionary algorithm, so as to obtain the optimal
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operation rules to enhance the comprehensive use efficiency of the basin reservoir cluster.
The major contributions are outlined as follows:

(1) First and foremost, the two-stage reservoir operation model and the impact of forecast
uncertainty on the model are analyzed. Then, the HPFOR is defined by multiple flow
thresholds under the maximum release flow and sub-pre-release flood operation rules
between each flow level.

(2) Many-objective optimization models of the HPFOR with a power generation ob-
jective, flood control objective, and navigation objective are established. Further-
more, a constrained RSEA is applied to solve the many-objective optimization model
of HPFOR.

(3) The comparison of three state-of-the-art algorithms with RSEA is shown to demon-
strate the performance of the RSEA. The comparison of conventional flood control
rules, HFOR, and HPFOR is shown to prove the advantages of the proposed HPFOR.

The remainder of this paper is organized as follows. In Section 2, the methodology is
given in detail, which includes the probabilistic streamflow forecasting model, the proposed
HPFOR, the many-objective optimization model, and the RSEA. In Section 3, an application
of HPFOR is presented. The conclusions are given in Section 4.

2. Methodology

The flowchart of the many-objective hierarchical pre-release flood operation rule
considering forecast uncertainty is shown in Figure 1. The details of the methodology and
modeling are given in subsequent sections.

2.1. Probabilistic Streamflow Forecasting Model

In the real-time reservoir flood control operation during the flood season, future
streamflow forecasting and forecasting uncertainty information are of great importance
for water resources managers to better utilize small and medium floods and reduce the
risk of large floods. Therefore, a probabilistic streamflow forecasting model is needed to
give accurate and reliable flood forecast results. Based on our previous work, the directed
graph deep neural network (DGDNN) [33] is applied to predict the multi-step daily inflow
of a cascade reservoir and hidden Markov regression (HMR) [34] is applied to obtain the
probability distribution of the predicted streamflow.

The main idea of the DGDNN is to construct a directed graph structure of meteorolog-
ical and hydrological stations and then use the spatial information capture process and the
feature aggregation process to predict the streamflow of target hydrological stations. The
spatial information capture process consists of a multi-convolution layer and a full connect
layer, which are used to capture the influence of the rainfall of meteorological stations on
the runoff of hydrological stations, which is regarded as a rainfall–runoff model in the
hydrological stations. The feature aggregation process is composed of a multi-layer percep-
tual network for aggregating the captured precipitation information and the streamflow
information that affect the target hydrological station, which is regarded as a confluence
process in the hydrological station.

After forecasting the multi-step streamflow by the DGDNN, the uncertainties in
different forecast periods are given by HMR. In HMR, the observation model is assumed as
a joint Gaussian distribution. The joint data x can be divided into two subvectors x = [x1;
x2], where x1 denotes the forecasting result of the DGDNN and x2 denotes the observed
streamflow data. Finally, the uncertainty in the forecast streamflow can be quantified
as follows:
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where K is the number of states; πk is the initial probability of state k; µk and Σk are
the mean vector and covariance matrix of the k-th joint Gaussian distribution; and ht (k)
represents the HMM forward variable.
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According to the uncertainty quantification results, we can obtain the probability
density function of the streamflow forecasted by the DGDNN, which can be used in the
HPFOR in the next section.

2.2. Hierarchical Pre-Release Flood Control Operation Rule

After obtaining the uncertainty in streamflow forecasting, this section mainly in-
troduces the HPFOR based on the two-stage reservoir operation model considering the
streamflow forecast uncertainty.

2.2.1. Two-Stage Reservoir Operation Model

In real-time reservoir operation, water resource managers need to make decisions
based on the inflow, the storage state of the reservoir, and the streamflow forecast informa-
tion. When it comes to the next period, the streamflow forecast information will be updated,
and the reservoir operation decision will be made again. Therefore, the real-time reservoir
operation is a rolling prediction–decision process. The two-stage reservoir operation model
divides the rolling prediction–decision process into the following two stages: the first stage
is the operation decision-making stage, which only considers the current operation period t;
the second stage is the forecasting stage, which considers the future Tf periods according to
the streamflow forecasting horizon. The process of the two-stage reservoir dispatch model
is shown in Figure 2.
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Figure 2. The process of the two-stage reservoir dispatch model.

During the flood season, the operation decision-making stage and the forecasting
stage in the two-stage reservoir operation model need to meet the following constraints:

(1) Discharge flow constraint in the decision-making stage:

Rt ≤ Rlim (3)

where Rt is the average discharge flow during the decision-making stage and Rlim is
the maximum release flow of the reservoir to ensure the flood control safety of the
downstream station.

(2) Discharge flow constraint in the forecasting stage:

R f ≤ Rlim (4)

where Rf is the average discharge flow during the forecasting stage.

(3) Storage volume constraint in the forecasting stage:

Vt+Tf +1 = Vlim (5)

where Tf is the forecast horizon of the streamflow forecast, Vt+Tf +1 is the storage volume
and the end of the forecasting stage, and Vlim is the storage volume corresponding to the
flood limit water level of the reservoir.

(4) Water balance constraint:



Water 2024, 16, 785 6 of 19

Vt+1 = Vt + It∆t − Rt∆t (6)

Vt+Tf +1 = Vt+1 + I f Tf ∆t − R f Tf ∆t (7)

where Vt is the storage volume at period t, It is the average inflow of the reservoir during
the decision-making stage, If is the forecast inflow of the reservoir during the forecasting
stage, and ∆t is the time interval.

By incorporating Formulas (4) and (5) into Formula (7), the inequality of reservoir
storage volume in the decision-making stage can be obtained as follows:

Vt+1 = Vt+Tf +1 − I f Tf ∆t + R f Tf ∆t
≤ Vlim − I f Tf ∆t + RlimTf ∆t

(8)

By incorporating formulas (3) and (8) into formula (6), the inequality of the average
discharge flow during the decision-making stage can be obtained as follows:

Rt = (Vt + It∆t − Vt+1)/∆t
(Vt − Vlim)/∆t + It + I f Tf − RlimTf ≤ Rt ≤ Rlim

(9)

2.2.2. Impact of Forecast Uncertainty on Reservoir Operation

From the two-stage reservoir operation model, we can see that the decision discharge
flow is related to It and If. When considering the uncertainty in the forecast inflow, If is
given in the form of probability as follows:

I f ∼ pI

(
I f

)
(10)

where PI(If) denotes the probability density function of the forecast inflow.
With the uncertainty in the forecast inflow, the discharge flow in the forecast stage will

also be accompanied by uncertainty. The average discharge flow in the forecast stage obeys
the following distribution:

R f ∼ pR(R f ) = (Vt+1 − Vlim)/(Tf ∆t) + pI(I f ) (11)

where PR(Rf) denotes the probability density function of the discharge flow.
The discharge flow of the reservoir needs to meet the demands of the downstream

flood control station and cannot exceed the maximum discharge flow. Therefore, the
uncertainty in the discharge flow will bring risks to the flood control safety. The risk rate
can be calculated as follows:

r = 1 − pR(Rlim) (12)

where r is the flood control risk and PR (Rlim) denotes the probability that the discharge
flow is less than Rlim. According to the hydraulic relationship between the discharge flow
and the forecast inflow, the risk rate is converted into the integral form of the probability
density function of the inflow forecast as follows:

r = 1 − pI

(
Rlim − (Vt+1 − Vlim)/(Tf ∆t)

)
(13)

Given a risk rate threshold ra, when the risk rate r is less than or equal to ra, it is
assumed that the downstream station is in a safe state. Therefore, the following inequality
is obtained:

pI

(
Rlim − (Vt+1 − Vlim)/(Tf ∆t)

)
≥ 1 − ra

Rlim − (Vt+1 − Vlim)/(Tf ∆t) ≥ Per
(

PI(I f ), 1 − ra

) (14)

where Per
(

PI(I f ), 1 − ra

)
denotes the 1 − ra percentile of the forecast streamflow probabil-

ity PI(If).
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According to the above inequality, the inequalities of reservoir storage volume and
discharge flow considering the uncertainty in inflow forecast can be obtained as follows:

Vt+1 ≤ Vlim + RlimTf ∆t − Per(I f , 1 − ra)Tf ∆t (15)

(Vt − Vlim)/∆t + It + Per(I f , 1 − ra)Tf − RlimTf ≤ Rt ≤ Rlim (16)

It can be seen from the inequalities that the risk rate threshold ra will affect the
decision variables in the decision-making stage as follows: a smaller ra will reduce the
storage volume of the reservoir and increase the discharge flow; a larger ra will increase the
storage volume of the reservoir and reduce the discharge flow. In addition, the uncertainty
in PI(If) determines the degree of influence of ra on the decision variables: the greater the
variance in PI(If), the greater the influence of ra on the decision variables. The impact of
forecast uncertainty on reservoir decisions can be seen in Figure 3.
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2.2.3. Hierarchical Pre-Fill and Pre-Release Strategy

In real-time flood control, the operation process is usually divided into the pre-fill
process, the pre-release process, and the normal flood control process [36]. When the
forecast inflow is less than the streamflow threshold and the current storage volume is less
than the maximum allowable volume of the reservoir, the pre-fill process will be executed.
When the forecast inflow is larger than the threshold streamflow and the current inflow is
less than the maximum release flow, the pre-release process will be executed. When the
current inflow is larger than the maximum release flow, the normal flood control process
will be executed.

This paper proposes a hierarchical pre-fill and pre-release strategy in the HPFOR. The
main idea of the strategy is to define multiple flow levels and flow thresholds under the
maximum release flow and establish hierarchical pre-fill and pre-release rules between
each flow level. For example, when there are two flow levels under the maximum release
flow, the HPFOR is represented in Figure 4, and the details of the operation rules are
as follows:
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When the forecast inflow is less than flow threshold 1, the pre-fill process will be
executed as follows: set flow level 1 as limit flow Rlim and use Formula (15) to calculate
the maximum reservoir volume Vmax t + 1 at the end of the decision-making stage. The
water level can be raised for water resource utilization.

When the forecast inflow is larger than flow threshold 1 and less than flow level 1,
the pre-release process will be executed as follows: set flow level 1 as the release flow and
decrease the water level to the flood-limited water level.

When the forecast inflow is larger than flow level 1 and less than flow threshold 2, the
pre-fill process will be executed as follows: set maximum release flow as limit flow Rlim
and use Formula (15) to calculate the maximum reservoir volume Vmax t + 1 at the end of
the decision-making stage. The water level can be raised for water resource utilization.

When the forecast inflow is larger than flow threshold 2 and less than the maximum
release flow, the pre-release process will be executed as follows: set the maximum release
flow as the release flow and decrease the water level to the flood-limited water level.

When the forecast inflow is larger than flow threshold 2 and the current inflow is
larger than the maximum release flow, the normal flood control will be executed as follows:
set maximum release flow as the release flow to ensure downstream flood control safety.

2.3. Many-Objective Optimization Model of the HPFOR

According to the HPFOR, different flow levels and flow thresholds will form differ-
ent flood operation rules, and the flow levels and flow thresholds can be set as decision
variables in the optimization model. The target of this study is to obtain optimal HP-
FORs for small and medium floods, which consists of multiple objectives and constraints
as follows.

2.3.1. Objective Function

Power generation objective: The power generation objective consists of the total
generation of the cascade reservoirs and the total energy storage at the end of the flood
season. The formulation is shown as follows:

maxF1 =
Ns

∑
i=1

T

∑
t=1

ηi Hi,tQi,t∆t +
Ns

∑
i=1

Esi (17)

where Ns is the number of reservoirs; T is the number of operation periods; ηi is the power
production coefficient of the i-th reservoir; ∆t is the operation interval; Hi,t is the water
head of i-th reservoir during the t-th period; Qi,t is the release flow passing turbines of the
i-th reservoir during the t-th period; and Esi is the energy storage of the i-th reservoir at the
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end of the flood season, which can be calculated by the available water volume and the
average water consumption rate.

Flood control objective of the downstream reservoir: The downstream reservoir flood
control objective can be divided into two categories including the safety of the reservoir
itself and the flood control station security:

minF2 = min
{

max(Zd,t)
}

t ∈ Td (18)

minF3 = min
{

max(Rd,t)
}

t ∈ T (19)

where Zd,t is the water level of the downstream reservoir at time t; Td is the time set when
the reservoir during the flood control process; Rd,t is the release flow of the downstream
reservoir at time t; and T is the time set of the total operation period.

Flood control objective of upstream cascade reservoirs: In the flood control process of
cascade reservoirs, the upstream reservoirs can reduce the flood peaks for the downstream
reservoir. However, excessive use of upstream flood control storage capacity will increase
upstream flood control risks. Therefore, the objective of upstream cascade reservoirs is to
minimize the use of flood control storage capacity as follows:

maxF4 = min

{
max

(
Nu

∑
i=1

(Vi,t − Vmin
i )

)}
t ∈ Tu (20)

where Nu is the number of upstream cascade reservoirs; Tu is the time set when the
upstream reservoirs reduce the flood peaks for the downstream reservoir; Vi,t is the storage
volume of the i-th reservoir at time t; and Vmin

i is the flood limited water level of the
i-th reservoir.

Navigation objective: In order to improve the navigability of ships during the flood
season, the navigation objective is to maximize the navigation rate as follows:

maxF5 =
1
T

T

∑
t=1

fn(Rd,t) (21)

where fn( ) is the function of the navigation rate, which is related to the release flow Rd,t.

2.3.2. Constraints

Water balance constraint:

Vi,t = Vi,t−1 + Ii,t∆t +
Nui

∑
k=1

Rk,t−τk,i
∆t − Ri,t∆t (22)

where Vi,t is the storage volume of the i-th reservoir at time t; Ii,t is the interval flow of the
i-th reservoir during time period t; Ri,t is the release flow of the i-th reservoir during time
period t; Nui is the number of reservoirs upstream of the i-th reservoir; and τk,i is the time
delay from reservoir k to i.

Reservoir storage volume constraint:

Vi,min ≤ Vi,t ≤ Vi,max (23)

where Vi,min and Vi,max are the lower and upper storage volume limits of the i-th reservoir.
Release constraint:

Ri,min ≤ Ri,t ≤ Ri,max (24)

where Ri,min and Ri,max are the lower and upper release limits of the i-th reservoir.
Output constraint:

Ni,min ≤ ηi Hi,tQi,t∆t ≤ Ni,max (25)

where Ni,min and Ni,max are the lower and upper output limits of the i-th reservoir.
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2.4. Region Search Evolutionary Algorithm

The proposed optimization model of the HPFOR consists of 5 objectives. According to
the definition of the multi-objective optimization problem, when the number of objectives
is larger than 3, it is considered as a many-objective optimization problem (MaOP). In
order to solve MaOPs, a number of evolutionary multi-objective (EMO) algorithms have
been proposed, such as the multi-objective evolutionary algorithm based on decomposition
(MOEA/D) [37], the nondominated sorting genetic algorithm III (NSGA-III) [38], the θ
dominance-based evolutionary algorithm (θ-DEA) [39], and the region search evolutionary
algorithm (RSEA) [35]. In this paper, a constrained RSEA is applied to solve the many-
objective optimization model of the HPFOR. The main idea of the RSEA is to associate
each solution with a region and use the region search strategy to constrain the update
process, thereby enhancing the diversity of the population without losing convergence.
The framework of the RSEA is shown in Algorithm 1, and the details of the RSEA can be
seen in our previous work [40].

Algorithm 1: Framework of the RSEA

(λ1, λ2,. . ., λN) = InitializeWeights()
E = InitializeNeighborhood()
P = InitializePopulation()
z* = InitializeIdealPoint(P)
znad = InitializeNadirPoint(P)
while termination criteria is not satisfied do

for each subproblem i = 1, 2, . . ., N do
xc = Reproduction(MP) // xc is an offspring
z* = UpdateIdealPoint(xc)
znad = UpdateNadirPoint(xc)
Normalize(P, xc, z∗, znad)
P = UpdtaePopulation(MP, xc)

end for
end while

3. Case Study
3.1. Study Area

To verify the advantages of the proposed HPFOR, the Xiluodu, Xiangjiaba, and
Three Gorges cascade reservoirs in the Yangtze River are selected as the research areas. The
locations of the Xiluodu, Xiangjiaba, and Three Gorges cascade reservoirs are shown in
Figure 5. The Xiluodu Hydropower Station is located in the Jinsha River gorge at the junc-
tion of the Sichuan and Yunnan Provinces, the catchment area of Xiluodu is 454,400 km2.
Xiangjiaba Hydropower Station is the last hydropower station in the development of cas-
cade reservoirs on the lower reaches of the Jinsha River, it is 157 km away from the Xiluodu
Hydropower Station, and its catchment area is 458,800 km2. Three Gorges is located in
the middle of the Yangtze River, and the catchment area of the upper Yangtze River Basin
(from headstream to TGP) is about 1,000,000 km2. The main characteristics of Xiluodu,
Xiangjiaba, and Three Gorges are shown in Table 1.

Table 1. Main characteristics of Xiluodu, Xiangjiaba, and Three Gorges.

Reservoir Name Normal Water Level
(m)

Flood Control
Limit Level

(m)

Dead Water Level
(m)

Firm Power Output
(MW)

Installation Capacity
(MW)

Xiluodu 600 560 560 3395 13,860

Xiangjiaba 380 370 370 2009 6000

Three Gorges 175 145 145 4990 22,400



Water 2024, 16, 785 11 of 19

Water 2024, 16, x FOR PEER REVIEW  11  of  20 
 

 

Algorithm 1: Framework of the RSEA 

(λ1, λ2,…, λN) = InitializeWeights() 

E = InitializeNeighborhood() 

P = InitializePopulation() 

z* = InitializeIdealPoint(P) 

znad = InitializeNadirPoint(P) 

while termination criteria is not satisfied do 

        for each subproblem i = 1, 2, . . . , N do 

                xc = Reproduction(MP)    // xc is an offspring 

                z* = UpdateIdealPoint(xc) 

                znad = UpdateNadirPoint(xc) 

                Normalize(P, xc, z∗, znad) 

                P = UpdtaePopulation(MP, xc) 

        end for 

end while 

3. Case Study 

3.1. Study Area 

To verify the advantages of the proposed HPFOR, the Xiluodu, Xiangjiaba, and Three 

Gorges cascade reservoirs in the Yangtze River are selected as the research areas. The lo-

cations of the Xiluodu, Xiangjiaba, and Three Gorges cascade reservoirs are shown in Fig-

ure 5. The Xiluodu Hydropower Station is located in the Jinsha River gorge at the junction 

of  the  Sichuan  and Yunnan Provinces,  the  catchment  area  of Xiluodu  is  454,400 km2. 

Xiangjiaba Hydropower Station is the last hydropower station in the development of cas-

cade  reservoirs  on  the  lower  reaches of  the  Jinsha River,  it  is  157  km  away  from  the 

Xiluodu Hydropower Station, and its catchment area is 458,800 km2. Three Gorges is lo-

cated  in the middle of the Yangtze River, and the catchment area of the upper Yangtze 

River Basin (from headstream to TGP) is about 1,000,000 km2. The main characteristics of 

Xiluodu, Xiangjiaba, and Three Gorges are shown in Table 1. 

 

Figure 5. Location of Xiluodu, Xiangjiaba, and Three Gorges in the Yangtze River basin. 

Table 1. Main characteristics of Xiluodu, Xiangjiaba, and Three Gorges. 

Reservoir Name 

Normal Water 

Level 

(m) 

Flood Control 

Limit Level 

(m) 

Dead Water Level 

(m) 

Firm Power 

Output 

(MW) 

Installation Capacity 

(MW) 

Xiluodu  600  560  560  3395  13,860 

Figure 5. Location of Xiluodu, Xiangjiaba, and Three Gorges in the Yangtze River basin.

The flood control objective of Xiluodu–Xiangjiaba cascade reservoirs during the flood
season is mainly divided into the following two parts: one is to ensure the safety of
the flood control of Yibin, Luzhou, and Chongqing; the second is to cooperate with the
Three Gorges Reservoir to intercept flood peaks in the middle and lower reaches of the
Yangtze River to ensure the safety of Shashi and Chenglingji. The flood control objective of
Three Gorges is to minimize the flood peaks for downstream areas (Shashi and Chenglingji)
and control dam water levels to prevent potential major floods and ensure dam safety. The
navigation objective of Three Gorges is to improve the navigability of ships of various
powers to avoid ship grounding.

The historical daily flood data from June to September during the 41-year flood season
from 1970 to 2010 are used. The one-day-ahead streamflow probability forecast result of the
Xiluodu and Xiangjiaba cascade reservoirs and the three-day-ahead streamflow probability
forecast result of Three Gorges are also used as the model input data. The water level of
each reservoir at the beginning of the operation period is set as the flood limit water level.

3.2. Encoding and Constraints
3.2.1. Individual Encoding

The RSEA is applied to the many-objective HPFOR optimization model of the Xiluodu,
Xiangjiaba, and Three Gorges cascade reservoirs. According to the historical inflow and
the downstream flood control standards of the Xiluodu, Xiangjiaba, and Three Gorges
cascade reservoirs, the flow level of Xiluodu is divided into [0, 7500], [7500, 12,000], [12,000,
20,000], and [20,000, 25,000], the flow level of Xiangjiaba is divided into [0, 6500], [6500,
12,000], [12,000, 20,000], and [20,000, 25,000], and the flow level of Three Gorges is divided
into [0, 30,000], [30,000, 40,000], [40,000, 45,000], [45,000, 50,000], and [50,000, 55,000]. The
corresponding flow thresholds under each flow level x1~x13 and the flood retention flow of
Xiluodu and Xiangjiaba x14 and x15 are encoded as decision variables, where the decision
vector for each individual is represented as X = [x1, x2, . . ., x15].

3.2.2. Constraint Handling

The constraints of the HPFOR optimization model can be divided into two categories
including rigid constraints and flexible constraints. For rigid constraints such as the water
balance constraint, storage volumes constraint, release constraint, and decision variables
constraint, the program checks whether the constraints are satisfied during the evolutionary
update process and dynamically modifies the decision variables to make them always meet
the constraints. For flexible constraints such as output constraints, we define a constraint
violation function and finitely select individuals with smaller constraint violation values
during the evolutionary update process.
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3.3. Results and Discussion
3.3.1. Algorithm Performance Analysis

In order to analyze the performance of the RSEA on the many-objective optimization
model of the HPFOR, three state-of-the-art algorithms, including MOEA/D, NSGA-III,
and θ-DEA, are also applied to the proposed many-objective optimization model for
comparison. The systematic method proposed in the literature [41] is used to generate
85 weight vectors. The population size of the RSEA is set to 85, the neighborhood size is set
to 20, the probability δ is set to 0.9, the mutation probability is set to 1/85, the variation
distribution index is set to 20, and the maximum evolutionary generation of the algorithm
is set to 500. The details of the parameter settings of the four algorithms are shown
in Table 2.

Table 2. Parameter settings for the different algorithms.

Parameters RSEA MOEA/D NSGA-III θ-DEA

population size N 85 85 86 86

neighborhood size T 20 20 - -

penalty parameter θ - 5 - 5

crossover probability pc - 1.0 1.0 1.0

crossover distribution index ηc - 30 30 30

mutation probability pm 1/n 1/n 1/n 1/n

mutation distribution index ηm 20 20 20 20

The hypervolume (HV) value is used in our study as the performance metric, which
can simultaneously measure the convergence and diversity of the solution set. The HV
metric value is defined as:

HV(S, r) = volume
(

∪
f∈S

[ f1, r1]× . . . [ fm, rm]

)
(26)

where S is the set of final nondominated points; r = (r1, r2, . . ., rm)T is a set of reference
points in the objective space that is set to 1.1 times the upper bounds of the true Pareto
front; and volume(·) is the volume of the objective space dominated by the solutions in S
and bounded by r. A larger HV value implies a better quality.

The average HV values of the MOEA/D, NSGA-III, θ-DEA, and RSEA are presented
in Table 3. The table shows that the HV value of the RSEA is the largest among the
four algorithms, which verifies that the RSEA outperforms the other algorithms in both
convergence and diversity. To see the convergence and diversity of different algorithms
more intuitively, Figure 6 shows the radar figures of the final solution set obtained by the
MOEA/D, NSGA-III, θ-DEA, and RSEA. In the figure, all objectives are transformed into
the maximum optimal objective so that the closer the solution in the radar graph is to the
periphery, the better the objective value is. It can be seen from the radar figures that the final
solution set of the MOEA/D is only distributed in a small part of the coordinate system,
which indicates that the diversity of the MOEA/D is worse than the other algorithms. In
terms of the diversity of the final solution set, the RSEA has the best distribution among
the four algorithms. In terms of algorithm convergence, the MOEA/D only converges
on the flood control station security objective, the objectives of the NSGA-III converged
well except the power generation objective, and the θ-DEA and RSEA perform better than
the NSGA-III. The experimental results demonstrate that the RSEA can generally balance
convergence and diversity well and outperform the other algorithms in the proposed
many-objective optimization model.
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Table 3. The average HV values of the MOEA/D, NSGA-III, θ-DEA, and RSEA.

Algorithm HV Value

MOEA/D 1.02782
NSGA-III 1.37412

θ-DEA 1.43363
RSEA 1.44494

Water 2024, 16, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 6. Radar figures of the final solution set obtained by MOEA/D, NSGAIII, θ-DEA, and RSEA 
(F1: power generation objective, F2: reservoir safety objective, F3: flood control station security ob-
jective, F4: upstream cascade reservoirs flood control objective, F5: navigation objective). (a) 
MOEA/D, (b) NSGA-III, (c) θ-DEA, and (d) RSEA. 

3.3.2. Operation Process Analysis 
Table 4 shows the final solution set of the flood operation rule obtained by the RSEA 

and lists the power generation objective, the flood control objective of the Xiluodu and 
Xiangjiaba cascade reservoirs, the flood control objective of Three Gorges, and the navi-
gation objective for each solution. In addition, the operation result of the conventional 
flood control rule for the Xiluodu, Xiangjiaba, and Three Gorges cascade reservoirs is 
listed in the first column of the table. All schemes satisfy the flood control constraints: the 
maximum water level of Three Gorges is lower than 171 m, and the maximum release flow 
of Three Gorges is less than 5.5 × 104 m3/s. 

Table 4. The final solution set of the flood operation rule obtained by the RSEA. 

N 
F1 

(108 kWh) 
F2 

(m) 
F3 

(m3/s) 
F4 

(108 m3) 
F5 

(%) 
N 

F1 
(108 kWh) 

F2 
(m) 

F3 
(m3/s) 

F4 
(108 m3) 

F5 
(%) 

Figure 6. Radar figures of the final solution set obtained by MOEA/D, NSGAIII, θ-DEA, and
RSEA (F1: power generation objective, F2: reservoir safety objective, F3: flood control station
security objective, F4: upstream cascade reservoirs flood control objective, F5: navigation objective).
(a) MOEA/D, (b) NSGA-III, (c) θ-DEA, and (d) RSEA.

3.3.2. Operation Process Analysis

Table 4 shows the final solution set of the flood operation rule obtained by the RSEA
and lists the power generation objective, the flood control objective of the Xiluodu and
Xiangjiaba cascade reservoirs, the flood control objective of Three Gorges, and the naviga-
tion objective for each solution. In addition, the operation result of the conventional flood
control rule for the Xiluodu, Xiangjiaba, and Three Gorges cascade reservoirs is listed in
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the first column of the table. All schemes satisfy the flood control constraints: the maxi-
mum water level of Three Gorges is lower than 171 m, and the maximum release flow of
Three Gorges is less than 5.5 × 104 m3/s.

Table 4. The final solution set of the flood operation rule obtained by the RSEA.

N F1
(108 kWh)

F2
(m)

F3
(m3/s)

F4
(108 m3)

F5
(%) N F1

(108 kWh)
F2

(m)
F3

(m3/s)
F4

(108 m3)
F5

(%)

- 885.56 149.95 41,132 1.97 77.44 43 901.23 150.02 41,006 0.75 74.92
1 913.31 150.28 41,297 2.31 73.32 44 901.23 150.04 40,903 1.15 75.11
2 913.14 150.29 41,325 2.28 73.30 45 901.22 150.02 40,804 2.12 75.69
3 912.35 150.37 41,411 0.98 73.33 46 901.00 150.01 41,074 1.47 74.69
4 912.35 150.37 41,413 0.96 73.34 47 900.92 149.98 40,782 2.51 75.98
5 912.04 150.25 41,314 2.09 73.39 48 900.85 150.09 40,840 1.90 74.18
6 911.96 150.27 41,549 0.70 73.30 49 900.73 150.07 40,544 2.39 75.42
7 911.40 150.34 41,566 0.87 73.36 50 900.57 150.10 41,362 0.01 72.64
8 911.13 150.21 41,382 1.96 73.44 51 900.46 150.08 41,218 0.74 76.29
9 910.85 150.22 41,089 2.33 72.58 52 899.58 150.08 40,634 2.43 76.66

10 910.79 150.30 41,625 0.21 73.32 53 899.57 150.06 40,482 2.43 76.68
11 910.58 150.17 41,440 0.69 73.43 54 899.50 150.05 40,475 2.43 76.68
12 910.17 150.23 41,130 1.79 72.49 55 899.49 150.05 40,572 2.43 76.68
13 910.12 150.24 41,215 1.54 72.47 56 899.26 149.96 41,065 1.36 75.01
14 909.76 150.21 41,875 0.19 73.42 57 899.08 149.96 40,936 2.40 75.16
15 909.55 150.25 41,636 0.92 73.43 58 898.46 150.04 40,621 2.42 76.63
16 909.04 150.19 41,424 0.48 72.85 59 898.03 150.11 40,716 1.93 76.50
17 908.69 150.16 41,094 2.63 73.78 60 897.90 149.96 41,419 1.26 75.54
18 908.67 150.20 41,713 0.50 73.53 61 897.77 149.94 41,052 2.70 76.31
19 907.97 150.21 41,839 0.13 73.52 62 897.69 149.94 41,028 2.55 76.33
20 907.66 150.15 41,051 2.63 73.92 63 897.62 149.95 41,476 1.48 75.48
21 907.13 150.11 41,428 2.05 72.79 64 897.57 150.02 41,336 0.05 74.65
22 907.01 150.15 41,176 1.70 71.81 65 897.41 149.97 41,454 1.54 75.84
23 906.99 150.20 41,539 0.98 73.67 66 896.98 150.00 41,004 1.38 76.53
24 906.58 150.14 41,791 0.38 72.23 67 896.76 150.00 41,516 0.58 74.88
25 906.12 150.15 41,298 1.36 71.70 68 896.60 149.97 41,196 1.17 76.01
26 905.58 150.11 41,275 1.58 71.92 69 896.42 149.87 40,828 2.28 75.25
27 905.07 150.12 41,180 2.15 73.05 70 896.16 150.00 41,233 0.53 76.76
28 904.53 150.16 41,933 0.30 72.86 71 895.93 149.94 41,353 2.12 77.14
29 904.48 150.13 41,986 0.28 72.85 72 895.36 149.97 41,255 0.51 76.98
30 904.39 150.12 41,957 0.40 72.72 73 895.02 149.96 41,447 0.40 77.45
31 903.98 150.07 41,164 1.87 73.06 74 894.97 149.89 40,931 2.01 75.30
32 903.97 150.07 41,129 1.62 72.01 75 894.90 150.03 41,261 0.46 76.66
33 903.54 150.12 41,584 1.05 73.47 76 894.37 149.88 40,776 2.29 77.18
34 903.12 150.09 41,063 1.33 74.38 77 893.85 149.91 40,872 2.39 77.23
35 903.11 150.18 41,590 0.24 73.56 78 892.55 149.95 41,216 1.08 76.94
36 903.05 150.14 41,853 0.57 73.86 79 892.49 149.98 41,423 0.24 76.92
37 902.52 150.08 40,970 1.51 74.23 80 892.20 149.90 40,922 2.21 77.31
38 902.41 150.15 41,776 0.76 73.21 81 891.19 149.96 41,083 1.34 77.26
39 902.23 150.02 40,817 2.12 74.53 82 890.69 149.92 40,875 1.90 76.60
40 901.94 150.10 41,054 1.27 74.36 83 889.73 149.92 40,982 1.18 77.33
41 901.93 150.12 41,495 0.07 72.56 84 889.56 149.94 41,171 0.28 77.35
42 901.61 150.03 41,060 1.62 74.58 85 888.65 149.94 41,389 0.22 77.29

It can be seen from the table that the average multi-year power generation of the
cascade reservoirs is 885.59 × 108 kWh under the conventional flood control rule and
between 888.65 × 108 kWh and 913.31 × 108 kWh under the optimal HPFORs, which can
increase the power generation benefit by a maximum of 27.72 × 108 kWh. The multi-year
average maximum flood control level of Three Gorges is 149.95 m under the conventional
flood control rule and between 149.87 m and 150.37 m under the optimal HPFORs. The
multi-year average maximum release flow of Three Gorges is 41,132 m3/s under the con-
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ventional flood control rule and between 40,475 m3/s and 41,986 m3/s under the optimal
HPFORs. The usage of the Xiluodu–Xiangjiaba cascade flood control storage capacity is
1.97 × 108 m3 under the conventional flood control rule and between 0.01 × 108 m3 and
2.70 × 108 m3 under the optimal HPFORs. The navigation rate of Three Gorges is 77.44%
under the conventional flood control rule and between 71.70% and 77.35% under the op-
timal HPFORs. These data indicate that the proposed optimal HPFORs can significantly
improve the power generation efficiency of cascade reservoirs without overly affecting
flood control and navigation objectives.

In order to further analyze the real-time flood operation process of cascade reservoirs,
four typical schemes including 1, 25, 57, and 85 are chosen for verification. Figures 7 and 8
show the flow processes and water level processes of Three Gorges under the simulation of
four typical schemes of the conventional flood control rule in 1981 and 1998, respectively.
From the figures, we can see that the main differences between the proposed optimal
HPFOR and the conventional flood control rule are the following: (1) When the current
inflow is small and the forecast inflow is less than the flow threshold in the future, the
reservoir will store water according to the HPFOR, while the reservoir remains at the flood
limit level under the conventional flood control rule. (2) When the current inflow is small
and the forecast inflow is larger than the flow threshold in the future, the reservoir will
pre-release according to the HPFOR to ensure flood control safety. (3) During the flood
recession period, the reservoir will quickly empty the storage capacity through the limit
of the discharge flow under the conventional flood control rule, while the HPFOR will
gradually reduce the reservoir water level according to the forecast inflow.
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Figure 7. Release processes and water level processes of Three Gorges in 1981: (a) scheme 1,
(b) scheme 25, (c) scheme 57, and (d) scheme 85.



Water 2024, 16, 785 16 of 19Water 2024, 16, x FOR PEER REVIEW  17  of  20 
 

 

       
(a)  (b) 

(c)  (d) 

Figure 8. Release processes and water  level processes of Three Gorges  in 1998:  (a) scheme 1,  (b) 

scheme 25, (c) scheme 57, and (d) scheme 85. 

The four typical schemes 1, 25, 57, and 85 have different hierarchical flow thresholds, 

resulting in differences in pre-fill and pre-release processes. It can be seen from the figure 

that scheme 1 executes pre-fill processes when  the  inflow  is small, which can raise  the 

power generation head to increase power generation efficiency. Scheme 1 also executes 

pre-release processes, which can reduce the water level to the flood limit level before the 

flood to ensure the safety of subsequent flood control. The release and water lever pro-

cesses of scheme 85 are closest to the conventional flood control rule. This is because the 

flow threshold of scheme 85 is close to the lower boundary of the flow level, which will 

reduce the frequency of pre-fill processes. The only difference between scheme 85 and the 

conventional flood control rule is the pre-release processes during the flood recession pe-

riod. Scheme 85 slows down the rate of water level decline, which can reduce the water 

abandonment of the reservoir. 

In summary, the proposed HPFOR can effectively utilize future streamflow forecast 

and its uncertainty information and use the hierarchical pre-fill and pre-release strategy 

to instruct the reservoir pre-fill and pre-release operations. The simulation operation re-

sults indicate that the HPFOR can improve the water volume and head efficiency of cas-

cade reservoirs under the condition of flood control safety, which is beneficial for the uti-

lization of small and medium flood resources. 

3.3.3. Comparison with Other Studies 

The comparison of the RSEA with other state-of-the-art algorithms demonstrates that 

the RSEA can balance convergence and diversity well and outperform other algorithms 

when applied to the many-objective optimization model of the HPFOR. The comparison 

145

150

155

160

165

170

175

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

6/
1

6/
8

6/
15

6/
22

6/
29 7/

6

7/
13

7/
20

7/
27 8/

3

8/
10

8/
17

8/
24

8/
31 9/

7

9/
14

9/
21

9/
28

W
at

er
 le

ve
l（

m
）

St
re

am
fl

ow
（

m
3 /

s）

Date

Inflowl (normal) Inflow (schem 1)
Outflow (normal) Outflow (schem 1)
Water level (normal) Water level (schem 1)

145

150

155

160

165

170

175

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

6/
1

6/
8

6/
15

6/
22

6/
29 7/

6

7/
13

7/
20

7/
27 8/

3

8/
10

8/
17

8/
24

8/
31 9/

7

9/
14

9/
21

9/
28

W
at

er
 le

ve
l（

m
）

St
re

am
fl

ow
（

m
3 /

s）

Date

Inflowl (normal) Inflow (schem 25)
Outflow (normal) Outflow (schem 25)
Water level (normal) Water level (schem 25)

145

150

155

160

165

170

175

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

6/
1

6/
8

6/
15

6/
22

6/
29 7/

6

7/
13

7/
20

7/
27 8/

3

8/
10

8/
17

8/
24

8/
31 9/

7

9/
14

9/
21

9/
28

W
at

er
 le

ve
l（

m
）

St
re

am
fl

ow
（

m
3 /

s）

Date

Inflowl (normal) Inflow (schem 57)
Outflow (normal) Outflow (schem 57)
Water level (normal) Water level (schem 57)

145

150

155

160

165

170

175

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

6/
1

6/
8

6/
15

6/
22

6/
29 7/

6

7/
13

7/
20

7/
27 8/

3

8/
10

8/
17

8/
24

8/
31 9/

7

9/
14

9/
21

9/
28

W
at

er
 le

ve
l（

m
）

St
re

am
fl

ow
（

m
3 /

s）

Date

Inflowl (normal) Inflow (schem 85)
Outflow (normal) Outflow (schem 85)
Water level (normal) Water level (schem 85)

Figure 8. Release processes and water level processes of Three Gorges in 1998: (a) scheme 1,
(b) scheme 25, (c) scheme 57, and (d) scheme 85.

The four typical schemes 1, 25, 57, and 85 have different hierarchical flow thresholds,
resulting in differences in pre-fill and pre-release processes. It can be seen from the figure
that scheme 1 executes pre-fill processes when the inflow is small, which can raise the
power generation head to increase power generation efficiency. Scheme 1 also executes
pre-release processes, which can reduce the water level to the flood limit level before
the flood to ensure the safety of subsequent flood control. The release and water lever
processes of scheme 85 are closest to the conventional flood control rule. This is because
the flow threshold of scheme 85 is close to the lower boundary of the flow level, which
will reduce the frequency of pre-fill processes. The only difference between scheme 85 and
the conventional flood control rule is the pre-release processes during the flood recession
period. Scheme 85 slows down the rate of water level decline, which can reduce the water
abandonment of the reservoir.

In summary, the proposed HPFOR can effectively utilize future streamflow forecast
and its uncertainty information and use the hierarchical pre-fill and pre-release strategy to
instruct the reservoir pre-fill and pre-release operations. The simulation operation results
indicate that the HPFOR can improve the water volume and head efficiency of cascade
reservoirs under the condition of flood control safety, which is beneficial for the utilization
of small and medium flood resources.

3.3.3. Comparison with Other Studies

The comparison of the RSEA with other state-of-the-art algorithms demonstrates that
the RSEA can balance convergence and diversity well and outperform other algorithms
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when applied to the many-objective optimization model of the HPFOR. The comparison
of optimal HPFORs with the conventional flood control rule indicates that the HPFOR
can significantly improve power generation under the condition of flood control safety. In
addition to the comparison with other algorithms and the conventional flood control rule,
a recent hierarchical flood operation rule (HFOR) for the utilization of small and medium
flood resources is reproduced and compared to the HPFOR in this section.

The water level processes of Three Gorges in 1981 and 1998 of the HFOR, HPFOR,
and conventional flood control rule are shown in Figure 9. From the figure, we can see
that the water level of the HFOR remains at the flood limit water level 145 m before the
flood, which is the same as the conventional flood control rule. However, when a large fold
occurs, the HFOR controls the outflow of Three Gorges based on the water level and inflow,
causing the water level to rise rapidly to around 165 m, increasing future flood control risks.
In contrast, the HPFOR raises the operating water level of Three Gorges to around 153 m
when the inflow is small and pre-releases before the large flood comes, reducing the water
level to 145 m without increasing the flood control risks downstream. When a large flood
occurs, Three Gorges operates at the flood limit level of 145 m. This result indicates that the
HFOR improves water resource utilization by using graded outflow but increases flood
risks, while the HPFOR improves the utilization of small and medium floods and reduces
flood control risks of large floods by utilizing forecast information, which provides safer
and more reliable decision-making information for the reservoir managers.
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Figure 9. Water level processes of Three Gorges in 1981 and 1998: (a) 1981 and (b) 1998.

4. Conclusions

In this paper, the HPFOR, which is based on the two-stage reservoir operation model
and streamflow forecast uncertainty information, is proposed for cascade reservoir flood
control. Moreover, the many-objective optimization model of the HPFOR is established,
and the RSEA is employed to optimize the many-objective model. According to the
experimental results, we can find that the optimal HPFORs can execute the reservoir
pre-fill and pre-release operations at appropriate times and significantly improve the
power generation efficiency of a cascade reservoir without overly affecting flood control
and navigation.

This study develops a novel flood control rule, a hierarchical pre-release flood con-
trol rule, which utilizes the small and medium flood resources through flood forecasting
and its uncertainty information. A many-objective optimization model is proposed by
parameterizing the proposed flood control rule, and the region search evolutionary algo-
rithm is employed to optimize the many-objective model. Then, the proposed model is
applied in a real-world case study upstream of the Yangtze River basin. The optimization
experimental results are compared with three state-of-the-art algorithms, and the results
show that the region search evolutionary algorithm can balance convergence and diversity
well and outperform the other algorithms in the proposed many-objective optimization
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model. The simulation operation results of cascade reservoirs are also shown, indicating
that the optimized flood rule can improve the water volume and head efficiency of cascade
reservoirs under the condition of flood control safety, which is beneficial for the utilization
of small and medium flood resources. In summary, the real-world case study shows that
the proposed hierarchical pre-release flood control rule can use flood forecast information
to improve the utilization of small and medium floods and reduce the flood control risk of
large floods, which can provide a reliable decision direction for dispatch managers.
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