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Abstract: Aquifer properties, such as hydraulic transmissivity T and its spatial variability, are
fundamental for sustainable groundwater exploitation in arid regions. Especially in karst aquifers,
spatial variability can be considerable, and the application of geostatistical methods allows for spatial
interpolation and mapping based on observations combined with the quantification of uncertainties.
Moreover, direct measurements of T are typically scarce, while those of specific capacity Sc are more
frequent. In this study, we establish the linear regression relationship between the logarithms of T
and Sc measured in 51 wells in a semi-arid karst region in Northeastern Brazil. This relationship is
used to estimate empirical values logTemp based on measurements of logSc at 269 wells. LogTemp

values are found to be normally distributed with an isotropic variogram of a significant nugget
effect (attributed to local-scale karst features) and approximately 10 km range (attributed to larger-
scale gradual changes in karst feature density). Ordinary kriging cross-validation indicates an
optimum number of 25 neighboring wells for interpolation, which is used in a conditional sequential
Gaussian simulation (SGSIM) to generate 500 realizations of logTemp with respective maps of standard
deviations and probabilities of (not) exceeding threshold values. High-transmissivity areas mostly
coincide with karstified river valleys, while low-transmissivity areas occur toward the edges where
aquifer thickness decreases. The resulting transmissivity maps are relevant for optimizing regional
water management strategies, which includes stochastic approaches where transmissivity realizations
can be used to parameterize multiple runs of numerical groundwater models.

Keywords: groundwater; aquifer; specific capacity; variogram; kriging; stochastic simulation

1. Introduction

Hydraulic transmissivity T expresses an aquifer’s capacity to transmit water and is
frequently used for describing the groundwater exploitation potential. It is considered an
important parameter for designing groundwater management models, modeling ground-
water flow and contaminant transport, as well as selecting areas for well drilling and
artificial recharge projects [1–3]. Values of T are generally obtained with long-term pump-
ing tests that last a few hours or days. In contrast, tests to measure the specific capacity Sc
of a well require a shorter time to be carried out, where Sc represents the pumping rate per
unit of water table drawdown in a well at the end of a pumping period.

Karst aquifers typically have complex groundwater flow patterns as a result of deposi-
tional heterogeneities, fracturing, and post-lithification karstification [4,5]. Therefore, it is
not practical to perform a sufficient number of pump tests for characterizing the spatial
variability of T, and simpler empirical models are generally resorted to. Most observa-
tions under heterogeneous conditions indicate that T values calculated from Sc data are
consistent with those measured throughout pumping tests. Hence, empirical (log–log)
regression relationships for determining T from Sc in fractured karst aquifers have been
developed and applied to estimate T at pumped wells without requiring more cumbersome
pump tests [6–8].
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Geostatistical kriging methods have been applied for spatial interpolation of T between
available data points of Sc at such wells [1,7–10]. The typical premise in kriging is that close-
by samples are more similar to each other than those further apart (i.e., spatially decreasing
correlation as expressed by a variogram). One advantage of kriging is the calculation of
expected mean square errors for interpolated data (kriging variance). This interpolation
error is small near the observation points and increases in sparsely sampled regions.
However, the smoothing effect of kriging and the data-independence of the kriging variance,
which only relies on the variogram, are known limiting aspects. Therefore, the kriging
variance (or standard deviation) is not a reliable measure of estimation uncertainty, although
it may be useful to define the location of future observation points (e.g., monitoring
network optimization).

Stochastic simulation is a more sophisticated geostatistical method and commonly
used to produce realistic images (i.e., actual realizations and not mean estimates as kriging)
of a process from a dataset based on known data points, their univariate distribution
(histogram), and a variogram. A sufficient number of realizations allow for the calculation
of the best estimates at each location (e.g., simulation-based expectations) along with their
respective uncertainty measurements (e.g., simulation-based and, hence, data-dependent
standard deviations, confidence intervals, exceedance probabilities, or entire probability
distributions). A stochastic simulation has to consist of a sufficient number of realizations
to explore the complete uncertainty space of a parameter, and those realizations may be
used to propagate such uncertainty into subsequent results (e.g., numerically simulated
groundwater levels) by a Monte Carlo approach. Despite these advantages, the application
of such stochastic simulation approaches has so far been very limited in the context of
spatially variable hydraulic transmissivity [11] or other hydrogeological parameters [1,12]
in karst aquifers.

Our study area is the Salitre Karst Aquifer (SKA) located in the central region of
Bahia, Brazil. It has been the subject of different hydrogeological, hydrochemical, and
contamination vulnerability studies over the last 30 years [13–15], including preliminary
studies correlating hydraulic parameters, such as T and Sc [4,9,16]. The SKA is located
in a region with stunning landscapes and cultural diversity called Chapada Diamantina,
where nature-based tourism is an important economic activity. The network of galleries
and caves in the region make up one of the most relevant speleological sites in Brazil.
This area is possibly the place with the highest density of underground galleries per unit
area in Brazil with an enormous potential for speleological tourism [17,18], in addition
to hosting important archaeological, paleontological, and underground biodiversity in
South America [19–23]. As such, it is legally protected, although it lacks management plans
and environmental water strategies as well as a first fundamental characterization of its
hydraulic transmissivity that includes spatial variability and uncertainty.

The present study aims at performing stochastic simulations to map the transmissivity
T of the SKA and its uncertainty. Values of specific capacity Sc are used to estimate
T from an empirical relationship, while ordinary kriging and a conditional stochastic
simulation are used to produce best linear unbiased estimates (“BLUE”) and multiple
realizations of transmissivity maps, respectively. The mapping of the spatial variability and
uncertainty of T in the SKA will contribute to a better understanding of groundwater flow
patterns and location of areas with the greatest potential for well drilling and groundwater
exploitation. It will also help in artificial recharge projects and numerical modeling and for
the sustainable management of speleological tourism and water resources in the region.

2. Materials and Methods
2.1. Study Area and Hydrogeological Conditions

The SKA is located in the central region of the Chapada Diamantina, Bahia, Brazil
(Figure 1a). It is an unconfined aquifer with fracture and karst porosity, which is hosted
by an extensive plateau of Neoproterozoic carbonate rocks that can reach up to 900 m
in thickness [24,25]. The region has a tropical rainy and hot semi-arid climate, with an
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average annual temperature of 27.8 ◦C (varying between 18 ◦C and 38 ◦C) and an average
rainfall of 846 mm per year. Chapada Diamantina is a “hotspot” of the world’s tropical
biodiversity and extreme heat during the summer, which greatly increases the regional fire
hazard [26,27].
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Figure 1. (a) Location, schematic geological map of the central region of Chapada Diamantina and
detailed stratigraphy for the Salitre Formation. (b) Detailed hydrogeological conditions for the Salitre
Karst Aquifer (SKA). Modified from [15,28].

The SKA is part of the Rio Santo Antonio watershed at approximately 800 m above
sea level. It is surrounded by a mountainous region known as the Chapada Diamantina
Group, which, in turn, is at an average altitude of approximately 1500 m [28]. Geologically,
the study area consists of a sequence of Precambrian (Neoproterozoic) limestone and
dolostone layers of the Salitre Formation, which is further divided into Nova América and
Jussara units (Figure 1a). This carbonate sequence overlies the Precambrian terrigenous
clastic rocks of the Bebedouro Formation and the Chapada Diamantina Group [29]. The
sequence of carbonate rocks is partially covered by a thin layer of tertiary–quaternary
detrital sediments.

The Salitre Formation has a complex history with successive low-grade deforma-
tion and metamorphism events that gave rise to a system of faults, fractures, and folds.
Those are related to two phases of deformation linked to Neoproterozoic compressive
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tectonics that led to the formation of mobile belts along the margins of the São Francisco
Craton [29–32]. In the study area, the carbonate rocks exhibit a pattern of sub-horizontal
layers and E–W- and N–S-trending gentle folds, as well as N–S- and NNE–SSW-striking
fracture and vertical joint systems [32–34]. Anticlines and fractures favored the formation of
cave systems and paleokarst tunnels exposed above the water table that are widely used by
the population for speleological visits [35,36]. The intense deformation and metamorphism
undergone by rocks of the Salitre Formation highly increased the aquifer heterogeneity
affecting the dissolution of carbonate rocks. This led to the development of a network
with multiple conduits and channels for groundwater storage and flow, which makes the
process of mapping zones with great potential for well drilling and groundwater capture
even more complex [16,24].

The surface geomorphological features include dolines (Figure 1b) and karst depres-
sions known as collapse and suffosion sinkholes [16,37]. The annual recharge of the Salitre
aquifer, as calculated on the basis of a hydrometeorological water balance, varies between
55 and 65 mm/year, which is approximately 7% of precipitation. Infiltration events are
concentrated in the rainy season (November–March) [38,39]. Aquifer recharge is divided
into autogenic or allogenic. Autogenic recharge comes solely from rainfall that falls directly
on karst outcrops [15]. Allogenic recharge is sourced from underground flow through
underlying rocks or from surface water derived from the mountainous regions of the
Chapada Diamantina Group surrounding the karst plateau.

2.2. Data and Well Characteristics

The wells used in this work are generally for public and private supply, with residential
and irrigation use. Two different databases were explored, the first consisting of 51 “long-
term” (typically around 12 h) single-well pumping test data provided by the Companhia de
Engenharia Hídrica e de Saneamento da Bahia (Water and Sanitation Engineering Company
of Bahia State, CERB, Salvador, Brazil; Figure 2a). These tests were used for the estimation
of T with the Theis recovery method [40] and of Sc as the ratio of pumping rate and final
drawdown. To the best of our knowledge, multi-well pumping test data using additional
observation wells for an improved estimation of T are not available for the SKA. The
second group of data included specific capacity Sc values measured during 218 short-term
pumping tests (often shorter than 10 h). This database is available on the website of the
Sistema de Informações de Águas Subterrâneas do Serviço Geológico do Brasil [41] and the
Sistema Estadual de Informações Ambientais e Recursos Hídricos [42]. This resulted in a
total of 269 measurements of Sc (Figure 2b).

These wells have an average and maximum depth of 123 m and 200 m, respectively.
The average pumping rate is approximately 300 m3/d but can exceed 2100 m3/d (Table 1).
The water levels measured at the wells vary widely in depth from near surface levels in
low-lying regions to depths of up to 147 m in higher elevated areas, and correlation with
logSc is insignificant (R2 = 2 × 10−4 with p = 0.92). Since this is an aquifer with dual porosity
given the fracture systems and interconnected karst conduits, water entrances (i.e., well
intersections with water bearing fractures or conduits) occur at depths greater than 6.5 m
and sometimes close to the total depth of a well (Table 1). Individual wells in the dataset
possessed between one and six water entrances, but correlation of the number of entrances
to logSc was also insignificant (R2 = 3 × 10−3 with p = 0.73). Generally, wells do not possess
a filter at all and exist as open boreholes in the karst rock below a top casing.
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1 
 

 
  
Figure 2. Location of the Salitre aquifer pumping wells used in this study. (a) Well data from the
CERB database used for the calculation of transmissivity T by the recovery method [40] and of specific
capacity Sc. (b) Specific capacity well data available on all databases.

Table 1. Main characteristics of the wells located in the SKA within the study area. The locations of
the wells are shown in Figure 2.

Parameters Min 1 Max 2 Mean Median SD 3 CV 4

Pumping rate (m3/d) 5 2112 306 262 247 0.8
Water table depth (m) 0 147 46 40 32 0.7

Water entrance depths (m) 6.5 190 77 73 41 1
Well depth (m) 21 200 123 120 39 0.7

1 Minimum; 2 Maximum; 3 Standard deviation; 4 Coefficient of variation.

2.3. Linear Regression

Values of transmissivity T were calculated using pumping test data according to the
Theis recovery method [40]. To establish the linear relationships between the logarithms
of specific capacity Sc and empirical estimates Temp of transmissivity, a linear regression
model was created for 51 pairs of logT and logSc values (Figure 2a). Theoretical equations
for the empirical relationships between T and Sc in other aquifers have been established by
different authors [3,6,7,9,10]. The test of normality for logT and logSc values was carried
out using the Shapiro–Wilk method [43].

2.4. Semivariogram

The semivariogram γ (short “variogram” hereafter) is a curve that describes the degree
of spatial continuity as well as the degree of anisotropy in spatial variability of a given
dataset Z at coordinates xi. It represents half of the mean square of differences among the n
pairs of data points in the study area with a distance h from each other:

γ(h) =
1

2n∑n
i=1(Z(xi + h)− Z(xi))

2 (1)

In a typical situation, the variance increases with the distance among sampling points
up to a maximum level (sill) that corresponds to the total variance [44]. Here, the theoretical
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variogram is visually adjusted to the empirical variogram points from Equation (1), giving
higher importance to shorter lag distances to optimize for spatial interpolation.

2.5. Ordinary Kriging

Kriging has been widely applied in many environmental studies, with ordinary kriging
being the most prominent interpolation method given its simplicity and the quality of
results provided [44–47]. It is a point estimation method, where the estimated value Z* at
an unsampled point x0 results from the weighted linear combination of m observations
Z(xi) with weights λi found in the neighborhood.

Z∗(x0) = ∑m
i=1 λiZ(xi) (2)

The kriging weights λi for a given location x0 are determined based on the variogram
by minimizing the kriging variance at x0. The best value of m is determined from cross-
validation using the root mean square error (RMSE). Here, the numerical grid mesh used
for both kriging and stochastic simulations contains 8191 square cells, each with sides
of 500 m.

2.6. Conditional Stochastic Simulation

We used the conditional sequential Gaussian simulation [45,46] of logTemp after con-
firming normality according to [43]. A total of 60 simulations were carried out to assess
a sufficient number of realizations. Each simulation consisted of a growing number from
10 to 600 realizations. For each simulation, the variance was calculated at every grid node
using the respective number of realizations, and the spatial mean of these variances was
determined. This mean variance increased with the number of realizations but stabilized
when the number of realizations was sufficient to represent the whole process variability.
We calculate the mean variance increment (MVI) from one simulation to the next and used
the proximity of MVI to zero as a criterion to infer the sufficient number of simulations.
From the distribution of transmissivity values simulated at each grid location, expectations,
standard deviations, and probabilities of (non) exceedance of certain threshold values
were computed.

3. Results
3.1. Empirical Relationship between Specific Capacity and Transmissivity

The values of T and Sc for the Salitre aquifer calculated with the recovery method [40]
are shown in Table 2. Sc varies from 2 to 870 m2/d, while T ranges between 1 and 980 m2/d.
This wide variation in T is a reflection of aquifer heterogeneity due to the complex fracture
systems and karst conduits. The high level of aquifer heterogeneity is also well documented
in independent field observations [15,16]. The high skewness in T and Sc values is also
reflected by the differences between the mean and median for each parameter, which are
greater than 100% for both.

Table 2. Summary statistics of Sc and T (both in m2/d) and their decimal logarithms for N = 51 wells
(Figure 2a).

Attributes Min 1 Max 2 Mean Median SD 3 CV 4

Sc 2 871 159 73 202 1.27
logSc 0.37 2.94 1.78 1.86 0.68 0.38

T 1 980 133 50 209 1.57
logT −0.05 2.99 1.55 1.71 0.81 0.52

1 Minimum; 2 Maximum; 3 Standard deviation; 4 Coefficient of variation.

Figure 3a shows the correlation between T and Sc with a linear regression fit as well as
the univariate distributions represented by the boxplots for each parameter. These boxplots
show positive skewness, indicating the predominance of small values close to zero over
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few large values above 500 m2/d. After applying a logarithmic transformation with base
ten (log10 where the base “10” will be omitted from now on), a symmetrical distribution is
achieved and both parameters have a good linear correlation (Figure 3b). The normality
tests [43] for logT and logSc resulted in p-values of 0.17 and 0.19, respectively, and therefore,
the null hypothesis of normal distributions was not rejected. 

2 

 
  Figure 3. Scatter plots between T and Sc (green circles) with linear regression lines (red) and
confidence intervals (green shaded). (a) Raw data displaying skewed distributions and (b) decimal
logarithms with more symmetrical distributions.

The correlation between logT and logSc (Figure 3b) shows a good linear fit as indicated
by the coefficient of determination R2 = 0.85 (p = 2.2 × 10−16) of the linear regression (red
line). Such a good correlation between Sc and T for fractured and karst aquifers have also
been reported for other regions [3,4,6,7,48]. The functions that express the linear regression
model and its antilogarithmic transformation are shown in Equations (3) and (4), respectively.

log
(
Temp

)
= −0.37 + 1.08 log(Sc) (3)

Temp = 0.42 Sc
1.08 (4)

where Temp is the empirical transmissivity estimated from the measured Sc values.

3.2. Transmissivity Estimation and Spatial Interpolation

Values of logTemp and Temp calculated from the Sc available for the SKA using Equa-
tions (3) and (4) are summarized in Table 3. The results reveal a large difference between
the mean and median values of Temp due to a skewed distribution. On the other hand,
the differences between the mean and median for logTemp values are smaller, which is
also reflected by a p-value of 0.17, which does not reject the null hypothesis for normality
according to the Shapiro–Wilk test.

Table 3. Summary statistics of Sc and Temp (both in m2/d) and their decimal logarithms for
N = 269 wells (Figure 2b).

Attributes Min 1 Max 2 Mean Median SD 3 CV 4

Sc 0.9 8448 617 158 1106 1.79
logSc −0.04 3.93 2.25 2.2 0.74 0.33

Temp 0.4 7314 471 100 912 1.94
logTemp −0.42 3.86 2.05 2 0.8 0.39

1 Minimum; 2 Maximum; 3 Standard deviation; 4 Coefficient of variation.

The computation of the experimental logTemp semivariogram took into account the
following azimuth directions in degrees: 0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5. The semivari-
ogram shows an exponential isotropic behavior with a range of 10 km and a nugget effect
that accounts for approximately 60% of the total variance (Figure 4). The high value of the
nugget effect can be explained by the uncertainties of measuring Sc, the transformation into
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logTemp estimates using Equation (3), as well as heterogeneities at the scale of a few tens
or hundreds of meters (smaller than the typical separation distance among neighboring
wells). These heterogeneities are linked to the complex fracture system and karst conduits
in the aquifer, as demonstrated by [13,37]. The structural variability up to 10 km can be
attributed to a more gradual variability of the mean intensity of the aquifer heterogeneities.

 

3 

 
  

Figure 4. Theoretical semivariogram (solid line) overlying the experimental omnidirectional semivar-
iogram (dots with size indicating the number n of data pairs used) of logTemp in m2/d as a function
of lag distance h in m.

Cross validation from ordinary kriging indicates that the best neighborhood consists
of m = 25 wells with a minimum RMSE of 0.75 for logTemp when used in units of m2/d
(Figure 5, black line). This neighborhood was found as the minimum number of wells,
above which no significant reductions in RMSE occurs. The minimum value of RMSE is
relatively large, which is partially due to the significant nugget effect in the variogram, but it
is also significantly smaller than the total range of logTemp of approximately 4.3 encountered
in the study are (Table 3).

The ordinary kriging estimates for logTemp values as a function of the 25 nearest
neighbors as well as the theoretical semivariogram from Figure 4 are shown in Figure 6a.
The results yield logTemp values (with Temp in m2/d) that range between 1.1 and 2.8,
displaying the highest values throughout the western boundary and in isolated areas of
the central regions of confluences from the surrounding drainage network. These areas are
fed by surface water deriving from the metasedimentary rocks of the Chapada Diamantina
Group and account for the allogenic recharge of the SKA [35,49]. On the other hand,
Figure 6b shows that the highest ordinary kriging standard deviations of logTemp are at the
contact zones between the SKA carbonate rocks and the underlying basement rocks since
these areas have a low density of groundwater wells (fewer data points).



Water 2024, 16, 780 9 of 16
 

4 

 
  

Figure 5. Variation in RMSE from cross-validated logTemp values in m2/d as a function of the number
m of nearest neighbors used in ordinary kriging (vertical black line indicating optimum value chosen
of m = 25). 

5 

 
  Figure 6. Spatial representation of (a) ordinary kriging estimates of logTemp and (b) respective
ordinary kriging standard deviations SD.

3.3. Stochastic Simulation of Transmissivity

The results of the stochastic simulations yielded near-zero MVI values for a number
of r ≈ 500 realizations (Figure 7), which is therefore considered a sufficient number of
realizations for logTemp stochastic simulations. The averages of conditional realizations of
logTemp are presented in Figure 8a, while the associated standard deviations are shown in
Figure 8b. Given the nature of the methods, the ordinary kriging interpolations (Figure 6a)
and the mean of the conditional sequential Gaussian simulation for 500 realizations show
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consistent results. Similar to the pattern obtained through ordinary kriging (Figure 6b),
areas with lower sampling density also have the highest simulated standard deviations
(Figure 8b). However, the range of the simulated standard deviations (0.6 to 0.9) is three
times that of the ordinary kriging (0.7 to 0.8), which is based merely on the variogram and
not on the data itself, as it is the case in the stochastic simulation.

 

6 

 
  

Figure 7. Decrease of the mean variance increment (MVI) with a growing number of realizations r
used for the stochastic simulation.

Figure 8c shows the probabilistic zoning for logTemp values smaller than 2 (i.e.,
Temp < 100 m2/d) and, therefore, reveal the south-central, north-central, and northeast
zones of the aquifer as likely low-transmissivity areas. The spatial domains displaying
the highest probabilities of large logTemp values greater than 2.5 (i.e., Temp > 316 m2/d) are
shown in Figure 8d. Those areas with higher water potential are associated with conver-
gences in the drainage network receiving allogenic recharge to the aquifer and a larger
potential for limestone dissolution (conduit formation). Areas with low probabilities of
both Temp < 100 m2/d and Temp > 316 m2/d (shades of green in Figure 8c,d simultaneously)
display a high probability of intermediate transmissivity.
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7 

 

Figure 8. Spatial representation of results from 500 stochastic realizations of logTemp (with Temp in
m2/d). (a) Means of logTemp at each location, (b) standard deviations SD, (c,d) probability of logTemp

values lower than 2 (i.e., Temp < 100 m2/d) and higher than 2.5 (i.e., Temp > 316 m2/d), respectively.

4. Discussion
4.1. Regression

The regression coefficients in Equation (4) resulted as a = 0.42 (multiplier) and b = 1.08
(exponent) with R2 = 0.85 (log–log coefficient of determination). While b and R2 are very
similar to that in other studies in karst aquifers, a is relatively low (Table 4). However,
its value is still consistent with a previous study in the SKA [16], which included a larger
portion of the aquifer but did not attempt to achieve any spatial mapping or uncertainty
assessment. Moreover, a difference in a by a factor of two to other aquifers is still much
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smaller than the full range of T here, spanning over three orders of magnitude (factor of
approximately 1000; Table 4). In fractured rock aquifers, values of a as low as 0.12 have
been reported [48,50].

Table 4. Summary of data for Sc and T with regression and variogram results (where available) for
related and the present studies in karst aquifers.

Sc T Regression Variogram

Reference N 1 (-) Min 2–Max 3

(m2/d)
N (-) Min 2–Max 3

(m2/d)
Temp

(m2/d)
R2 (-) Nugget/Sill (-) Range

(km)

[8] 124 5.75–1141.4 45 8.41–1940 0.85Sc
1.07 0.95 0.4 0.6

[10] - - 422 50–2200 - - 0.1 40

[7] 71 14.6–12,948 71 1–100,000 0.76Sc
1.08 0.89 - -

[50] 14 65.9–47,455 14 100–100,000 1.23Sc
1.05 0.8 - -

[16] 1334 0.63–3738 213 0.64–3490 0.5Sc
1.05 0.84 - -

This study 269 0.9–8448 51 1–980 0.42Sc
1.08 0.85 0.6 10

1 Number of wells; 2 Minimum; 3 Maximum.

To further investigate possible reasons for the small value of a in the SKA, we resort
to the classical Theis solution with adjustments for well losses sl and a partial penetration
factor sp. A respective relationship between well drawdown sw and T has been established
as [48,50]

T =
Q

4π(sw − sl)

[
ln
(

2.25Tt
r2

wS
+ 2sp

)]
(5)

where S is the storage coefficient and rw the well radius. Equation (5) can be reformulated
into T = aSc, where Sc = Q/sw and

a =
1

4π
(

1 − sl
sw

)[ln
(

2.25Tt
r2

wS
+ 2sp

)]
(6)

The multiplier a also grows with T, which is related to the fact that the empirical
relationship in Equation (4) becomes non-linear, with an exponent b somewhat larger than
one. For some given average transmissivity T, Equation (6) also shows that a decreases with
smaller pumping times t used for estimating Sc. Since these pumping times are only around
12 h in our study area (Section 2.2) and the range of T is lower (Table 4), the adjusted value
of a also becomes smaller. Intuitively, this compensates for the effect of overestimating Sc
when pumping times are short because the “steady-state” drawdown is underestimated.
In addition, wells in the SKA are mostly fully penetrating and left as open boreholes (no
filter screen) below a top casing (Section 2.2), such that sl and sp are close to zero and do not
raise the value of a due to the effects of well losses and partial penetration. Finally, larger
well radii rw may also decrease a (to the square in the denominator of the argument of the
logarithm), which is also a potential factor in the SKA, where uncased borehole diameters
in the strongly karstified rock may be larger than the nominal drilling diameters and highly
variable with depth (including intersections with large flow conduits). Equation (6) with
values of T = 50 m2/d (median in Table 2), t = 0.5 d (typical pump test time in SKA),
rw = 0.5 m (enlarged borehole cavity), and S = 0.25 (specific yield of a highly karstified
aquifer) results in a value of a ≈ 0.5, for example. Note that rw and/or S may even be larger
at intersections with large flow conduits, thus further lowering a.

The regression relationship in Equations (3) and (4) is defined for the data of Sc
in the range of 2 to 871 m2/d (standard deviation SD = 202 m2/d; Table 2), while the
transmissivity estimation based on this regression relationship is over the range of Sc from
0.9 to 8448 m2/d (SD = 1106 m2/d; Table 3). Only two values are smaller than 2 m2/d, but
approximately 20% of the values for Sc in Table 3 are larger than 871 m2/d. This means
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that the regression relationship is used to extrapolate values of Temp within that range, and
associated uncertainties are not accounted for in the results. Another type of uncertainty
that is not accounted for in our approach is due to the prediction error of the regression
model (see shaded confidence interval and dispersion of data point around regression line
in Figure 3b). Thus, the uncertainty estimates and probabilities of (not) exceeding certain T
thresholds in Figure 8 have to be regarded as lower bounds.

4.2. Variogram and Kriging

The relative nugget effect (60%) and range (10 km) of the variogram in Figure 4 are
consistent with previous studies in karst aquifers (Table 4). The combination of regression
and ordinary kriging applied here is a simplified approach with respect to cokriging, for
example, which could directly consider a scarcely sampled primary variable (here, logT)
and one (or several) more abundantly sampled secondary variable(s) (here, logSc). To build
a full cokriging system, variograms of the primary and the secondary variables, as well as
a cross-variogram between both variables, need to be inferred from the data and have to
meet certain compatibility requirements. In our study area, however, the variogram of logT
from 51 well recuperation tests does not present any spatial correlation at all (pure nugget
effect; chart not shown). Moreover, the numbers of data pairs for short lag distances are
very small, hence, rendering those variogram points unreliable.

A simplified and less restrictive cokriging approach is collocated cokriging, which
does not require a variogram of the secondary variable or a cross-variogram. It only
requires a correlation coefficient between primary and secondary variables (as implied
here in the regression relation) and a variogram of the primary variable. However, for the
present situation, where the variogram of the primary variable does not present any spatial
correlation, such a full or collocated cokriging would collapse to the approach actually
taken in this study for computing estimates (or “transformed values”) for the logTemp of
logT at locations where logSc is known [46] (pp. 309, 339). When further using ordinary
kriging for estimating logTemp at all grid locations based on given values of logTemp at all
wells, this becomes a type of “kriging with transformed values” [50]. The same line of
reasoning applies to the conditional stochastic simulation based on values of logTemp only.

5. Conclusions

This work collected hydraulic transmissivity T and specific capacity Sc data from 51
and 269 wells, respectively, installed throughout the Salitre Karst Aquifer (SKA) in the
semi-arid northeast of Brazil. Values of logTemp were estimated using a linear regression
between logT and logSc measurements from the same wells. The univariate distributions
(histograms) of logTemp and logSc passed the test of normality. The semivariogram displays
an exponential and isotropic behavior with a high nugget effect. This large randomness
was expected due to the high aquifer heterogeneity as a consequence of the expressive
fracture system with high degree of karstification and also due to errors of single-well test
data processing (i.e., a Theis recovery without observation wells). However, there is also
structural variability within a range of approximately 10 km. This is likely the result of a
more gradual and regional variability of the average fracturing and karstification intensities.

Ordinary kriging indicates an optimal number of 25 closest neighboring wells for
interpolation. Using the same neighborhood, a conditional sequential Gaussian simulation
was performed with 500 realizations, confirming the best estimates of logTemp from ordinary
kriging and also returning spatial uncertainty estimates in the form of standard deviations
as well as the probabilities of exceeding or not exceeding certain transmissivity threshold
values. The regions with the largest hydraulic transmissivities were identified in the
vicinity of the main rivers in the region. There, the allogenic recharge of the aquifer,
which is associated with the drainage network fed by the mountain highs carved on the
siliciclastic metasedimentary rocks of the Chapada Diamantina, lead to stronger degrees
of karstification. The low-transmissivity regions occur mainly in higher elevated aquifer
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zones with a lower degree of karstification as well as along the edges of the karst domain,
where the aquifer thickness decreases significantly.

We recognize that the data available are relatively uncertain due to the single-well
pump test procedure in addition to the strong short-range spatial variability due to the
inherent hydrogeological variability in the karst aquifer. However, to the best of our
knowledge, the data used are the only available for the region. Despite these limitations,
the variogram still presents 40% of the structural variability (besides the 60% nugget),
which manifests in the spatial distribution of high and low transmissivity areas mapped in
Figures 6 and 8. Although the kriged and simulated SDs are as high as that of the sample
logT data in some areas (particularly along the aquifer borders, where wells are sparser),
the probability maps in Figure 8c,d appear informative by identifying significant portions
of the study area with large likelihoods of either high or low transmissivities.

This work produced a first set of spatially distributed transmissivity estimates for
the study area that are in general agreement with geological properties and processes
known in the region. Although uncertainties are large, this represents an advance in the
hydrogeological knowledge of the SKA as well as in the establishment of transmissivity
zones for Precambrian karst aquifers. The results may be useful for the parametrization
of regional numerical models (e.g., Modflow) in terms of heterogeneous hydraulic trans-
missivity. Furthermore, these models can be run repetitively for different realizations of
transmissivity, which allows for the propagation of uncertainties associated with the final
results of a drawdown, for example. Therefore, the results herein obtained can contribute
to an improved management of groundwater resources in the SKA, and they can help to es-
tablish better policies for groundwater exploitation based on technical criteria. Further data
acquisition and modeling are needed, however, to extend the study area over the remaining
(northern) part of the SKA and to allow for a direct inclusion of observed transmissivities T
from pump tests (preferentially including observation wells to improve T estimates with
respect to the single-well method applied so far) besides the empirical estimates Temp in the
stochastic simulation.
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