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Abstract: The presence of high concentrations of geogenic arsenic (As) in groundwater poses a serious
threat to the health of millions of individuals globally. This paper examines the research progress of
groundwater with high concentrations of geogenic As through a comprehensive literature review
and analysis, covering distribution, health risks, in situ remediation, regulatory technologies, and
development trends, to establish a reference for future research. The global distribution of geogenic
high-As groundwater is mainly in inland basins and river deltas of countries in South Asia, East
Asia, and South America. High-As risk areas can be modeled using hydrogeologic data and field
measurements. This modeling approach allows for assessing and measuring potential areas of high-
As groundwater. In order to provide safe drinking water promptly and effectively to areas affected by
high-As groundwater, in situ rapid detection and remediation techniques have been given significant
attention. This paper introduces household- or community-scale As removal technologies, including
flocculant–disinfectant, bucket treatment units, use of activated alumina, use of nano zero-valent iron,
aquifer iron coating technology, and bioremediation, summarizing the basic mechanisms of arsenic
removal for each technology. Guaranteeing the sustainability of site-scale remediation technologies,
reasonable aquifer management, and exploring alternative water sources are crucial for combating
high-As groundwater contamination. Future studies should aim to elucidate the mechanisms of As’s
coexistence with other pollutants in groundwater, effectively treating As-containing wastes or sludge
produced during the treatment process and exploring better treatment options.

Keywords: high-arsenic groundwater; worldwide scale; in situ remediation of arsenic; human health
risk assessment

1. Introduction

Groundwater constitutes a vital source of freshwater, accounting for roughly 95%
of the total available freshwater resources on Earth [1]. It is utilized not only for daily
water needs but also for agricultural irrigation, industrial purposes, ecological recharge,
and power generation [2]. Therefore, groundwater holds significant value as a resource
and plays a critical role in the environment. The degradation of groundwater quality
represents a significant issue within the context of global environmental and climate
change today. Since the Industrial Revolution, there has been widespread concern over
the deterioration of groundwater quality [3]. Among the various groundwater quality
issues, the release of high concentrations of heavy metals has had a significant impact on
groundwater quality, and serious consideration must be given to its potential risks and
hazards to human health. In particular, As is considered by the United States Agency for
Toxic Substances and Disease Registry (ATSDR) to be the pollutant that poses the highest
potential risk to human health due to the release from natural sources and the resulting high
geogenic concentrations in groundwater [4]. The sources of As in groundwater primarily
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include natural origins such as geological formations, volcanic activity, and hydrothermal
processes, as well as anthropogenic activities including mining, coal combustion, and
petroleum extraction [5]. The majority of global health issues caused by As are linked to
the consumption of water with high As concentrations. Due to the wide range of negative
effects of high As concentrations on human health, the World Health Organization (WHO),
the United States, and the European Union (EU) have lowered the Maximum Contaminant
Level (MCL) of As in drinking water from 50 µg/L to 10 µg/L as a safe limit for As
concentration in drinking water [6,7]. High-As groundwater is defined as groundwater
with As concentrations above the WHO drinking water standard. The enrichment of
high-As groundwater is primarily influenced by a combination of natural sources and
hydrogeochemical conditions, with the majority of natural high-As groundwater primarily
being a result of geological arsenic contamination [5]. Despite the established risks, many
countries, such as Bangladesh, Nepal, Pakistan, Mexico, and Argentina, continue to adopt
the 50 µg/L standard for arsenic concentration in their national drinking water guidelines,
due to a lack of professional expertise, economic considerations, and the low-level arsenic
detection technology [8].

Human exposure to As occurs through direct and indirect pathways. Direct exposure
involves drinking water with a high As concentration, contact with skin, and inhalation
of gasses with a high As concentration. Indirect exposure mainly occurs through the food
chain; this includes eating crops, vegetables, and fruits cultivated in As-contaminated soil
or irrigated with As-rich groundwater, as well as consuming meat products from animals
raised in such environments. Prolonged exposure to As, regardless of the route, can result
in serious health disorders affecting the skin, blood vessels, and nervous system. Extended
periods of high As exposure also notably increase the risk of developing cancers in organs
like the lungs, liver, kidneys, and skin [9,10] (Figure 1).
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Figure 1. Different pathways of arsenic exposure in groundwater and effects on humans (MMA-
Monomethylarsenite; DMA-Dimethylarsenite).

Environmental As exists in groundwater in both organic and inorganic forms, with
varying levels of toxicity associated with different forms. The three primary forms of inor-
ganic arsenic are as follows: pentavalent arsenate [As(V)], trivalent arsenite [As(III)], and
metallic arsenic. Arsenic in organic form often occurs as various organic arsenic compounds
such as Monomethylarsenite (MMA) and Dimethylarsenite (DMA) [11]. Among these,
inorganic arsenic is more toxic to humans, and the toxicity significantly differs between the
oxidation states of As(III) and As(V). The toxicity of As(III) is more than 60 times higher
than that of As(V) and 70 times higher than that of methylated arsenic [12]. The height-
ened toxicity of As(III) is partially because of its reactivity towards biologically relevant
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molecules [13]. The methylated arsenic forms, including MMA and DMA, exhibit mod-
erate toxicity, while other organic forms, such as arsenobetaine (AsB) and arsenocholine
(AsC), are generally considered non-toxic [12]. In aqueous solutions, As(III) and As(V)
primarily exist as oxyanions due to the high charge and small ion radius of As3+ and As5+.
The presence and dispersion of distinct arsenic compounds within hydrological systems
are markedly influenced by both the redox potential and pH levels prevailing in aquatic
environments [14]. Under circumstances characterized by moderate-to-high redox poten-
tials, As tends to stabilize into the As(V) form (H3AsO4, H2AsO4

−, HAsO4
2−, or AsO4

3−).
Conversely, in environments featuring predominantly acidic or weakly alkaline reducing
conditions, and lower redox potentials, As(III) tends to be prevalent as the uncharged
H3AsO3 molecule [15].

Based on a thorough review of the literature, this paper comprehensively summarizes
and maps the distribution of geogenic high-As groundwater worldwide. In addition,
health risk assessment methods for high-As groundwater across the globe are summa-
rized. Several remediation technologies are also condensed, including in situ monitoring
and detection, aquifer remediation, and technologies for preventing and controlling re-
gional As pollution. Furthermore, the paper discusses the development trend of high-As
groundwater research.

2. Global Distribution of Geogenic High-Arsenic Groundwater

High-As groundwater is widespread worldwide. According to statistics, 107 countries
are affected by high-As groundwater, with the highest number in Asia (32) and Europe (31),
followed by Africa (20), North America (11), South America (9), and Australia (4) [16]. The
most affected countries are Bangladesh, India, Pakistan, China, Nepal [7], Laos [17], Cam-
bodia [18], Myanmar [19], Vietnam [20], and the United States. The world map (Figure 2)
displays the global distribution of geogenic high-As groundwater, predominantly found in
inland basins and river deltas in South Asian, East Asian, and South American countries.
Major countries are shown in Table 1. Generally, the river-marine sedimentary shallow
(Holocene) aquifers in the river deltas are the main areas where high-As groundwater
occurs naturally, and it occurs mainly under reducing aquifer conditions [21].
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(taking the maximum arsenic concentration), see Table 1 for specific data.

Globally, the problem of geogenic high-As groundwater is particularly prominent
in South and Southeast Asia, especially in Bangladesh and India [22]. In Bangladesh,
61 areas have been identified as having high-As groundwater. The potential population
at risk is approximately 20 million people [23]. According to the National Drinking Water
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Survey of Bangladesh, around 8% of the water samples had As levels exceeding the
Bangladesh standard of 50 µg/L, while around 18% of the samples were above the WHO
guideline of 10 µg/L [24]. The concentration of As in groundwater is higher in Bangladesh
compared to other countries, and some tube wells even contain As concentrations as
high as 4730 µg/L [25,26]. In India, high-As groundwater has already affected twenty
states and four union territories, and about 100 million people are under threat from the
toxicity of high-As groundwater [16,27–29]. The impact of high-As groundwater in India is
concentrated on the Ganges–Yarlung Tsangpo Plain, seen on the neo-alluvial (Holocene)
floodplains of the rivers in the Himalayas [30,31]. Approximately 50–60 million individuals
in Pakistan consume high-As groundwater (>50 µg/L) in vulnerable areas [32]. A meta-
analysis of groundwater affected by As in Pakistan showed that 73% of these groundwater
samples contained arsenic above 10 µg/L [33]. China is also one of the world’s most
representative areas of high-As groundwater, with more than 20 provinces/autonomous
regions having high-As groundwater problems. These high-As groundwater provinces
are mainly located in the fluvial/alluvial-lacustrine plains and basins (Yinchuan Plain,
Hetao Plain, Guide Basin, Hohhot Basin, Junggar Basin, Datong Basin, etc.) located in
arid/semi-arid regions and alluvial plains/basins and river deltas in humid/semi-humid
regions (Yangtze River, Yellow River Delta, Pearl River Delta, Delta, Huaihe River, Alluvial
Plain, Yellow River, Yuncheng Basin, Taiyuan Basin, Songnen Plain, etc.) [34–37]. The
population affected by high-As groundwater contamination in China was estimated to be
about 19.6 million according to a statistical risk assessment model developed by Rodríguez-
Lado et al. [38].

Table 1. The occurrence of high-As groundwater reported by major countries in the world.

Country Study Area Max As
conc. (µg/L) Samples Environmental Condition and/or

Enrichment Mechanism References

Afghanistan
Ghazni and

maidan Wardak
provinces

990 746 The weathering and leaching action [39]

Argentina

Santiago del
Estero Province 14,969 40 Volcanic ash sedimentary environment;

agricultural irrigation [40]

La Pampa 5300 44
The geological factors; weathering of

volcanic ash and loess; oxidizing
condition

[41]

Australia Stuarts Point
coastal 85 140

Desorption of As from Al-hydroxides
and As-enriched Fe-oxyhydroxides;

high concentrations of HCO3
−

and PO4
−

[42]

Bangladesh Noakhali 4730 52,202 Eroded by flood plain rivers [25]

Bolivia 364 24 The alteration of volcanic rocks;
evaporation and redox reactions [43]

Botswana Botswana 116 20
Delta; evaporation concentration;

weakly alkaline environment;
pH 6.29–8.60

[44]

Brazil 2980 Anthropogenic; volcanic activity and
weathering of rocks [43]

Burkina Faso 1630 45 Zones of gold mineralization in
volcano-sedimentary rocks [45]
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Table 1. Cont.

Country Study Area Max As
conc. (µg/L) Samples Environmental Condition and/or

Enrichment Mechanism References

China

Datong Basin 1932 1022
The weak alkaline reductive
environment; high HCO3

−

concentration; water–rock interactions
[46]

Hetao Basin 572 63
The reducing conditions; the dissolved

organic; the competitive effects of
other anions

[47]

Jianghan Basin 2330 34

The high HCO3
− concentrations;

microorganisms and exogenous
substances; the seasonal variation;

strongly reducing environment;
reducing environment

[48]

Taiwan (Lanyang
and Chianan Plain) 1010 Alluvial plain; high DOC; strong

reducing conditions [49]

Tarim Basin 91.2 233 Reducing environment; the dissolved
organic; reductive dissolution release; [50]

Yinchuan 177 92
Agricultural irrigation; the reductive

dissolution of Fe oxides; the high
PO4

− concentrations
[51]

Pearl River Delta 161 18
Reductive environment; the high NH4

+

concentrations; high concentrations of
NH4

+ and organic matter
[52]

Cambodian 1610 207 Holocene alluvial sediments;
reducing environment [53]

Costa Rica Northern Costa
Rica 29,100 35 Associated with the volcanic rock [43]

Czech Republic Mokrsko 1690 62 pH > 9 [54]

Ecuador 969 67 In hot springs [43]

Ethiopia Southwestern
Ethiopia 184.5 44 pH < 7 [55]

Ghana 1760 357 Spillages of the mines; pH 4.8–6.99 [56]

Hungary Southern Hungary 260 73 At a depth of 0.8–2.4 km and
containing CH4

[57]

India

Bhair 1466 1365 Ganga Plain; Holocene newer alluvium
and the Pleistocene older alluvium [58]

Shahpur block,
Bhojpur district,

Bihar state
1805 4704 Ganges plain [28]

Punjab 3192 4780 Alluvial aquifers [58]

Iran

Kurdistan Some
villages 1500 27 Mining and sedimentary environment

[59]
East

Azarbaijan-Tabriz
Plain

2000 18 Hydrogeological and
environmental reducing conditions

Ardabil-A city 5834 163
Interaction of hydrothermal fluids with

the rocks and geogenic
source-geological structure
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Table 1. Cont.

Country Study Area Max As
conc. (µg/L) Samples Environmental Condition and/or

Enrichment Mechanism References

Iran

Mazandar
an-Haraz River 110 20 Geogenic source and mining

[59]
Tabas South

Khorasan 53 29 Weathering

Razavi Khorasan
Chelpu Kashmar 606 12 Geogenic

Origin sedimentary environment

Isfahan Mutehgold
mining district 1061 17 Weathering and mining

Japan 38 136 Reducing environment and
factory blowdown [26]

Korea Geumsan County 113 150

Oxidation reaction of sulfide minerals
in metasedimentary rocks and
desorption process under high

pH conditions

[60]

Nigeria
Warri-Port

Harcourt, Ogun
State, Kaduna

750 20 Alluvial sediments, reducing
environment, slightly acidic [16]

Pakistan

Kasur, Shhiwal,
Bahawalpur, and
Rahim Yar Khan

3090 395 Irrigation and factory sewage [61]

Lahore
municipality 85 41

Topsoil and extensive irrigation of
unconfined aquifers,
reductive dissolution

[32]

Mailsi 812 44 Human activity [49]

Paraguay 120 37 Human activity and volcanic ash
deposition environment [43]

Lao PDR

Vientiane 24.4 3 Reducing environment

[17]
Borikhamxay 30 7 Reducing environment

Champasack 25.6 27 Reducing environment

Attapeu 31.6 10 Reducing environment

Myanmar Ayeyarwady 630 55 Reductive dissolution of
Fe oxyhydroxides

[49]

Mexico
La Laguna Region 5000 29

Adsorption or coprecipitation on iron
oxides, clay-mineral surfaces, and

organic carbon

Zacatecas 75.4 182 Geological origin,
water–rock interaction

[49]

Nepal Nawalparasi 2620 18,000 Seasons and climate change,
water–rock interaction

Pakistan
Larkana Sindh, 318 58 pH 6.8–8.1 [62]

Punjab 655 141 pH 7.0–9.3 [63]

Spain Duero Cenozoic
Basin 613 514 pH 5.87–1.58 [64]

Thailand Suphan Buri 5000 21 pH 5.20–5.90; Eh 250–370 mV [16]
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Table 1. Cont.

Country Study Area Max As
conc. (µg/L) Samples Environmental Condition and/or

Enrichment Mechanism References

USA

San Joaquin Valley,
California 148.5 4983

Arid and semi-arid basins;
alluvial, fluvial, and lacustrine deposits;

pH > 7.8; reducing conditions
[65]

Lahontan Valley, in
Churchill County,

Nevada
4100 59 Lacustrine sediments [66]

Vietnam Mekong Delta 850 109 pH 7.22–8.63 [49]

In Europe, As contamination in groundwater is attributed to geothermal and hy-
drothermal systems, dominated by bedrock and volcanic deposits [67]. The situation in
the Pannonian Basin (Romania, Serbia, and Hungary) is particularly noteworthy, as over
600,000 residents may be exposed to high-As groundwater [57]. Additionally, the max-
imum concentration of arsenic found in bedrock groundwater in Finland is 1040 µg/L.
The highest concentration of As recorded in the Ischia Island area, southern Italy, was
1479 µg/L, which was 148 times higher than the MCL. Hydrothermal activity and thermal
control seem to be the main factors responsible for the liberation of As from minerals [68].

The United States and Canada have also experienced extensive geogenic high-As
groundwater contamination, although the concentration is lower than that of Asian coun-
tries [69]. In Latin America, arsenic compounds in groundwater are mainly derived from
geothermal fluids as well as volcanic activity [43]. The As levels of drinking water are too
high in 13 of Mexico’s 31 states [70]. In particular, As concentrations of 5000 µg/L were
discovered in pore weakly permeable layers in the La Laguna area [71]. Groundwater As
sources of geothermal origin have been identified at Juventino Rosas in the State of Guana-
juato and Ixtapan de la Sal and Tonatico in the State of México [72]. The area of Argentina
most affected by As in groundwater is the Chaco-Pampean Plain, with approximately 88%
of the 86 collected groundwater samples surpassing the WHO guideline values, and the
population at risk in Argentina is about 4 million people [54].

In Africa, high-As groundwater has been found in only a few areas across the continent,
primarily in the western and southern regions, more due to insufficient research rather than
a shortage of problems [67]. Twenty countries in Africa have recorded high concentrations
of arsenic in groundwater, including Botswana, Burkina Faso, Ethiopia, and Ghana [67].
The maximum concentration of As in groundwater in Burkina Faso was 1630 µg/L, while
an analogous maximum concentration of 1760 µg/L was detected in groundwater in
Ghana [56,73].

3. Health Risks

High-As groundwater is directly or indirectly exposed to humans through ingestion,
inhalation, and dermal exposure. By conducting health risk assessments and potential
exposure assessments for areas with elevated levels of As in groundwater, it is possible to
quantify the potential hazards to human health. This will also enable effective measures to
be developed to control and protect public health.

3.1. Health Risk Assessment

The United States Environmental Protection Agency (USEPA) defines Human Health
Risk Assessment as a procedure for estimating the nature and likelihood of adverse health
effects in people likely to be exposed to chemicals in polluted environments [74]. There are
generally four steps: hazard identification, dose–response assessment, exposure assessment,
and risk characterization [75,76] (Figure 3). Currently, two human health risk assessment
methods are commonly used, namely deterministic risk assessment and probabilistic
risk assessment.
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Figure 3. The generic conceptual model and steps of health risk assessment (modified after [75]).

An adoption of the health risk assessment model for the water environment was
proposed by the USEPA [77]. Exposure to As in drinking water is mainly via both drink-
ing water and skin contact [78]. The equations for long-term average daily exposure to
groundwater for both exposure routes are given in Equations (1) and (2):

ADDoral =
C × IR × EF × ED

BW × AT
(1)

ADDdermal =
C × SA × Kp × ET × EF × ED × CF

BW × AT
(2)

where ADDoral and ADDdermal are the average daily exposure dose (mg/kg/day) for
drinking water and dermal routes of exposure, respectively; C is the concentration of As in
groundwater (mg/L); IR is the intake rate (L/day); EF is the exposure frequency, which
is the duration of exposure in one year (day/year); ED is duration of exposure, which
represents the number of years in a lifetime that the substance is ingested into the body
(years); BW is the average body weight (kg); AT is the average exposure time (days); SA is
the surface area of skin in contact with groundwater (cm2); Kp is the skin permeability
coefficient of different indicators (cm/h); ET is the exposure time (h/day); and CF is the
conversion factor (L/cm3).

According to the health risk assessment model, the potential risk to human health
from chemical carcinogens and non-carcinogens under the same exposure pathway is
calculated differently. The hazard quotient (HQ) was used to calculate the non-carcinogenic
risk to consumers of high-As groundwater in the study area, where HQ > 1 indicates that it
may have a potential non-carcinogenic but harmful effect, and HQ < 1 indicates that the
substance is considered safe for drinking water consumers [79]. The formula is as follows:

HQ =
ADD
R f D

(3)

where RfD is the reference dose (mg/kg/day) and the reference dose for both oral and
dermal exposure to As is 0.3.

The sum of the HQs calculated for each individual element is the overall likelihood
of non-cancer effects for all elements, expressed as a combined hazard index (HI). HI > 1
indicates a potential for an adverse effect on human health and the necessity for further
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study. The higher the value of the HI, the higher the level of adverse health effects and
non-cancer health risks [80]. The calculation formula is shown below:

HI =
n

∑
i=1

HQi (4)

The risk of developing cancer due to the different routes of exposure to carcinogens is
given in Equations (5)–(7):

CRj =
n

∑
j=1

(
ADDj × SFj

)
(CR < 0.01) (5)

CRj =
n

∑
j=1

[
1 − exp

(
−ADDj × SFj

)
](CR ≥ 0.01) (6)

CRtotal =
n

∑
j=1

CRj (7)

where CR is the individual carcinogenic risk index, and SFj is the cancer slope factor for
As (kg·day/mg). CRtotal is the overall carcinogenic risk index. If CR or CRtotal < 10−6, the
level of carcinogenic risk can be ignored; if CR or CRtotal > 10−4, it indicates the presence of
an unacceptable human carcinogenic risk [81–84].

3.1.1. Deterministic Risk Assessment

Through determined parameters and known condition values, risk assessment find-
ings in the Rupnagar district of Punjab, India, and the Salda Lake Basin in Burdur province,
Turkey, have confirmed the potential for high non-carcinogenic and carcinogenic effects of
As [79,85]. Similarly, researchers conducted monitoring and data collection in the Kuitun
River Basin in the southwestern part of the Junggar Basin, China. The health risk assess-
ment indicates that the risk of developing cancer from As in groundwater is higher in
adults than in children. Particularly, the average CR for adults who consume groundwater
was much greater than that for children, with a difference of one magnitude order between
them [84]. As poses a greater cancer risk to adults than to children. Conversely, adults are
at lower risk for non-cancerous health effects from As exposure than children [86]. Recently,
Kumar et al. conducted a study on a floodplain village situated near the Ganga Gyaspur
Mahaji River in the Patna district. Their findings suggest that the local As concentration
was as high as 826.4 µg/L. Furthermore, 86% of the samples collected were found to be
highly contaminated (>50 µg/L). Residents of the village exhibit obvious symptoms of
arsenic poisoning, and many suffer from skin problems (hyperkeratosis of the palms and
soles, melanosis), gastrointestinal problems (gastritis, flatulence, and constipation), anemia,
loss of appetite, respiratory distress, mental retardation, and other related illnesses, and
they are at high risk for cancer [87].

3.1.2. Probabilistic Risk Assessment

Traditional deterministic health risk assessment methods are subject to variability
and uncertainty in contaminant concentrations, exposure parameters, and environmental
media. These factors can potentially overestimate the risks posed by toxic pollutants [88,89].
USEPA (2001) proposed Monte Carlo simulation (MCS) for uncertainty analysis; MCS
minimizes uncertainty by calculating the probability that a risk will exceed safety standards
using repeated samples from a probability distribution and identifying key factors that
should be prioritized in risk management [90]. Some studies identify sensitive model
parameters based on analyses of correlation and variance properties while taking into
account different exposure scenarios related to groundwater pathways. Using the MCS
methodology to incorporate changes in the key parameters for health risk assessment will
thereby greatly reduce the inherent uncertainty due to variability in environmental systems
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and exposure patterns [91–93]. A health risk assessment conducted in the northwest of Iran
indicated that the primary pathway of adult exposure to As was through the consumption
of local groundwater, with ED, C, and AT being the most influential factors in affecting
the probabilistic health risk assessment [94]. Zhu et al. used stochastic-triangular fuzzy
numbers (a combination of MCS and triangular fuzzy numbers) to evaluate the probabilistic
health risk of As contamination in groundwater [95]. Chen et al. synthesized the overall
state of environmental pollution with demographic variability, significantly reducing the
inaccuracies of the assessment outcomes, and demonstrated that the CR for adults was
lessened compared to the deterministic risk assessment model that uses fixed parameters.
The assessment results indicated that for the population aged between 3 and 79 years,
except for the age group of 4–6 years, the CRtotal far exceeded the safe limit, reaching 10−4

to 10−3, and the non-carcinogenic risk for the population aged 6 months to 79 years was
above the acceptable threshold [88].

Only the bioavailable portion of the pollutant can be absorbed by the body [96]. The
bioaccessible concentration is the concentration of a contaminant that is capable of being
dissolved in the gastrointestinal system and then absorbed into the bloodstream. It is
usually less than the total concentration of the contaminant that significantly influences
the assessment of the health risk of human exposure to the toxic element [97]. Health risk
assessment based on bioavailability concentrations provides a reliable method to avoid risk
overestimation and unnecessary soil remediation [97]. For the health risk assessment of As
in groundwater, the bioaccessible concentration can be considered as a tool to determine
the actual human risk of different forms of As in groundwater.

3.2. Potential Exposure Assessment

As enrichment in groundwater typically results from the synergistic effects of multiple
environmental factors. Because of the variable hydrogeochemical conditions and complex
contamination sources, it is not possible to fully constrain the fate of high-As groundwater
due to limited groundwater samples, and the distribution and sources of As in groundwater
are difficult to predict, posing a serious challenge to its control and risk management [98].
To investigate compositional patterns in high-As groundwater samples, statistical analysis
methods such as Self-Organizing Maps (SOMs) and Principal Component Analysis (PCA)
have been employed. By reducing dimensionality and classifying data, these methodologies
facilitate an accurate interpretation of the relationship between dependent and predictor
variables. They assist in understanding the complexity of groundwater systems and the
factors contributing to arsenic contamination.

The SOM analysis is an unsupervised learning algorithm that effectively reduces
computation through dimensionality reduction. It describes the similarity of datasets by
dividing similar data [99]. This method has good prospects for application in groundwater
quality evaluation. Jiang et al. combined SOMs and health risk assessment to demonstrate
that the carcinogenic risk of As in groundwater exceeds unacceptable risk levels for both
children and adults [100].

PCA is also a statistical approach that simplifies the structure of data by reducing the
dimensionality of the data and simplifies more variables into a few unrelated comprehensive
indicators. PCA is frequently utilized for comparing compositional patterns among water sam-
ples and determining the factors that affect the compositional patterns of each sample [101].
Hierarchical Cluster Analysis (HCA) and PCA were used in the Hetao Basin of Inner Mon-
golia. The PCA results indicate that geological, reductive, and oxidative factors control high
concentrations of As in groundwater [102]. A study proposes that the microbial-mediated
decay of organic matter and reduction-based dissolution of Fe-Mn hydroxyl oxides are the
primary mechanisms responsible for the high levels of arsenic in a shallow aquifer in eastern
Bangladesh through correlation matrix, PCA, and saturation index calculations [103].

Advanced predictive models, including machine learning algorithms, have been devel-
oped to identify areas at high risk of As contamination in groundwater. Machine learning
models, such as Logistic Regression, Artificial Neural Network (ANN), and Random Forest
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(RF), are increasingly being deployed for predictive mapping of the distribution of high-As
groundwater at global, national, watershed, and regional scales [104]. These models are
capable of processing large datasets, learning from data, and identifying patterns that may
not be immediately apparent to human analysts.

The distribution of As in groundwater exhibits significant heterogeneity and is fre-
quently modeled with binary target variables to create probabilities, including logistic
regression. Wu et al. used a logistic regression-based distribution model for As in ground-
water and also combined modeled As hazards with simple exposure pathways and dose–
response modeling to estimate the health hazards of As in Gujarat’s groundwater drinking
water. The study findings indicated an estimated prevalence of 700 cases of skin cancer and
approximately 10 cases of premature avoidable mortality per year from internal cancers
(including lung, liver, and bladder) [105]. Around 44.1 million individuals in the United
States utilize well water in their households. A logistic regression model based on As
concentrations in 20,450 domestic wells estimated that approximately 2.1 million people
use drinking water with As levels greater than 10 µg/L [106].

ANN is an adaptive system that utilizes interconnected nodes or neurons in a hierar-
chical structure, similar to the human brain, to learn from data. It enables the modeling
of intricate connections between variables. Global ANN models have been developed to
link As levels to environmental indicators. These models aim to identify areas of high-As
groundwater worldwide and to recognize significant indicators through a combination of
the classification regression tree method and the ranked importance method. The models
also aim to identify and quantify interactions between critical indicators using the neural
interaction detection algorithm framework [107].

In recent years, a machine learning method has gained rapid development—RF. It is a
classification model that creates a group of decision trees. This can be utilized to forecast a
binary class based on the related independent variables [108]. This method can aid in identify-
ing and comprehending the intricate relationships between various factors, contributing to the
assessment of potential risks to human health and the environment from high-As groundwa-
ter. Joel Podgorski and Michael Berg utilized an RF machine learning algorithm to construct
a worldwide predictive map for groundwater As amounts surpassing 10 µg/L, based on
11 geospatial environmental parameters and over 50,000 aggregated data points in terms of
measured groundwater As concentrations. It is estimated that approximately 94–220 million
individuals could be exposed to groundwater containing high levels of As, with the majority
of these individuals (94%) in Asia [109]. Connolly et al. implemented Random Forest model-
ing based on high-resolution, satellite remote sensing, long-term measurements of surface
inundation duration and frequency to effectively predict nonhomogeneous groundwater As
concentrations at fine spatial scales in Vietnam, Cambodia, and Bangladesh [110]. Sumdang
et al. used three distinct machine learning algorithms (ANN, Support Vector Machine, and
RF) to assess the risk of As contamination in the urbanized coastal aquifer within the Rayong
Groundwater Basin in Thailand. Upon comparative analysis of the three machine learning
algorithms, the RF approach demonstrated superior predictive accuracy and exhibited the
least uncertainty in modeling, rendering it the most appropriate method for evaluating As
contamination in the groundwater of the study area [111].

Probability maps generated using machine learning predictions can serve as a guide
for targeted As testing in groundwater, visually representing areas with higher probabilities
of As contamination as analyzed through these statistical and machine learning methods.
While we acknowledge the robust capabilities of machine learning in predicting and
assessing the risk of high-As groundwater, the heterogeneity of aquifers at a small scale
(<1 km) cannot be adequately modeled using existing global datasets. Accurate risk
assessment also necessitates the further development and refinement of these models [109].

4. In Situ Remediation and Regulation Technology of Arsenic

At present, a variety of ex situ remediation techniques have been widely used for As
removal around the world [55]. However, many of these methods face financial limitations,
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the need to treat sludge/waste containing As, high technical difficulties, and secondary
pollution when applied under on-site conditions. Moreover, the selection of remediation
technology for a specific region depends on various factors such as the pH of the ground-
water, oxidation state of As, and redox potential [112]. Technical, economic, and social
factors should be comprehensively considered. To provide safe drinking water in areas of
high-As groundwater contamination while ensuring the immediacy and effectiveness of
remediation, it is necessary to implement rapid in situ detection, in situ remediation, and
regional aquifer regulation in the field.

4.1. In Situ Rapid Detection Technology

In situ remediation of high-As groundwater requires close monitoring and testing to
provide timely and accurate data that are critical to the overall remediation process. These
data help to determine remediation progress, identify issues, and mitigate potential envi-
ronmental and health risks to ensure remediation effectiveness. Water quality monitoring
is essential for maintaining sustainable groundwater quality, and adequate water quality
monitoring data can provide a basis for policy development. It is recommended that a
regular groundwater monitoring network be established to track changes in As levels and
groundwater quality [113]. Further development is required for monitoring strategies and
methods to effectively estimate and predict As contamination in groundwater. At present,
there are a variety of methods that can be used to detect the presence of As in groundwater,
either through laboratory analyses or field sampling. The analytical methods typically used
in laboratories to detect As are hydrogenated atomic fluorescence spectrometry (HG-AFS),
hydrogenated atomic absorption spectrometry (HG-AAS), inductively coupled plasma
atomic emission spectrometry (ICP), neutron activation analysis (NAA), and X fluorescence
spectrometry (XRF) [114,115]. All of these methods rely on bulky equipment, are not
suitable for detecting As in the field or at a distance, and are complicated and expensive to
maintain. Various laboratory techniques for As detection are summarized in Table 2.

Table 2. Summary of analytical methods for As testing (data source [11,116]).

Methods Detection
Limit (ppb)

Sample Size
(mL) Remarks Advantage Disadvantage

HG-AAS 0.05 50 Single element

High sensitivity, capable of
distinguishing between

As(III) and As(V), reduces
interference from the

sample matrix.

Transition metals may
interfere with detection

and inhibitors like
L-cysteine may be required

to prevent interference.

GF-AAS 1–5 1–2 Single element
Suitable for the analysis of
non-volatile compounds

and offers high reliability.

Preconcentration is needed
and, in some cases, matrix
modification is necessary to

increase detection
sensitivity.

ICP-AES 35–50 10–20 Multi-element More accurate for
multi-element samples.

Less frequently used, not as
sensitive as ICP-MS.

ICP-MS 0.02–1 10–20 Multi-element

Combines powerful
separation capability with

a low detection limit.
Capable of effectively

achieving selective
detection.

Sensitive to high chloride
levels, which may
cause interference.

HG-AFS 0.01 40–50 Single element

High sensitivity, capable of
eliminating matrix

scattering and interference
from the sample matrix.

Potential interference
issues similar to HG-AAS,

may require specific
mechanisms to

eliminate interference.
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The most important feature of the on-site detection method is that it can be tested and
sampled on the field. The principle behind the use of kits for rapid on-site detection of As
in groundwater is that when any metal arsenide reacts with a strong acid, arsenide gas is
produced. Most As detection kits depend on the use of zinc metal and hydrochloric acid
to convert inorganic arsenic into arsenical gas (AsH3). The gas is allowed to pass through
the indicator paper of mercury bromide (HgBr2), and the intensity of the color represents
the concentration of As [7]. In an evaluation of the performance of eight commercially
available arsenic field test kits, a variance in accuracy and precision was identified. The
LaMotte and Quick II kits were found to provide accurate and precise estimates of arsenic
concentrations, whereas kits like Econo-Quick, Quick, Wagtech, and Merck were either
accurate or precise but not both. The Hach and Econo-Quick II kits were neither accurate
nor precise. Furthermore, the test strips from the underperforming kits often produced
colors that were lighter than those on the arsenic color calibration charts provided by the
manufacturers, suggesting a need for improved quality control of these kits [117]. There
are many other on-site kits, including the AAN kit (Japan), AIIHPH kit (India), E-Merck kit
(Germany), ENPHO kit (Nepal), NIPSOM kit (Bangladesh), Wagtech Arsenator (UK), and
Modified AAN kit (Nepal) [116].

Some electrochemical techniques can also be applied in field conditions, primarily for
the detection of As speciation in groundwater. A method for the detection of inorganic
arsenic (i.e., the transformation of As(III) to As(V)) at a 25 µm diameter gold microwire elec-
trode using anodic stripping voltammetry (ASV) under the conditions of low-concentration
KMnO4 has been developed. This method can be utilized over a wide pH range, does
not require chemical reduction, offers good sensor repeatability, is easy to operate, and is
suitable for the rapid and accurate measurement of total arsenic concentration in ground-
water [118]. The determination of As(III) in water at a natural pH can also be conducted
using cathodic stripping voltammetry (CSV) without the need for reagent addition or O2
removal, making it applicable for the long-term monitoring of As(III) in well water or
streams [119].

4.2. In Situ Remediation

With the development of various technologies for example chemical oxidation, adsorp-
tion, ion exchange, coagulation and precipitation, membrane technology, bioremediation,
and microbial remediation, ex situ treatment methods have been widely studied [120,121].
Figure 4 illustrates the general flow of the As removal process. However, many technologies
have been successful in the laboratory and their applicability at the field scale has been
hampered by issues of technical feasibility, managing sludge, secondary contamination,
and financial constraints in large-scale applications [8,112].
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Most in situ treatment methods work based on oxidation, flocculation, sedimenta-
tion, filtration, and adsorption. For example, flocculant–disinfectants, bucket treatment
units, use of activated alumina, use of nano zero-valent iron, and aquifer iron coating
techniques are As removal technologies that can be adopted by households or communities.
Bioremediation is another proven method for achieving in situ remediation.

Flocculants–Disinfectants: When the flocculant–disinfectant powder is added to water,
it employs precipitation, coagulation, and flocculation processes to remove As, other
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heavy metals, organic material, and microorganisms from groundwater. Following the
treatment, a residual amount of free chlorine is left in the water, which aids in further
disinfection [122]. A 12-week study of 103 As-contaminated tube-well water households in
Bangladesh showed that the median As concentration in tube-well water decreased from
a baseline of 136µg/L to 16µg/L with the use of a flocculant–disinfectant, significantly
reducing As in drinking water [123]. This is a technique for replicating municipal water
treatment processes at the household level, providing options for rural residents at risk of
waterborne diseases [124].

Bucket Treatment Unit (BTU): The BTU is a portable As removal unit based on the
principles of adsorption, precipitation, and coagulation. This method uses two buckets
with a capacity of 20 L, one of which is placed above the other, and can remove arsenic in
nearly 2–3 h. The technology is low-cost, simple to install, and uses only basic chemicals
like aluminum sulfate and potassium permanganate [60]. The DPHE-Danida project in
Bangladesh distributed several thousands of BTU units in rural areas of Bangladesh [125].
It has good As removal performance under both field and laboratory conditions, but due to
alterations in the parameters of water quality (especially pH) and inadequate mixing, the
effect of rapid evaluation may be poor [126].

Aquifer Fe-coating technology: An in situ remediation study in the Datong Basin,
China, showed a significant enhancement in arsenic removal efficiency through an in situ
remediation approach. The method involved an alternating injection of Fe(II) (5.0 mM)
and NaClO (2.6 mM) to induce the formation of Fe oxides/hydroxides within the aquifer.
This process encompassed the oxidation of Fe(II) and As(III) using NaClO, as well as the
adsorption/co-precipitation of As(V) in the targeted aquifer [127].

Activated Alumina (AA): The adsorption effect during As removal is related to the
nature of the adsorbent material, including the density of the effective adsorption sites
and the size of the specific surface area [114]. AA has been widely used in the adsorption
of As because of its porosity, high dispersibility, and large specific surface area [128]. AA
consisting of amorphous and γ-alumina oxides was obtained by a dehydration reaction
under high-temperature conditions using Al(OH)3 as a raw material. AA adsorption is a
physical/chemical process wherein the available adsorption sites on the oxide surface are
utilized to remove ions from solution. The actual degree of As removal and the service life
of the AA media depend on various factors, including pH, the oxidation state of arsenic,
competing ions, the empty bed contact time (EBCT), and the regeneration process [129]. AA
is more effective in removing As under acidic conditions, particularly for As(V). Ions such
as sulfate and chloride may interfere with the removal of As; increasing EBCT can slightly
enhance the effectiveness, while the life span and efficacy of the activated alumina beds
may decline after regeneration with high-concentration NaOH solutions [129]. The Battelle
Memorial Institute received funding from the USEPA, studied two AA plants employed
in the treatment of As and showed that raw water As(III) concentrations ranged from 0.3
to 28.8 µg/L, and the finished water contained less-than-detectable levels of As(III), indi-
cating that As(III) was almost completely removed [130]. Field trials of electrocoagulation
followed by adsorption on AA in West Bengal, India, have shown that this technology
can decrease As concentrations in drinking water to below 10 µg/L [131]. However, if
groundwater contains high concentrations of iron, the precipitation of Fe(OH)3 in the
presence of air may occur, potentially leading to the clogging of filtration columns and
thus reducing the adsorption efficiency of AA [128]. When applied in field applications,
it is essential to consider the multitude of factors influencing the removal of As by AA to
ensure optimal performance.

Nano Zero-Valent Iron (NZVI): In field applications, researchers have employed NZVI
as an adsorbent due to its core–shell structure—consisting of a highly reductive metallic
core with a surrounding amorphous iron (oxy)hydroxide layer. Such a structure enables
NZVI to simultaneously undergo reduction and oxidation mechanisms, facilitating the
coordination and oxidation of As(III) [132]. As(III) is strongly adsorbed onto NZVI within
a short timeframe (on the scale of minutes), and this effective adsorption occurs across a



Water 2024, 16, 478 15 of 25

variety of pH levels and anionic environments. The actual reactive site on the NZVI surface
is likely a stable or metastable Fe(II), Fe(II)/(III) mixture, or an Fe(III) oxide, hydroxide, or
oxyhydroxide corrosion product [133,134]. The efficacy of As(III) adsorption sites evolves
over time; initially (within 0–24 h), amorphous Fe(II)/(III) species and magnetite (or
maghemite) function as adsorption sites. As NZVI corrodes over time, the formation of
more crystalline magnetite and lepidocrocite provides ongoing sites for As(III) adsorption.
Moreover, As(III) in contact with corroded NZVI surfaces is oxidized to As(V), which
is then adsorbed by Fe(III) oxides. Consequently, As(III) and As(V) get sequestered in
layers formed atop NZVI corrosion product films, which are overlain by subsequent
layers, becoming isolated from the surrounding solution [135]. NZVI is a highly efficient
material for removing As(III), with the main advantages being that it is (a) non-toxic and
cost-effective and (b) it is a strong reductant; hence, it is capable of effectively removing
both inorganic and organic arsenic, and it is effective in removing arsenic in conditions
of low pH and high sulfide content in water [136]. Neumann et al. investigated As
removal in the field, employing SONO household filters based on zero-valent iron [137].
The removal process with NZVI involves several mechanisms (Figure 5). However, the
application of this nanoadsorbent is complex in terms of material synthesis, with the
potential interference in the adsorption of As(III) from competing anions such as HCO3

−,
H4SiO4

0, and H2PO4
2− [135,138].
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Bioremediation: Bioremediation mainly comprises microbial in situ remediation
and phytoremediation. Microbial communities undertake the bioremediation of various
forms of As through oxidation, reduction, methylation, and biosorption. Phosphate trans-
porter proteins Pst and Pit mediate As(V) uptake, while glycerol transporter GlpF uptakes
As(III) [140]. The detailed process of action is shown in Figure 6. Some microorganisms, for
example, Gallionella ferruginea and Leptothrix ochracea, accelerate the biological oxidation
of iron and provide a favorable environment for As adsorption [141]. The pathway of As(V)
methylation initially involves the reduction of As(V) to As(III), followed by the methyla-
tion of As(III) to dimethylarsine via the coenzyme S-adenosylmethanethionine [142,143].
Multiple As transformation mechanisms exist in bacteria and other algae. For example,
Leptolyngbya boryana has strong As tolerance, biotransformation, and accumulation capa-
bilities, and it has multiple As biotransformation pathways that have attracted considerable
attention as a promising alternative for As remediation [144]. Phytoremediation remediates
heavy metal-contaminated water through several processes including phytoextraction,
phytodegradation, inter-root filtration, phytostabilization, and phytovolatilization [121].
Researchers investigated the accumulation and removal of As from As-contaminated site
soils by the As-hyperaccumulating plant, Chinese brake fern (Pteris vittata L.), in a two-
year field experiment [145]. It has been reported in the literature that a method of the
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PvACR3 transgene has been designed for the phytoremediation of engineered As-tolerant
and -hyperaccumulating plants [146]. Bioremediation approaches exhibit commendable
environmental compatibility and potential cost-effectiveness; however, extensive research
is still requisite.
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4.3. Regional Aquifer Arsenic Regulation

The sustainable management and use of groundwater are extremely crucial for safe
drinking water [46]. The most direct approach to the problem of high-As groundwater is to
eliminate the source of contamination. Various remediation techniques above are widely
used. Furthermore, the use of centralized and decentralized drinking water treatment
technologies can significantly reduce the exposure of As in drinking water.

Instead of expensively treating the reclaimed water or abandoning the existing man-
aged aquifer recharge (MAR) sites, one management strategy involves pretreatment of
the recharge water. This includes adjusting pH, controlling calcium concentration, adding
chemical oxidants, and incorporating amendments for in situ treatment to minimize adverse
geochemical interactions between recharge water and native groundwater. Subsequently,
to prevent the initial release of geogenic As, oxidants (dissolved oxygen and/or nitrate) in
the injection water can be eliminated using membrane contactors and/or the addition of
sodium bisulfite [148]. In addition, the mobilization of As to the interface where mixing
transpires between recharge water and native groundwater, known as the buffer zone, and
trying to impede the restoration of compromised groundwater by restricting the pumping
activities within the buffer zone can be conducted [148].

Effective aquifer management can also lead to a decrease in concentrations of As in
groundwater (Figure 7). The majority of wells exhibiting arsenic trends are situated within
regions characterized by dense networks of wells. Intensive pumping in these regions
leads to an elevated vertical displacement of groundwater. The oxidation of groundwater
moving downward may lead to a decrease in As. However, deeper or situated in the trough,
the reduction conditions of the aquifer are conducive to the migration of As, which may
further deteriorate the groundwater quality in the long term [65].
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In addition, alternative water sources can be selected to reduce the consumption
of high-As groundwater, which requires the identification and utilization of clean water
sources, for example, collecting rainwater, treated surface water, and the combined use
of groundwater and surface water as domestic water, or As pipe wells that take water
from deep low-As aquifers. Compared with water-rich countries, rainwater harvesting is
generally seen as a backup source of supply [149]. Rainwater with relatively good water
quality after filtration is a viable way to ensure a safe water supply [150]. Combining low-
As water with high-As water may be an option to reduce As in groundwater to acceptable
levels [36]. In some areas, shallow pipe wells are generally contaminated, and deep pipe
wells are characterized by low As; deep tube wells may provide higher quality water and
lower overall burden. Despite ultimately having problems with microbial quality, it is
effective in reducing As exposure [151,152].

5. Development Tendency

The sources, distribution, and behavior of As in groundwater under geological and hy-
drogeological conditions and treatment methods have been extensively studied worldwide.
To mitigate the health and environmental risks caused by geogenic high-As groundwater
and ensure sustainable water resources management, further research and optimization
are needed in the following areas [10,55,114,153,154].

1. Although there are more remediation technologies for high-As groundwater contam-
ination, all of them have certain limitations, which is a relatively complex process.
At present, no remedial technique can attain complete remediation, and a single
method is inevitably constrained by factors, for example, the environmental con-
ditions of the groundwater and the economic status of the area. The development
of biological–plant combination techniques, chemical/physical–chemical–biological
combined combination techniques, and physical–chemical combination remediation
techniques is a new direction in the future.

2. The main challenges in managing water with high levels of As include applying
in situ remediation technologies, operating and maintaining large water treatment
plants, and managing As-containing sludge and waste. The management of high-As
groundwater involves several fields, including technology, engineering, finance, and
environmental management, and it requires an integrated approach. As-containing
sludge or waste generated during groundwater treatment must be properly handled
to prevent secondary contamination and environmental hazards.

3. Based on an extensive review of the literature, it has been found that in many countries,
natural groundwater contains arsenic coexisting to varying degrees with additional
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contaminants, such as fluoride (F), nickel (Ni), molybdenum (Mo), and antimony
(Sb), among others. There is a potential for interaction occurring among these el-
ements. There is a lack of studies on the simultaneous presence of As with other
emerging contaminants in groundwater. Further laboratory simulations are neces-
sary to enhance the comprehension of how environmental, hydrological, geological,
and anthropogenic factors impact the mechanisms of arsenic coexistence with other
contaminants. In addition, more research is needed to explore the migration of As
in groundwater and its interaction with other organic and inorganic components
during the transformation process. An in-depth study of As migration interaction
with other elements, organic chemical transformations, and biochemical processes
can provide better prediction and simulation tools, which can help to develop more
effective strategies for the management of high-As groundwater pollution.

6. Conclusions

This paper highlights the distribution of geogenic high-As groundwater worldwide,
health risks, and management techniques and discusses future trends. There are 107 coun-
tries affected by geogenic high-As groundwater pollution, mainly in Asia, Europe, and
Africa. The countries suffering the most severe effects include India, Bangladesh, China,
Nepal, and Pakistan.

The health risk assessment model can link high-As groundwater with the health haz-
ards of the public and quantitatively describe the harm of high-As groundwater to human
health. The main exposure pathways for As in groundwater are the ingestion of drinking
water and skin contact. Risk assessment results indicate that As in groundwater poses a
serious threat with high carcinogenic and non-carcinogenic effects. In addition, modeling
methods for predicting As pollution using hydrogeological and field measurements have
been utilized to assess and measure potential areas of As contamination. In particular,
machine learning models can be used at global, national, watershed, and regional scales to
provide essential data for improving public health and water management.

Various in situ remediation technologies for groundwater have received great attention,
usually involving three aspects: in situ monitoring and detection, in situ remediation, and
regional aquifer regulation. In situ remediation technologies include but are not limited
to redox, adsorption, biosorption, and other technologies, such as flocculant–disinfectant,
barrel treatment unit, use of activated alumina, use of nano zero-valent iron, and aquifer
iron coating technology. The successful application of these remediation materials and
technologies in the field will help reduce the treatment cost of high-As groundwater and
reduce environmental impacts.

Further studies are necessary to uncover the mechanisms behind the coexistence
of As with other contaminants in groundwater and to determine the correct disposal of
waste containing As produced during the treatment process. Additionally, better treatment
options must be explored. The worldwide issue of high levels of As in groundwater
necessitates cross-border collaboration and integrated solutions to protect both public
health and environmental sustainability.
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