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Abstract: Reliable streamflow forecasting is a determining factor for water resource planning and
flood control. To better understand the strengths and weaknesses of newly proposed methods in
streamflow forecasting and facilitate comparisons of different research results, we test a simple,
universal, and efficient benchmark method, namely, the naïve method, for short-term streamflow
prediction. Using the naïve method, we assess the streamflow forecasting performance of the long
short-term memory models trained with different objective functions, including mean squared error
(MSE), root mean squared error (RMSE), Nash–Sutcliffe efficiency (NSE), Kling–Gupta efficiency
(KGE), and mean absolute error (MAE). The experiments over 273 watersheds show that the naïve
method attains good forecasting performance (NSE > 0.5) in 88%, 65%, and 52% of watersheds
at lead times of 1 day, 2 days, and 3 days, respectively. Through benchmarking by the naïve
method, we find that the LSTM models trained with squared-error-based objective functions, i.e.,
MSE, RMSE, NSE, and KGE, perform poorly in low flow forecasting. This is because they are more
influenced by training samples with high flows than by those with low flows during the model
training process. For comprehensive short-term streamflow modeling without special demand
orientation, we recommend the application of MAE instead of a squared-error-based metric as
the objective function. In addition, it is also feasible to perform logarithmic transformation on
the streamflow data. This work underscores the critical importance of appropriately selecting the
objective functions for model training/calibration, shedding light on how to effectively evaluate the
performance of streamflow forecast models.

Keywords: streamflow prediction; objective function; machine learning; deep learning

1. Introduction

Water serves as a critical elemental resource essential for both the sustenance and
progress of humanity. However, with the impact of global climate change and human
activities, the availability of water resources is steadily diminishing [1]. The efficient and
rational utilization of water resources has, thus, emerged as a global concern. Streamflow,
being the primary accessible water resource for human beings, necessitates the implementa-
tion of appropriate engineering and non-engineering measures, such as reservoir operation
and water resource dispatching, as effective strategies for optimizing their utilization.
Reliable short-term streamflow forecasting stands as a crucial assurance for the smooth
implementation of these methods [2]. Conversely, flooding remains one of the major natural
meteorological disasters worldwide, characterized by sudden onset, extensive reach, and
severity. Currently, streamflow forecasting also plays a pivotal role in responding to and
mitigating such floods. The advanced and reliable prediction of basin streamflow serves as
essential guidance for flood prevention and mitigation efforts [3].
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In the early days, studies on hydrological models generally focused on isolated hydro-
logical processes, yielding seminal theoretical concepts and formulas. Notable among these
are the unit hydrograph concept proposed by Sherman [4], Horton’s runoff production
theory [5], and the Penman Monteith equation for evaporation calculation [6]. With a
better understanding of the comprehensive hydrological processes (e.g., infiltration, soil
water movement, runoff generation, and evapotranspiration), the concept of a “watershed
hydrological model” was developed to describe the various aspects of watershed hydro-
logical processes as an integrated system [7]. Hydrological researchers have proposed
various aggregate hydrological models with abstract generalized equations describing
basin hydrological processes, such as the Xinanjiang model [8], the tank model [9], the SCS
model [10], and the API model [11]. The concept of the distributed hydrological model was
first introduced by Freeze and Harlan in 1969. Compared with the aggregate hydrologi-
cal models, these models consider the spatial heterogeneity of meteorological condition,
model parameters, and interactions between individual hydrological processes over the
entire basin. These advancements promote an understanding of model mechanisms and
improve model performance. The most prominent distributed hydrological models include
HEC-HMS [12], MIKE11 [13], SWAT [14], and WRF-Hydro [15].

In recent years, there has been a notable surge in the utilization of data-driven ap-
proaches in hydrological studies, owing to the exponential growth of hydrometeorological
data and advancements in algorithms [16–19]. Among these approaches, deep learning
methods have gained considerable traction, demonstrating considerable promise. Numer-
ous studies have underscored their efficacy in streamflow simulations/predictions, often
outperforming traditional process-based models [20–22]. Frame et al. [23] identified a criti-
cal limitation inherent in process-based models like the National Water Model, highlighting
their tendency to lose crucial information during the propagation from atmospheric forcing
inputs to outputs. This loss of information ultimately leads to suboptimal performance
compared to deep learning models. Similarly, Nearing et al. [24] illustrated how deep
learning methods hold the potential to mitigate uncertainties arising from issues such as
downscaling atmospheric forcing data to watershed scales and errors in hydrological model
structure and parameter estimation during streamflow prediction model development.

In a deep learning model, the determination of numerous parameters is crucial during
model training. The choice of the objective function holds paramount importance as it
significantly influences the calibrated values of model parameters and thereby impacts
the model outputs [25]. In previous research, squared-error-based metrics, such as mean
squared error (MSE) and root mean squared error (RMSE), have been widely employed
as objective functions for streamflow predictions [26]. For example, Granata et al. [27]
utilized squared error as the objective function when training the MLP model to forecast
daily streamflow across four watersheds. Feng et al. [21] employed RMSE to minimize
the disparity between predicted streamflow and USGS observations. The Nash–Sutcliffe
efficiency (NSE) is a normalized version of MSE [28], representing the ratio of the error
of the forecast model to the error obtained by considering the observational mean as
the forecast. Despite certain limitations associated with NSE [29], its usage has gained
momentum in recent studies focusing on streamflow prediction [30,31].

In hydrological modeling studies, establishing baseline models is a common practice.
Typically, these models are constructed using methods that have undergone extensive
scrutiny and have exhibited commendable modeling performance. Comparing these mod-
els against baseline models offers valuable insights into the advancements or limitations
of newly proposed or applied methods. For instance, Ghobadi and Kang [32] applied
LSTM-BNN, BNN, and LSTM with Monte Carlo dropout as benchmarks to evaluate the
proposed Bayesian long short-term memory model, demonstrating the superiority of the
probabilistic forecasting approach over deterministic models for multi-step-ahead daily
streamflow forecasting. Similarly, Lin et al. [33] showcased the advantages of machine learn-
ing algorithms over statistical methods for hourly streamflow prediction by benchmarking
against multiple linear regression, autoregressive moving average, and autoregressive
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integrated moving average models. Furthermore, some studies have employed process-
based models as benchmarks for evaluating deep learning models (e.g., Frame et al. [22],
Kratzert et al. [34], and Kratzert et al. [35]). However, it is essential to note that bench-
marking the entire spectrum of existing hydrological modeling approaches is impractical.
Researchers typically select benchmark models based on their expertise or personal prefer-
ence, leading to a situation where modeling approaches are not consistently and effectively
compared and evaluated across research, especially in diverse regional case studies. This
challenge has, to some extent, impeded the progress of hydrological modeling research [24].

In this study, we examined a straightforward and effective benchmark approach for
short-term streamflow prediction known as the naïve method, which relies on the inherent
characteristics of streamflow series. We conducted a comprehensive evaluation of this
method across 273 watersheds in the continental United States. Additionally, we employed
the long short-term memory network (LSTM) to establish streamflow forecasting models.
Through benchmarking against the naïve method, we evaluate model performances using
various metrics as objective functions, including MSE, RMSE, NSE, Kling–Gupta efficiency
(KGE), and mean absolute error (MAE). The remainder of this paper is structured as follows:
Section 2 outlines the methods and data utilized in this study. The experimental results
and discussion are presented in Sections 3 and 4, respectively, followed by a conclusion in
Section 5.

2. Materials and Methods
2.1. Naïve Method

In the context of this study, the naïve method involves making predictions for daily
streamflow by simply taking the streamflow value of the current day and using it as
the forecast for subsequent days [36]. This method capitalizes on the high temporal
autocorrelation commonly observed in short-term streamflow series, making it a reasonable
approach for short-term forecasting tasks. Specifically, the naïve method assumes that
the future streamflow values will be similar to the current value due to the persistence of
short-term patterns in the data.

The naïve method is well suited to serve as a baseline for benchmarking other forecast-
ing models due to its simplicity, universality, and effectiveness in short-term streamflow
forecasting. Firstly, it is applicable to virtually all current studies, as it solely relies on the
streamflow observation sequence, a fundamental requirement for evaluating and poten-
tially training models in these studies. Secondly, its operational simplicity is noteworthy,
as it merely involves shifting the observation sequence. Lastly, predictions generated by
the naïve method are generally acceptable or even excellent, often exhibiting hydrological
signatures that closely resemble the observed data (as demonstrated in Section 3.1).

2.2. Long Short-Term Memory Model

In this study, we apply long short-term memory (LSTM) to establish the streamflow
forecasting models. LSTM is a well-established neural network model that can be used to
efficiently process sequential data [37]. It controls the input, processing, forgetting, and
output processes of the data through the internal gating structures. In recent years, there
have been an increasing number of studies that applied LSTM for streamflow forecasting
and produced positive outcomes, e.g., Feng et al. [21], Granata et al. [27], Zhong et al. [38],
and Vatanchi et al. [39]. Numerous studies have highlighted LSTM’s superior performance
across diverse applications [22,40,41]. For instance, Yuan et al. demonstrated LSTM’s higher
accuracy in predicting monthly runoff compared to other models [42]. Wang et al. found
LSTM to outperform backpropagation neural network (BP-NN) and online sequential
extreme learning machine (OS-ELM) models in water quality forecasting [43]. Additionally,
Bowes et al. observed LSTM’s improved predictive capabilities over original RNNs in
forecasting the groundwater table response to storm events in a coastal environment [44].
We do not provide a detailed account about the structure of LSTM in this paper, because
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that is not the focus of this study. More detailed descriptions of LSTM can been seen in
pertinent literature such as Hochreiter and Schmidhuber [45] and Kratzert et al. [35].

The LSTM models established in this study consist of two standard LSTM layers, each
of which is unidirectional and contains 48 neurons. Following the last LSTM layer, a single
dense layer with 96 neurons is employed to project the results to the final output. The
dense layer utilizes the ReLU activation function [46] to rectify negative values, as negative
streamflow values lack meaningful interpretation. Adam [47] is used to optimize the LSTM
models, which amalgamates two widely-used algorithms, Adagrad (effective for handling
sparse gradients) and RMSProp (suitable for non-stationary data).

2.3. Objective Functions for LSTM Training

The objective function plays an important role during the LSTM training process,
and the choice of the objective function can substantially affect the quality of the trained
model [25]. At present, the widely used objective functions are squared-error-based metrics
(such as MSE and RMSE), which have a squared error term in their mathematical expres-
sions. In this study, we respectively test the streamflow forecasting performance of the
LSTM models when trained with four different squared-error-based objective functions,
including MSE, RMSE, NSE, and KGE.

MSE and RMSE serve as fundamental metrics by providing an assessment of the
average squared deviation between predicted and observed streamflow values. Their
sensitivity to outliers and ability to capture overall variability make them valuable tools for
quantifying prediction accuracy. NSE offers a normalized measure of model performance
relative to a benchmark, typically the mean observed streamflow. Its range from negative
infinity to unity allows for intuitive comparisons across different models and datasets,
facilitating comprehensive assessments of predictive skill. KGE combines multiple facets
of model performance, including correlation, bias, and variability, into a single metric. By
simultaneously considering these aspects, KGE offers a balanced evaluation of both the
accuracy and reliability of streamflow predictions, providing valuable insights for model
refinement and decision-making processes. The mathematical expressions of these four
objective functions are as in Equations (1)–(4), respectively:

MSE =
1
N ∑N

i=1(xo,i − xs,i)
2 (1)

RMSE =

√
∑N

i=1(xo,i − xs,i)
2

N
(2)

NSE = 1 − ∑N
i=1(xo,i − xs,i)

2

∑N
i=1(xo,i − µo)

2 (3)

KGE = 1 −
√

sr × (r − 1)2 + sα × (α − 1)2 + sβ × (β − 1)2 (4)

r =
1
N ∑N

i=1 (xo,i − µs)− (xm,i − µs)√
∑N

i=1(xo,i − µo)
2 ×

√
∑N

i=1(xs,i − µs)
2

(5)

α =
σs

σo
(6)

β =
µs

µo
(7)

where xo,i and xs,i are the observation and model prediction, respectively. N represents
the total number of samples. µo and µs represent the mean of the observation and the
prediction, respectively. σo and σs represent the standard deviations of the observation and
the prediction, respectively. sr, sα, and sβ in Equation (4) are the scaling factors that can be
used to re-scale the criteria space. In this study, we experiment with two combinations of
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settings. In the first setting, sr, sα, and sβ are set to be 1, 1, and 1, respectively, while in the
second one, they are set to be 1, 2, and 1, respectively. For convenience, these two settings
are denoted as KGE111 and KGE121, respectively.

For comparison, we also test the prediction performance of the LSTM when MAE
is used as the objective function. The mathematical expression of MAE does not have a
squared error term, as shown in Equation (8). MAE provides a straightforward measure
of the average absolute deviation between predicted and observed streamflow values.
Its simplicity and robustness to outliers make it particularly useful for focusing on the
magnitude of errors, offering clear insights into model accuracy.

MAE =
1
N ∑N

i=1|xs,i − xo,i| (8)

In addition, considering the fact that the streamflow data typically belong to a long-tail
distribution, we apply a log transform to the streamflow series before training the LSTM
models with MSE as the objective function, as shown in Equation (9).

xt
o,i = log10

(√
xo,i + 0.1

)
(9)

For convenience, in this paper, the LSTM models trained with the objective functions
of MSE, RMSE, NSE, KGE111, KGE121, and MAE are represented by LSTMMSE, LSTMRMSE,
LSTMNSE, LSTMKGE111, LSTMKGE121, and LSTMMAE, respectively. The LSTM models
trained based on the log-transformed streamflow data with MSE as the objective function
are represented by LSTMMSE(log).

2.4. Evaluation Metrics

In this study, we use five evaluation metrics to assess the models’ prediction perfor-
mance, including MAPE, NSE, KGE, α, and β. MAPE is calculated by Equation (10), and the
expressions of NSE, KGE, α, and β are shown as Equations (3), (4), (6), and (7), respectively.

MAPE =
1
N ∑N

i=1
|xs,i − xo,i|

xo,i
(10)

2.5. Data

The hydrological data used in this study include streamflow, precipitation, tempera-
ture, and evaporation. Among them, the streamflow data were obtained from the Global
Runoff Data Centre (GRDC). Here, 273 stations with complete daily streamflow data series
from 1982 to 2018 in the USA were chosen, and their locations are displayed in Figure 1.
The corresponding precipitation, temperature, and evaporation data were obtained from
the North America Land Data Assimilation System version 2 (NLDAS-2).
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In this study, we establish LSTM models separately for each watershed. The inputs of
the LSTM models are the daily streamflow, daily precipitation, daily temperature, and daily
evaporation within the previous 10 days, resulting in 40 inputs in total per sample. The
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output of the models is the predicted streamflow with lead times ranging from 1 to 3 days.
Additionally, the data from 1982 to 2013 are used for the model training, while the remaining
data from 2014 to 2018 are preserved as the testing set.

3. Results
3.1. Forecasting Performance of the Naïve Method

Figure 2 shows the forecast performance of the naïve method at different lead times.
Since the naïve method does not require training data to calibrate the model, as conventional
modeling methods do, we assess the method using the entire dataset (Figure 2a). It
is observed that the naïve method achieves remarkable performance for 1-day-ahead
streamflow forecasting. The medians of MAPE, NSE, and KGE in the whole dataset are
0.12, 0.88, and 0.94, respectively, while the means are 0.14, 0.80, and 0.90, respectively.
Generally, predictions with NSE greater than 0.5 are considered good. Our results indicate
that 88% of the watersheds achieve good predictions using the naïve method. α and β are
two metrics measuring the difference in the standard deviations and mean of streamflow
series between observations and predictions, respectively. Since the prediction from the
naïve method can be regarded as the shift in the observational time series, it exhibits
almost perfect α and β, with values in the CDF plot very close to one. As the lead time
increases, the forecasting performance deteriorates, yet remains within an acceptable range.
For 3-day-ahead forecasting, the medians of MAPE, NSE, and KGE in the entire dataset
are 0.27, 0.53, and 0.77, respectively. The proportions of watersheds with an NSE greater
than 0.5 for 2-day-ahead and 3-day-ahead forecasting are 65% and 52%, respectively. To
facilitate later comparison with LSTM, we also illustrate the evaluations for the training
(Figure 2b) and testing (Figure 2c) sets, respectively. While slight differences exist in the
assessment between the training and testing sets, the overall evaluation results remain
favorable. Additionally, their performances are similar to those in the entire dataset.
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3.2. Benchmarking the LSTM Models by the Naïve Method

To investigate the forecasting performance of LSTM models trained with different
objective functions, we evaluate these models against the forecasting results from the
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naïve model in terms of various statistical metrics in the testing set, as shown in Figure 3.
When assessed across all streamflow levels, the LSTM models trained with squared-error-
based objective functions, including MSE, RMSE, NSE, KGE111, and KGE121, outperform
the naïve method in terms of NSE and KGE, but exhibit poorer performance in terms of
MAPE. According to the metric α results, LSTMMSE, LSTMRMSE, and LSTMNSE tend to
underestimate the variance of the streamflow, whereas LSTMKGE111 and LSTMKGE121 tend
to overestimate it. In addition, the metric β results indicate that the models calibrated with
the squared-error-based objective functions are able to reasonably capture the mean of the
observational streamflow.
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However, when evaluating the forecasting performance separately across different
streamflow levels, the results can vary significantly. Generally, models trained with squared-
error-based objective functions excel over the naïve method in high flow forecasting,
although the degree of superiority diminishes with decreasing streamflow levels. All
five models, including LSTMMSE, LSTMRMSE, LSTMNSE, LSTMKGE111, and LSTMKGE121,
are notably inferior to the naïve method in low flow forecasting. Furthermore, models
trained with KGE111 and KGE121 exhibit poorer forecasting performance compared to
models trained with MSE, RMSE, and NSE. Applying MAE as the objective function
or performing a log transformation on the original streamflow series can enhance the
prediction effectiveness for low flows to some extent. The forecasting performance of
LSTMMAE and LSTMMSE(log) for very low flows, i.e., Q0–0.1 (where subscript represents
the percentile range), is comparable to that of the naïve method. However, LSTMMAE and
LSTMMSE(log) perform slightly poorer than LSTMMSE in terms of high flow forecasting and
are less effective at capturing the mean and variance of the observations.

To explore the effect of lead time on model performance, we take LSTMMSE as an
example to show the difference in prediction performance between the LSTM model and
the naïve method at three different lead times, as shown in Figure 4. It is found that
LSTMMSE at the lead times of 2 days and 3 days performs similarly to that at the 1-day lead
time. LSTMMSE outperforms the naïve method for high flow prediction, but significantly
underperforms for low flow prediction. However, the variation in the LSTMMSE prediction
across all streamflow levels increases with the increase in the lead time. For high flow
forecasting, LSTMMSE is superior to the naïve method at the 3-day lead time compared to
the 1-day lead time, whereas for low flow forecasting, the reverse is true.
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4. Discussion
4.1. Characteristics of the Naïve Method

The short-term streamflow series inherently exhibits a high autocorrelation in time,
which is the key factor ensuring the prediction effectiveness of the naïve method. Feng
et al. [21] demonstrated that incorporating historical streamflow as model input can sig-
nificantly enhance daily-scale streamflow prediction. Similarly, Lin et al. [33] utilized the
Shapley Additive Explanations (SHAP) method to analyze the hourly scale streamflow
forecasting model and discovered that the contribution of lagged streamflow to the forecast
results outweighs that of lagged precipitation by a significant margin.

We calculate the amplitude index (AI) of the streamflow series for each watershed
according to the formula AI = 1

µo
· 1

N−1 ·∑
N
i=2|xo,i − xo,i−1|, and then analyze the relationship

between the AI and the prediction performance of the naïve method. According to Figure 5,
the prediction effect of the naïve method shows a significant negative correlation with AI.
The lower the AI, the better the evaluations for the corresponding predictions made by the
naïve method. The correlation coefficients between AI and the metric MAPE, NSE, and
KGE are 0.5, −0.84, and −0.84, respectively, and all of them pass the significance test at
the 5% significance level. These findings indicate that watersheds with lower AI values
may represent more stable and predictable hydrological systems, where the naïve method
can produce accurate predictions and is suitable to be a baseline. Conversely, watersheds
with higher AI values, indicating greater variability in streamflow amplitude, may pose
challenges for the naïve method, leading to less accurate predictions.
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performance of the naïve method. The numbers in the top-right corners represent the Pearson
correlation coefficients.

As illustrated in the preceding results, the autocorrelation present in the streamflow
series enables the naïve method to produce predictions with remarkable performance.
Moreover, since the predictions from the naïve method essentially entail shifting the ob-
served streamflow series by one day or several days, they possess additional commendable
attributes. As demonstrated in Section 3.1, predictions generated by the naïve method ex-
hibit nearly identical mean and standard deviations, as observed in the data. Additionally,
several hydrological signatures in the predictions from the naïve method closely resemble
those observed in the data, including baseflow index and recession shapes.

4.2. Selection of Objective Function
4.2.1. Importance of Objective Function

The choice of objective function in training serves as a crucial guide, directing the
model towards minimizing specific errors or maximizing performance metrics. When the
chosen objective function aligns well with the task requirements, the model tends to exhibit
superior generalization capabilities. For instance, in sequence prediction tasks, employing
an objective function that penalizes sequence-level errors is more suitable than focusing
solely on individual predictions. Moreover, different objective functions can lead the model
to prioritize different aspects of the data or to learn different representations. For example,
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some objective functions may encourage the model to focus more on capturing high flow
patterns, while others may prioritize low flow patterns. The behavior induced by the
objective function during training can affect how well the model generalizes to unseen data.
If the objective function encourages the model to capture relevant patterns in the data that
are also present in unseen examples, the model is likely to exhibit robust generalization.

4.2.2. Flaw of the Squared Error-Based Objective Function

Figures 3 and 4 clearly demonstrate that the models trained with squared-error-based
objective functions are more skilled in high flow forecasting, but perform poorly in low
flow forecasting. Here, we analyze the influence of training samples characterized by
varying streamflow levels on the objective function in the model training process. Figure 6a
displays the training process of an LSTM model that uses MSE as its objective function.
We find that those training samples with higher streamflow values play a more important
role in model training, since they contribute significantly more to the objective function. In
the early stages of model training, only 4.36% of the training samples contribute 50% of
the objective function, primarily concentrated in the area of high-value flows (the red dots
in Figure 6a(1)). Subsequently, in the middle (Figure 6a(2)) and late (Figure 6a(3)) stages
of the model training, this percentage drops to only 0.38% and 0.32%, respectively. This
suggests that the model training process is heavily influenced by the high-value streamflow
samples that only account for a small proportion of the total training samples. Figure 6b
shows the contributions of the training samples with a streamflow within Q0–0.5 bin on the
objective function during the training of an LSTM model. It is evident that these samples
exert a negligible effect, with their impact remaining below 0.05 during most of the training
process, although they account for 50% of the total training samples.
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contributions of the training samples with a streamflow within Q0–0.5 bin on the training process of
an LSTM model when applying MSE as the objective function.
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Figure 7a illustrates the training process of an LSTM when applying MAE as its
objective function. Compared to using MSE for model training, when using MAE, the
attention to the training samples is relatively less concentrated during the training process.
In the early, middle, and late stages of model training, contributing 50% of the objective
function requires 10.74%, 3.42%, and 2.62% of the training samples, respectively, which is a
significant increase compared to using MSE as the objective function. In addition, samples
with low or middle streamflow contribute more to the objective function (evidenced by the
distribution of the red dots in Figure 7a(1)–(3)).

4.3. Assessment of Streamflow Modeling
4.3.1. Comparisons with a General Benchmark Method

The establishment of simple and universally applicable benchmark methods for hy-
drological modeling plays a crucial role in facilitating comparative assessments of diverse
research outcomes. It also contributes to the robust and swift advancement of the hy-
drological modeling field. Currently, research on streamflow modeling is conducted by
numerous independent groups, each primarily focused on developing and applying their
own models and datasets. For various reasons, such as project requirements or limita-
tions in computing resources, many researchers opt to utilize private, often small-scale
streamflow datasets rather than accessing large publicly available ones, as seen in the
works of Lee and Choi [48], Sun et al. [49], and Li et al. [50]. Additionally, given the varied
technical backgrounds and time constraints of different researchers, it is impractical for
them to explore all existing modeling methods with their individual datasets. Thus, the
establishment of a simple, universal, and effective modeling method as a benchmark is a
compelling necessity. Our recommended naïve method effectively addresses this need. By
employing the naïve method as a benchmark, researchers can systematically evaluate the
performance of their newly developed modeling techniques. This comparative approach
enables them to gauge the degree of improvement (or potential deterioration) achieved by
their proposed methodologies relative to the benchmark derived from the naïve method.
Consequently, despite the differences in datasets across studies, this benchmarking process
serves as an effective bridge connecting the results of these diverse investigations.

4.3.2. Evaluating Model Performance in Multiple Dimensions with Various Metrics

Evaluating modeling results through multiple metrics provides a comprehensive
understanding of the strengths and limitations of newly proposed methods. Despite
hydrologists introducing numerous evaluation metrics to measure modeling effectiveness,
it is crucial to acknowledge that no single metric can fully cover the spectrum of modeling
performance. Even comprehensive metrics like NSE and KGE have their limitations. For
instance, NSE is more sensitive to high-flow errors, potentially resulting in satisfactory
scores despite poor predictions for low flows. Therefore, adopting multiple metrics for
assessing modeling results is of great significance.

Hydrologic signature metrics play a vital role in measuring hydrologic consistency,
quantitatively describing statistical or dynamic properties of a hydrologic time series.
These signatures encompass various aspects, including diurnal cycles, recession shapes,
flow generation thresholds, rising limb density, baseflow index, runoff ratio, and flow
variability. These metrics offer informative insights into the unique hydrologic processes of
a watershed [51]. Utilizing multiple signature measures can provide a more comprehensive
portrayal of hydrologic characteristics and a more realistic representation of various aspects
of hydrologic processes [52]. Yilmaz et al. [51] also noted that hydrologic signatures have
greater potential to delineate the temporal characteristics of river streamflow compared to
the original streamflow time series.
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the objective function, while the green dots denote the remaining samples. (b) The proportion of the
contributions of the training samples with a streamflow within Q0–0.5 bin on the training process of
an LSTM model when applying MAE as the objective function.

Different facets of the hydrograph exhibit distinct characteristics, resulting in varying
modeling effects for different parts of the hydrograph. Therefore, it is advisable to meticu-
lously scrutinize the model’s performance across individual streamflow components. As
demonstrated in Figure 3, our assessment of LSTM model performance is conducted with
specific regard to varying streamflow levels. This analytical approach reveals a notable
finding: the models demonstrate reduced efficacy for low flow forecasting. Such issues
may be challenging to detect when evaluating the model’s performance based on the
entire hydrograph.

5. Conclusions

In this study, we tested a simple and efficient benchmark method for short-term
streamflow prediction, namely, the naïve method, which is applicable to almost all relevant
research endeavors. Our experiment over 273 watersheds in the continental United States
demonstrates that predictions from the naïve method can achieve acceptable or even
excellent performance. Employing the naïve method as a benchmark can facilitate a more
robust assessment of the strengths and weaknesses of newly proposed methods in research.
Additionally, it fosters the inter-comparison of different research results, thereby promoting
the healthy development of the field of hydrological modeling.

Through benchmarking with the naïve method, we identified a significant drawback
in short-term streamflow forecasting models trained with squared-error-based objective
functions, such as MSE and NSE. During the model training process, the objective function
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value is disproportionately influenced by errors in high-flow samples rather than low-
flow samples when employing squared-error-based metrics. This disproportionate weight
results in poor model performance in low-flow forecasting, sometimes even worse than
the naïve method. Therefore, we advise against using squared-error-based metrics as
the objective function for model training or calibration when the overall performance
of streamflow prediction is the focus. Instead, we recommend using MAE as a more
appropriate objective function. Additionally, in cases where process-based models are not
employed, we suggest considering a pre-logarithmic transformation on the streamflow
data. This step can help rectify the bias towards high-flow samples during model training,
resulting in more balanced and reliable streamflow predictions.

In this study, we only assessed the performance of the naïve method on the GRDC
dataset. In the future, we intend to apply the naïve method to other publicly available
datasets, such as the CAMEL dataset. Additionally, we plan to evaluate the performance of
more objective functions for the training of streamflow prediction models. Furthermore,
while this study focused on evaluating a data-driven model, future research endeavors
may broaden the evaluation scope to include physics-driven models.
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