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Abstract: With the continuous advancement of the economy, the issues of resource scarcity and envi-
ronmental damage are becoming increasingly severe. For example, in terms of water resources, the
problems of environmental pollution and ecological imbalance in the water caused by industrial and
agricultural wastewater are becoming more serious. In order to reduce water pollution, protect water
resources, promote ecological balance, and reduce environmental risks, it is necessary to strengthen
water environment management. This study uses the Malmquist DEA model to conduct a study on
the green technology innovation efficiency (GTIE) of 24 water environment governance companies
from 2019 to 2022. Corporate Research & Development investment and employee compensation
are used as the input indicators, while the number of color patents obtained and operating income
are employed as the output indicators. The evaluation criteria include pure technical efficiency,
comprehensive technical efficiency, scale efficiency, and total factor productivity. The results show
that there is significant room for improvement in the GTIE of the listed Chinese water environment
governance enterprises, and there are considerable differences among different enterprises. The
GTIE is significantly influenced by technological progress, the enterprise size, and the equity ratio.
Therefore, water environment management enterprises should enhance their efforts in technological
research and development and talent training, optimize resource allocation, improve the efficiency of
green technology innovation, and effectively fulfill their social responsibilities. These measures will
promote the efficient utilization of ecological water, the restoration of the water environment, and the
establishment of a clean ecological environment.

Keywords: water environment management; green technology innovation; Malmquist DEA; total
factor productivity

1. Introduction

In the 20th century, rapid economic growth and population expansion led to a substan-
tial increase in human consumption of natural resources and consequent environmental
damage. Among these issues, water scarcity and pollution have become particularly promi-
nent. The discharge of wastewater from industrial, agricultural, and domestic activities
has put significant pressure on water ecosystems, resulting in a growing scarcity of water
resources and severe disruptions to water ecology. The importance of water environment
governance at a global scale has increased in response to this significant challenge. Taking
my country as an example, the urgent need for water environment management is further
exacerbated by its large population and uneven distribution of water resources [1].

Green technology is widely recognized as a solution to this problem. It refers to the
utilization of advanced scientific and technological innovations that are based on ecological
principles and sustainable development concepts. Its primary objectives are to optimize
resource utilization, protect the environment, and restore ecological balance [2]. Green
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technology is a type of technology that takes into account resource and environmental limi-
tations, fulfills corporate social responsibility obligations, and demonstrates effectiveness
through innovation. For companies engaged in green technology research and devel-
opment, the adoption of green technology can bring both environmental and economic
benefits [3]. By employing environmentally friendly technology, businesses can enhance
their productivity and the quality of their output while reducing their expenses. Further-
more, they can integrate their supply chain at a broader level, leading to the most efficient
allocation of resources. This integration can also facilitate the transformation, modern-
ization, and advancement of traditional industries, while strengthening the technological
innovation capabilities of industrial companies through digital economic empowerment,
thereby enhancing the international competitiveness of these industries. This is also known
as green technology innovation efficiency (GTIE). In recent years, there has been increasing
interest in both academic and commercial circles in evaluating the effectiveness of green
technology innovation in industrial organizations [4].

Green technological innovation possesses both social characteristics, such as environ-
mental protection, energy conservation, and emission reduction, and economic charac-
teristics, including enhancing enterprise production efficiency and competitiveness. This
enables it to effectively address the dilemma between economic development and environ-
mental protection [5]. In terms of assessing the efficiency of green technology innovation,
the mainstream methods in the academic community can be categorized into two groups:
parametric methods, such as the stochastic frontier approach (SFA), and non-parametric
methods, such as data envelopment analysis (DEA). For instance, Li et al. measured China’s
green innovation efficiency and examined the coupling coordination degree between its
green innovation efficiency and ecological welfare performance using a coupling coor-
dination degree model [6]. Jiang et al. evaluated the technical efficiency levels across
different regions in China and analyzed their changing trends [7]. Zhang et al. utilized
the SFA model to individually measure and analyze the two main components of green
technology innovation efficiency, namely technological change and technical efficiency, in
33 countries along the "One Belt and One Road" initiative [8]. However, the SFA method
requires the formulation of hypotheses in advance and cannot simultaneously link positive
and negative outputs. This study addresses this limitation by incorporating the distance
function (DDF) to capture the hindering effect of market factor mismatch. Du et al. ana-
lyzed the efficiency of green technology innovation in China’s industrial enterprises in 2014
using DEA models [9]. Their findings reveal that the nationwide technological innovation
efficiency has improved, with the highest efficiency observed in the eastern region. Guan
et al. focused on industrial enterprises as their research subject and employed a two-stage
DEA model to empirically test green technology innovation efficiency [10]. The results
highlighted significant variations in efficiency between provinces and regions, indicating
the need for improvement. Nasie et al. examined the impact of financial investment and
environmental regulations on corporate green technology innovation efficiency using the
DEA-Tobit model [11]. They concluded that government actions do not significantly pro-
mote positive advancements in corporate green technology. Scholars generally favor the
DEA model for calculation methods [12]. For instance, Nasierowski et al. [13] employed
the DEA method to quantify green innovation efficiency and examined the outcomes of
investment in green innovation processes and their efficiency in 2005 and 2009.

However, while there have been some studies focusing on green technology develop-
ment, there is a lack of research specifically addressing water environmental regulation.
Moreover, many of the existing studies primarily focus on the theoretical aspects and lack
practical implementation and efficiency assessments [14]. Additionally, the endogenous
logic in several empirical studies has not been fully demonstrated, leading to the low
credibility of the conclusions. Our current understanding of the influencing mechanisms
for corporate technological innovation is still incomplete. Therefore, this study aims to fill
this gap by focusing on the water governance sector in China and utilizing the Malmquist
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DEA methodology to examine the efficiency of listed water governance companies and the
factors influencing their efficiency.

This study focuses on the regulation of the water environment and also evaluates the
efficiency of green technology innovation (GTIE) from a new perspective. The aim of this
research is to assess how effective GTIE is in water environment management enterprises
in our country. The sample for this assessment consists of publicly listed companies in the
water management industry. The study primarily examines the relationship between GTIE
and various characteristics, such as Research & Development investment and other financial
indicators. This research is unique compared to previous studies, as it introduces a novel
research subject. Previous studies on corporate innovation efficiency have typically focused
on either an entire listed company or an entire city, rather than concentrating on a specific
industry. In the traditional research, the focus of the GTIE index has mainly been on the
new energy sector, with firms in high-tech industries taking precedence and manufacturing
being a secondary component. There has been a lack of research in the water environment
management industry. Furthermore, previous research has primarily concentrated on the
treatment efficiency of domestic municipal or standard sewage treatment plants, overlooking
the examination of water treatment enterprises with corporate organizational structures. Given
the broad scope of the research subject, this article primarily evaluates the efficiency of green
technology innovation in water treatment firms and its determining factors. Additionally, it
explores the reasons for the significant variations observed across different organizations over
different years. In the face of significant environmental challenges and emerging economic
development scenarios, the adoption of green technology is essential for organizations to
ensure their long-term sustainability. Prioritizing technical innovation is crucial for achieving
transformation and development more effectively. By measuring and researching the GTIE of
firms at the micro-level, more precise management models and strategies to enhance GTIE
can be developed.

2. Modeling and Data Processing
2.1. Research Methodology

This article employs the data envelopment analysis (DEA) method of frontier analysis,
utilizing the DEA-SOLVER Pro5.0 made by Cabit Information Technology Co., Ltd. in
China to calculate the GTIE (Green Technology Innovation Efficiency) of 24 A-share listed
water environment treatment enterprises. This is achieved by assessing how much different
enterprises deviate from the efficiency frontier enterprises. A firm’s efficiency can be quan-
tified by measuring the degree of deviation. A higher degree of deviation results in a lower
GTIE value, while a smaller degree of deviation leads to a higher GTIE value. A higher
GTIE is associated with a reduced degree of variance in the firm [15]. Frontier analysis in-
cludes parametric and non-parametric methods. The parametric method requires assuming
the frontier function when calculating the efficiency, and one of the most commonly used
calculation models is the stochastic frontier approach (SFA). The non-parametric method
does not require assuming the frontier function when calculating the efficiency, and one of
the most commonly used calculation methods is data envelopment analysis. This paper
selects the DEA model, a non-parametric method, to measure the efficiency of investment
and asset allocation in enterprises in the water environment management industry. The
DEA model is chosen because it can consider multiple input and output indicators without
the need to weight each indicator. It also evaluates from the perspective most favorable to
the decision-making unit, measuring the allocation efficiency.

In this paper, each enterprise in the water environment management industry is
treated as a decision-making unit (DMU). The DEA method is utilized to construct the
frontier surface, and each enterprise is compared against this frontier surface to measure its
GTIE [16].

The basic DEA model is founded on two key assumptions: constant returns to scale
(CRS) and variable returns to scale (VRS). The CRS model is utilized to evaluate the
efficiency of the decision-making units (DMU) by assuming that the returns to scale of each
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DMU remain constant. This means that when a DMU increases its input, its output increases
according to the same proportion that the input increases. The CRS model is often employed
to measure the technical efficiency (TECH) of a DMU, which indicates the maximum output
that can be obtained with a given input. Using the CRS model, the relative efficiency and
production possibility frontier of a DMU can be assessed in order to optimize its resource
allocation and production process. On the other hand, VRS is another assumption in the
DEA model that is opposite to CRS and postulates variable returns to scale. In the VRS
model, when a DMU increases its input, the increase in output may not necessarily be
proportional to the input increase. “The CCR model” is also a common name for the CRS
model. The VRS model is commonly used to evaluate the pure technical efficiency (PTECH)
of a decision-making unit (DMU). It reflects the maximum achievable output given the
input and a specific production scale. Using the VRS model, the efficiency performance
of a DMU can be assessed under different production scales, enabling further analysis of
the optimization potential in its production process and resource allocation. These two
models, CRS and VRS, are utilized within the DEA framework to evaluate the efficiency
of a DMU and the different aspects of its production process. The CRS model primarily
focuses on assessing its technical efficiency, while the VRS model specifically evaluates its
pure technical efficiency and considers the impact of the production scale on efficiency. In
the DEA model, the CCR (Charnes, Cooper, and Rhodes) model measures efficiency under
the assumption of constant returns to scale, while the BCC (Banker, Charnes, and Cooper)
model measures efficiency under the assumption of variable returns to scale. Compared
to the CCR model, the BCC model includes an additional equality constraint (∑λ = 1) to
account for variable returns to scale. The CCR model provides a measure of comprehensive
technical efficiency, which indicates the optimal state of resource allocation, technology
application, and production efficiency for the decision-making unit. A crste value of
1 signifies that the unit has achieved the highest level of comprehensive technical efficiency,
while a crste value less than 1 suggests room for improvement. On the other hand, the
BCC model evaluates pure technical efficiency, which assesses the efficient use of input
resources at the current technical level. If vrste equals 1, this implies that the production
unit is utilizing its input resources efficiently. However, if vrste is less than 1, this indicates
that there is still potential for improvement. Additionally, the scale efficiency (scale) can be
obtained by dividing the crste value by the vrste value.

In the DEA model calculations, there are n decision-making units (DMUs). The inputs
and outputs of the ith DMU are represented by x and y, respectively. The efficiency value
of each DMU is measured using the CCR and BCC modeling formulas.

The CCR model with non-Archimedean infinitesimal ε is:

s.t.



min
[
θ− ε

(
êTs− + eTs+

)]
= VD(ε)

∑n
i=1 xiλi + s− = θxi0

∑n
i=1 yiλi − s+ = yi0

λi ≥ 0, i = 1, 2, . . . , n
s− ≥ 0, s+ ≥ 0

(1)

The BCC model with non-Archimedean infinitesimal ε is:

s.t.



min
[
θ − ε

(
êTs− + eTs+

)]
= VD(ε)

∑n
i=1 xiλi + s− = θxi0

∑n
i=1 yiλi − s+ = yi0

∑n
i=i λi = 1

λi ≥ 0, i = 1, 2, . . . , n
s− ≥ 0, s+ ≥ 0

(2)

The DEA model is essentially a linear programming problem, where DMUs are
denoted by i = 1, 2, . . ., n, and x and y represent the input and output vectors, respectively.
The weight of the ith DMU, λi, is determined when the ith0 DMU is efficient, and e denotes
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the slack vector. ε is a non-Archimedean infinitesimal quantity, while θ signifies the
efficiency value of the ith DMU. The efficiency value of the DEA model ranges between 0
and 1, with 1 indicating perfect efficiency. Additionally, s+ and s− are the slack variables,
i.e., the difference between the actual and target values of the inputs and outputs. The
expression of the slack variables can be defined as follows:

Sk,i = xk,i − ∑K
k=1 λixk,i (3)

where k = 1, 2, . . ., K, i = 1, 2, . . ., n. Sk,i denotes the kth input slack of the ith DMU.
If θ = 1, S+= S−= 0, then the decision-making unit DEA is valid.
If θ < 1, then the decision-making unit non-DEA is valid.
The objective of this study is to assess the trend in the GTIE among 24 A-share listed

companies in the water environment governance industry. To achieve this goal, we utilize
the Malmquist index model within the DEA framework to calculate the dynamic efficiency
of China’s listed companies operating in the water environment governance sector. The
Malmquist index model is expressed as follows. Table 1 is a list of variable definitions
for Equation (4).

M(xt, yt, xt+1, yt+1) =
Dt+1(xt+1, yt+1)

Dt(xt, yt)
×

[
Dt(xt+1, yt+1)

Dt+1(xt+1, yt+1)
× Dt(xt, yt)

Dt+1(xt, yt)

] 1
2

(4)

Table 1. List of variable definitions for Equation (4).

Variable Name Variable Definition

M Malmquist productivity change index

Dt The distance function of the decision-making unit (DMU) in period t using
the technology from period t as the reference technology

xt The input quantities in period t

yt The output quantities in period t

Sources of Data

For the purpose of this research, the sample selection focused on companies whose
major business activities are related to "water treatment" and "water treatment" only. Addi-
tionally, listed samples from 2019 onward were eliminated to ensure an uninterrupted and
efficient data flow. After extensive treatment, this paper focused on the data extracted on
24 publicly traded firms between 2019 and 2022. The primary sources of data collection
and organization include the China Statistics Yearbook and the WIND databases.

To facilitate clarity and analysis, this paper assigns names to the 24 firms as A1 through
A24 in Table 2.

Table 2. Names, stock codes, and the corresponding coding numbers.

Stock Code Firm Name Code Serial Number

544 Zhongyuan environmental protection A1

598 Xingrong environment A2

605 Bohai stock A3

685 Zhongshan public A4

2573 Fresh environment A5

300055 Wanbangda A6

300070 Bishuiyuan A7

300172 Zhongdian environmental protection A8

300262 Baan water A9
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Table 2. Cont.

Stock Code Firm Name Code Serial Number

300266 Xingyuan environment A10

300334 Jinmo technology A11

300388 Energy-saving guozhen A12

300422 Boshiko A13

300437 Qingshuiyuan A14

300664 Pengyao environmental protection A15

300692 Zhonghuan environmental protection A16

600008 Shouchuang environmental protection A17

600461 Hongcheng environment A18

600874 Entrepreneurship and environmental protection A19

601158 Chongqing water affairs A20

603200 Shanghai Xiba A21

603603 T botian A22

603817 Strait environmental protection A23

603903 Zhongzhi shares A24

2.2. Indicator Selection

This study focuses on the GTIE of 24 Chinese water environment governance compa-
nies. The article will specifically address the data related to the input and output indices,
which are displayed in Table 1 with precise measurement indicators.

Research and development expenditure: Enhancing the productivity and innovation
efficiency of manufacturing firms is primarily focused on product innovation. Capital
investment is crucial for any technological innovation and development. Therefore, this
article chooses to use R&D investment as a metric for capital investment, emphasizing the
company’s expenditure on research and development.

Allocation of human resources: To achieve green innovation, enterprises must rely
on talent development to carry out technology research and development. Investing
in personnel has a positive impact on the performance of green innovation. Offering
competitive salaries to employees is an effective method for incentivizing and inspiring
talented individuals. Hence, the indicators for investment in human resources are chosen
based on employees’ remuneration.

Economic gains generated: Business revenue refers to the economic benefits generated
by firms and is considered an indirect result of innovation in green technology. Therefore, the
magnitude of financial advantages for businesses is assessed using operational income metrics.

The outcome of innovative findings in green technology: The advancement of the
technology market is crucial for fostering autonomous innovation and facilitating the
conversion of technical breakthroughs. The intermediate output of corporate innovation
activities is influenced by the acquisition or authorization of green patents. To accurately
demonstrate the immediate outcomes of green innovation endeavors, efficient green inven-
tion patents are acquired as a result of technological innovation.

The variable definitions are shown in Table 3.

Table 3. Evaluation of the GTIE index system.

Indicator Name Symbol Unit

Input indicator R&D investment X1 billion

Employee compensation X2 billion
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Table 3. Cont.

Indicator Name Symbol Unit

Output indicator The number of color patents obtained Y1 /

Operating income Y2 billion

3. Analysis of the Results

This article employs the DEA-SOLVER Pro5.0 made by Cabit Information Technology
Co., Ltd. in China to compute the BCC model with variable returns to scale. It selects
input orientation optimization with fixed output to calculate the GTIE of 24 A-share listed
enterprises in the water environment treatment industry, resulting in the GTIE values for
each enterprise, as shown in Table 4.

Table 4. GTIE of enterprises in the water environment treatment industry, from 2019 to 2022.

Short Form Combined Technical Efficiency Pure Technical Efficiency Scale Efficiency Scale Gains

A1 0.570 0.834 0.705 drs

A2 0.988 0.992 0.995 irs

A3 1 1 1 -

A4 0.221 0.270 0.821 drs

A5 0.450 0.995 0.452 drs

A6 0.657 0.759 0.856 drs

A7 0.680 1 0.680 drs

A8 1 1 1 -

A9 0.668 0.758 0.869 irs

A10 0.500 0.557 0.891 drs

A11 0.561 0.607 0.920 irs

A12 0.802 0.959 0.833 drs

A13 0.448 0.741 0.661 drs

A14 0.727 0.748 0.965 drs

A15 0.745 0.754 0.987 drs

A16 0.573 0.761 0.757 irs

A17 0.803 1 0.803 drs

A18 0.614 0.909 0.682 drs

A19 0.759 0.864 0.867 drs

A20 0.970 1 0.970 -

A21 0.584 0.805 0.686 irs

A22 0.451 0.607 0.762 -

A23 0.578 0.858 0.701 drs

A24 0.780 0.792 0.977 drs

mean 0.672 0.815 0.827

In Table 4, EFFCH represents the combined technical efficiency, which indicates how
close the decision-making unit is to the optimal production boundary or technological fron-
tier. The greater the technical efficiency, the closer the decision-making unit is to the optimal
production boundary, and the higher its efficiency. EFFCH can be further decomposed
into pure technical efficiency (PECH) and scale efficiency (SECH). TECHCH represents
technological progress, which refers to the outward shift of the technological frontier and
the maximum output increase under the current technological level. PECH represents
pure technical efficiency, which takes into account factors like corporate management
and technology that affect the production efficiency. SECH represents the scale efficiency,
which represents the production efficiency as it is affected by the enterprise’s size. TFPCH
represents the total factor productivity change and is calculated as TFPCH = TECHCH *
EFFCH. The EFFCH value can also be decomposed into pure technical efficiency changes
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(PECH) and scale efficiency changes (SECH). Unlike the comprehensive technical efficiency
index, the Malmquist DEA index model reflects dynamic changes in efficiency, and the
EFFCH represents the change in efficiency caused by changes in the relative efficiency.

The average EFFCH value of the 24 water environment governance enterprises as
a whole between 2019 and 2022 is below 0.8, specifically 0.672, indicating a low overall
GTIE. The ability to convert R&D inputs into technological innovation outputs is poor,
highlighting the need for improvement in the overall GTIE of these enterprises. There
is significant room for enhancement in their overall GTIE. On the other hand, the mean
PECH value of these enterprises over the four-year period is 0.815, indicating a good
resource allocation capacity and management level in terms of GTIE inputs and outputs.
Furthermore, the mean SECH value is 0.827, suggesting that the 24 water environment
treatment enterprises as a whole have a reasonable development scale in green technology
innovation. However, the mean PECH value is lower than the mean SECH value, indicating
that the low PECH is the primary reason for the low EFFCH. This implies that the water
environment management enterprises should prioritize improving their resource allocation
capacity and management level (PECH) to effectively enhance their own GTIE.

Considering the average EFFCH values for each enterprise in the water environment
management sector, it is apparent that there are significant efficiency differences among
the 24 enterprises. The average EFFCH falls between 0.221 and 1, indicating varying levels
of efficiency. Out of the 24 enterprises, 11 have an EFFCH higher than the overall average
level. Additionally, six enterprises (A3, A8, A2, A20, A17, and A12) have an average
EFFCH exceeding 0.8. These enterprises, especially A3 and A8, consistently maintained an
EFFCH value of 1 between 2019 and 2022, establishing themselves as benchmark entities in
the water environment management sector. The higher mean EFFCH suggests that these
enterprises possess a high level of general technical and innovative efficiency (GTIE). On
the other hand, 10 out of the 24 enterprises have an average EFFCH below 0.6 (A21, A23,
A16, A1, A11, A10, A22, A5, A13, and A4). Among them, four enterprises (A22, A5, A13,
and A4) exhibit a comprehensive technical efficiency index below 0.5. The lower average
EFFCH values indicate a poor GTIE for these 10 enterprises, which hampers industry-wide
efficiency improvement.

The PECH values of the 24 water environment management enterprises range from
0.27 to 1, indicating significant disparities in the resource allocation capability for green
technological innovation among the enterprises. Out of the 24 enterprises, 13 have a PECH
value higher than 0.8. Moreover, five enterprises (A3, A8, A20, A17, and A7) exhibit a
PECH average value of 1 between 2019 and 2022, indicating consistently high levels of
resource allocation capability and management proficiency. These enterprises possess
robust resource allocation capabilities, facilitating their efficiency in green technology
innovation. On the other hand, the mean value of PECH for the 24 enterprises, including
A4 and A10, is lower than 0.6, suggesting a poorer resource allocation ability and low
management levels for green technological innovation. These enterprises fail to transform
R&D investment into green technology innovation output effectively.

From the perspective of SECH, the mean value of SECH for the 24 water environ-
ment management enterprises falls between 0.452 and 1, surpassing the mean value of
PECH, which represents the minimum land efficiency value for enterprises, indicating a
superior performance compared to PECH. A total of 15 of the enterprises exhibit a scale
efficiency mean value exceeding 0.8, suggesting that the collective scale development of the
24 enterprises in green technology innovation is favorable. However, the scale efficiency of
one enterprise, A5, is below 0.6, indicating that its development scale in green technology
innovation is unreasonable, thus impeding the enhancement of its GTIE.

Based on the EFFCH decomposition results mentioned above, out of the 24 enterprises,
there are 11 whose scale efficiency is lower than their PECH. These enterprises are A5,
A13, A7, A18, A21, A23, A1, A16, A17, A12, and A20. Among these, the average PECH
of A5 is higher than the scale efficiency by 0.5. The SECH of these 11 enterprises is lower
than their PECH, indicating that the main hindrance to the development of GTIE in these
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enterprises is low scale efficiency, which means their scale is not optimal. Therefore, these
enterprises need to make timely adjustments to their development scale based on their own
characteristics and environmental changes in order to effectively enhance their innovation
efficiency. In addition to A3 and A8, which have the highest PECH and SECH values, the
other types of enterprises (11 in total) have higher SECH values than PECH values. These
enterprises are A22, A4, A6, A19, A9, A10, A11, A14, A24, A15, and A2. Compared to
scale efficiency, the main reason for the low EFFCH in these types of enterprises is a low
PECH, indicating an insufficient resource allocation capacity and a low management level.
According to the data results, it is clear that the number of patent applications from water
environment treatment firms has significantly increased in recent years. However, the
conversion rate of these applications is notably low, limiting the impact on improving their
innovation efficiency. To address this issue, enterprises need to adapt to ever-changing
market demands by focusing on specific segments of innovation and research and devel-
opment. This will enable them to develop core technologies and continuously enhance
their practical application, thereby creating a distinct competitive advantage. In particular,
digital applications play a crucial role in fostering innovation and improving efficiency.
Through the utilization of digital information technology, enterprises can automatically
collect data on water quality indicators, flow rates, water temperature, and more. By
employing machine learning and big data analysis techniques, real-time monitoring of
the water environment becomes possible, enabling the prediction of future trends and
supporting decision-making processes. Furthermore, artificial intelligence can be utilized
to analyze the water treatment process parameters and identify the optimal treatment
conditions using optimization algorithms. This approach enhances the water treatment
efficiency and effectiveness while reducing energy and resource consumption [17].

Among the 24 enterprises, A21, A16, A9, A11, and A25 exhibit increasing returns to
scale, indicating that allocating more resources for research and development will lead
to a greater production of environmentally friendly technological advancements. This
suggests a growing market demand for eco-friendly innovations. However, these firms
face challenges in meeting this demand due to limitations in their current input and output
capacities. On the other hand, A22, A20, A3, and A84 enterprises show no change in
returns to scale, with A3 and A84 demonstrating constant returns to scale. This implies that
increasing R&D inputs will proportionally increase the technological innovation output.
The remaining 15 enterprises exhibit diminishing returns to scale, which means that blindly
increasing their R&D investment may lead to a decline in the efficiency of their green
technological innovation.

In the model construction and analysis above, corporate governance and internal
governance models evidently have a significant impact on firms’ R&D efficiency and
effectiveness. Both too small and too large of a scale can affect the improvement of the
innovation efficiency [18]. Therefore, enterprises should enhance their resource allocation
capacity and establish a reasonable enterprise scale and internal management mechanism.
They should also optimize shareholders’ equity structure and the organizational scale.
Water environment governance enterprises need to reassess their organizational scale and
management mechanisms to ensure that all production factors can maximize their benefits.
Furthermore, they should adhere to market-demand-oriented strategies and optimize
investment into and the allocation of funds, technology, talents, and other resources [19].
Additionally, in the context of carbon reduction efforts, water environment governance
enterprises need to upgrade their operational capabilities in two key areas: (1) the ability
to conserve energy and minimize consumption to achieve low carbon and low energy
consumption; (2) the ability for intelligent operation. For heavy-asset enterprises involved
in water governance, improving the intelligent asset operation efficiency and optimizing
the investment of funds into appropriate areas and technological research and development
are essential.

Table 4 exclusively focuses on static efficiency and neglects analysis of the dynamic
perspective regarding the GTIE of each enterprise. Hence, this research utilizes the DEAP2.1
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software to calculate and assess the total factor productivity index of 24 companies from
2019 to 2022, considering both dynamic-level and development trends, using the Malmquist
index model. The findings are displayed in Tables 5 and 6.

Table 5. Overall total factor productivity index and its decomposition for 24 firms.

Year EFFCH TECHCH PECH SECH TFPCH

2019–2020 0.877 1.342 0.927 0.946 1.178

2020–2021 1.133 0.876 1.005 1.128 0.993

2021–2022 0.685 1.333 0.815 0.84 0.913

mean 0.88 1.162 0.912 0.964 1.022

Table 6. Total factor productivity and its decomposition by firms, from 2019 to 2022.

DMU EFFCH TECHCH PECH SECH TFPCH

A1 0.829 1.319 1.048 0.791 1.093

A2 0.983 0.885 0.99 0.994 0.87

A3 1 1.311 1 1 1.311

A4 0.871 1.064 0.959 0.909 0.927

A5 0.944 1.199 1 0.944 1.132

A6 0.76 1.265 0.817 0.929 0.961

A7 0.986 1.182 1 0.986 1.165

A8 1 1.062 1 1 1.062

A9 0.93 1.105 0.936 0.994 1.028

A10 1.054 1.218 1.005 1.048 1.284

A11 1.062 1.228 0.968 1.097 1.305

A12 0.989 1.152 1.008 0.982 1.14

A13 0.696 1.252 0.651 1.069 0.871

A14 0.783 1.302 0.803 0.975 1.02

A15 0.814 1.155 0.816 0.998 0.941

A16 0.835 1.254 0.718 1.162 1.047

A17 0.759 1.063 1 0.759 0.807

A18 0.812 1.166 1.065 0.762 0.947

A19 0.833 1.124 1.012 0.823 0.936

A20 1.044 1.025 1 1.044 1.07

A21 0.562 1.064 0.778 0.722 0.598

A22 0.808 1.175 0.758 1.066 0.95

A23 1.119 1.226 0.855 1.309 1.371

A24 0.886 1.197 0.89 0.995 1.06

mean 0.88 1.162 0.912 0.964 1.022

The TFPCH in the results represents the full factor productivity, which reflects the
effectiveness of changes in production and operation over time. It quantifies the total output
of each unit or the ratio of total output to all factors input. As shown in Table 4, the mean
value of the total factor productivity index for the 24 enterprises in green technological
innovation from 2019 to 2022 is 1.022, indicating an upward trend in the 4-year period with
a 2.2% increase. This suggests that the efficiency of the 24 enterprises as a whole in green
technological innovation has improved. The decomposition of the total factor productivity
index shows that the mean value of the technical efficiency change index is 0.88, indicating
a 12% decrease in the technical efficiency change index for the 24 enterprises as a whole.
Furthermore, the mean value of the technical progress index is 1.162, indicating a 16.2%
increase in the technical progress index. This underscores that the improvement in technical
progress serves as the primary driving force behind the enhancement of the total factor
productivity index.
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Analyzing the total factor productivity index for each time period, the index for the
four-year period from 2019 to 2022 demonstrates an upward trend from 2019 to 2020, with
a 17.8% increase. However, it subsequently declines from 2020 to 2022, with a decrease of
0.7% from 2020 to 2021 and a further decrease of 8.7% from 2021 to 2022. The decomposition
of the total factor productivity index reveals that the main reason for the decline in the
index between 2020 and 2021 is the decrease in the technical progress index, while the
decline between 2021 and 2022 is attributed to the decrease in the technical efficiency index.
Further analysis shows that the decline in the technical efficiency index can be traced back
to both the PECH index and the SECH index. It becomes evident upon closer examination
that the decrease in the technical efficiency index is linked to the simultaneous decrease in
both the PECH index and the SECH index.

Out of all the enterprises, 14 of them, accounting for 58.3% of the total, have shown
a growth trend in their total factor productivity index between 2019 and 2022. Seven of
these enterprises have experienced a growth rate of more than 10%, with A23 exhibiting the
largest growth rate at 37.1% over the 4-year period. However, 10 out of the 24 enterprises
have demonstrated a decreasing trend in their total factor productivity index: A21, A17,
A2, A13, A4, A19, A15, A18, A22, and A6, respectively. An analysis of the reasons for
the declining trend in these 10 enterprises, conducted by decomposing the total factor
productivity, indicates that the technical efficiency change index of these enterprises is
lower than 1, reflecting a declining trend. This suggests that the primary factor contributing
to the decrease in the total factor productivity index of these 10 enterprises is the decline
in their technical efficiency. Specifically, the technical efficiency change index and the
technical progress index of A2 are both lower than 1, and the decline in the total factor
productivity index of A2 can be attributed to the simultaneous decline in the technical
efficiency change index and the technical progress index. Further decomposition of the
technical efficiency change index reveals that the PECH change index and scale efficiency
change index of enterprises A21, A2, A4, A15, and A65 demonstrate a declining trend. This
indicates that the technical efficiency change index of these five businesses has decreased
due to an inadequate resource allocation capacity and an unreasonable scope of operations.
On the other hand, the SECH change index of enterprises A17, A19, A18, A13, and A22 is
attributed to the decline in the total factor productivity index caused by the decrease in
the PECH change index. Based on the above conclusions, enterprises A13 and A22 should
prioritize improving their resource allocation capacity and management level to prevent a
further decline in the PECH index and effectively enhance their total factor productivity
index. Enterprises A17, A19, and A18, on the other hand, need to focus on adjusting their
development scale and improving their SECH to prevent a further decline in the SECH
index and maintain their output efficiency. Additionally, enterprises A21, A2, A4, A15, and
A6 should consider adjusting their resource allocation capacity, management level, and
development scale. It is crucial for these enterprises to recognize the interplay between
R&D inputs and outputs and strengthen their technological capabilities and the efficiency
of technological transformation.

In the aforementioned study, although the overall total factor productivity showed
an upward trend, the effectiveness of green technology innovation was impeded by an
insufficient technical efficiency within the firms and a low input–output ratio. Consequently,
water environment governance enterprises should prioritize the rationality of their research
and development investment, optimize the input–output ratio, and establish clear targets
and expected conversion rates for technological transformation [20].

4. Conclusions

In this paper, we analyzed the GTIE of 24 listed Chinese water treatment companies
by selecting micro enterprise data from 2019 to 2022 and processed the relevant indicator
data. We then applied the Malmquist DEA model to quantitatively analyze the factors that
influence these companies and constructed a theoretical framework to further investigate
their influencing mechanisms.
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Our research findings indicate that the average PECH of these 24 companies during
the aforementioned period is 0.912; the average value of EFFCH is 0.88; the average SECH
is 0.964; and the average TFPCH is 1.022. While the average values are relatively high and
the TFPCH increased by 2.2% during the studied period, most companies’ indices do not
exceed the average.

Currently, China’s water environment treatment enterprises are experiencing an over-
all upward trend in their GTIE. However, there is still significant room for improvement,
particularly in terms of their ability to translate R&D inputs into technological innovation
outputs. Specifically, these enterprises demonstrate a commendable level of PECH and
SECH. However, there is a noticeable disparity in efficiency among them, and a strong
positive correlation exists between PECH, SECH, and EFFCH. This suggests that techno-
logical progress and the development scale are the primary factors influencing EFFCH.
Furthermore, their total factor productivity is generally increasing, but it has shown a
tendency similar to an "inverted U" over the past four years. There is a considerable vari-
ation in the total factor productivity across enterprises, with those performing better in
this aspect typically exhibiting higher levels of innovation. Additionally, in the analysis
of the causes of innovation efficiency, R&D inputs, the resource allocation capacity, and
the management level have been found to have a significant impact on EFFCH. Increas-
ing R&D inputs can lead to higher outputs in green technology innovation, indicating a
growing market demand for such innovations. However, the existing input and output
levels of these enterprises often fall short of meeting the market demand. This suggests that
while increasing R&D inputs can boost technological innovation outputs proportionally,
blindly increasing these inputs may lead to a decline in GTIE. Moreover, a low resource
allocation capacity and an excessive development magnitude have a detrimental effect on
the innovation indices.

This study offers the following recommendations: Firstly, in terms of internal enter-
prise management, there should be a focus on prioritizing the training and recruitment
of skilled individuals in the field of water governance. This will involve establishing a
team with professional skills and expertise, enhancing the professionalism of employees,
and providing robust talent support to drive the transformation and development of en-
terprises. Additionally, companies should actively cultivate collaborative partnerships
with the government, universities, scientific research institutions, and other entities to
collectively advance the development and implementation of water treatment technologies.
Through industry–academia–research cooperation, there can be resource sharing, comple-
mentary strengths, and the promotion of technological innovation and the transformation
of achievements. Secondly, enterprises need to improve their awareness of technological
innovation and enhance the effectiveness of water environment management. To achieve
dynamic efficiency, organizations should develop a dynamic intelligent decision support
system that utilizes artificial intelligence’s self-learning and optimization capabilities to
identify and rectify product operational deficiencies, thereby improving and optimizing
their products. Continuous data collection, feedback analysis, and strategy adjustments
can enhance the efficiency of water environment management. Furthermore, although the
aforementioned study did not research and analyze government policies and subsidies,
it is clear that the water environment treatment industry has significant policy-oriented
characteristics, and its development status and prospects are closely linked to the gov-
ernment’s macro-policy orientation and measures. The government should facilitate the
transformation of sewage treatment enterprises into water governance enterprises using
financial subsidies, tax incentives, and other policy measures, reducing the enterprises’
transformation expenses and increasing their enthusiasm. Additionally, the government
should increase financial investment into the field of water treatment and provide financial
support for original and breakthrough technological innovations and project implementa-
tion on the part of enterprises [21]. By setting up special funds and guiding social capital
investment, the government can promote the development and application of water gov-
ernance technologies. At the same time, the government should focus on improving the
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regulatory mechanisms and strengthen the supervision and assessment of water gover-
nance enterprises by formulating relevant regulations and standards to ensure that the
capital operation norms and technical levels of water governance enterprises meet the
required standards.

5. Contribution and Limitations

When it comes to researching green technology innovation and its efficiency, the
current emphasis lies predominantly on provincial or macro-level studies of industries,
manufacturing, and new technology sectors. These studies extensively rely on yearbook
data and industry-specific information, resulting in limited utilization of company annual
report data. As a result, a precise and thorough understanding of green innovation at the
company level remains lacking. This article aims to address this research gap by examining
green technology innovation and evaluating its efficiency specifically in water environ-
ment management companies. By utilizing annual report data, this study adopts a micro
perspective and analyzes technical efficiency, scale efficiency, and total factor productivity
from both static and dynamic viewpoints. By offering specific and comprehensive research,
this study contributes to the academic community and holds practical implications for
promoting green development within the water management industry and its enterprises.

Regarding the measurement methods, this study employs the Malmquist DEA ap-
proach to analyze the time span and further enhances the use of the DEA model. The
findings of this study offer valuable insights for Chinese water treatment companies with
respect to research and development (R&D) technology and expansion strategies. They
assist companies in adapting production factors based on the research conclusions, thereby
improving the efficiency of corporate green technology innovation, advancing water envi-
ronment management, and utilizing technology to enhance the effectiveness and standards
of ecological restoration.

This article still has certain limitations in terms of the data selection and processing. Due
to time constraints and the nature of panel data indicators, this paper is unable to provide a
more extensive analysis and response to the changes in green technology innovation among
water environment management organizations. Given the evolving socio-economic and
political landscape in China and globally, the ecological environment and natural resources
will face a more diverse and complex scenario. In our future research, we intend to further
investigate the performance of the listed firms in our country that are involved in green
technology innovation for water environment management. We also plan to expand the scope
of our study to include the examination of green development in other emerging economies.
Additionally, we aim to employ diverse research methodologies to explore efficiency from
different perspectives, with the goal of understanding the current state of water environment
governance among the listed companies in our country and assessing their effectiveness.
This comprehensive investigation into the establishment and operation of water environment
management enterprises is crucial. Further study in this field is essential for advancing water
and environmental management businesses. It will help us gain a better understanding of
the factors influencing the effectiveness of innovation in water governance companies and
enable us to develop strategies for enhancing this efficiency. This knowledge is valuable for
the government, academia, and the business community.
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