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Abstract: Identifying the potential pollution sources of surface water pollutants is essential for the
management and protection of regional water environments in drinking water source areas. In
this study, absolute principal component score-multiple linear regression (APCS-MLR) and positive
matrix factorization (PMF) models were applied to assess water quality and identify the potential
pollution sources affecting the surface water quality of Xin’an River Basin. For this purpose, a 10-year
(2011–2020) dataset of eight water quality indicators (including pH, EC, DO, COD, NH3-N, TN, TP,
and FC) covering eight monitoring stations and 7248 monthly observations was used. The results
indicated that Pukou section had the worst water quality among the eight monitoring stations, and
TN was the most serious water quality index. Both the APCS-MLR and PMF models identified
agricultural nonpoint source pollution, urban nonpoint source pollution and rural domestic pollution,
and meteorological factors. The sum of these three sources was very close, accounting for 60%
and 58%, respectively. The APCS-MLR results demonstrated that for EC, COD, and NH3-N, the
major pollution sources were urban nonpoint sources and rural domestic pollution. The major
contamination source of TN was agricultural nonpoint source pollution (30.4%). Meanwhile, the
major pollution sources of pH, DO, TP, and FC were unidentified factors. The PMF model identified
five potential sources, and pH and DO were affected by meteorological factors. NH3-N and TP
were influenced mainly by agricultural nonpoint source pollution. Atmospheric deposition was the
major pollution source (87.9%) of TN. FC was mostly derived from livestock and poultry breeding
(88.3%). EC and COD were mostly affected by urban nonpoint sources and rural domestic pollution.
Therefore, receptor models can help managers identify the major sources of pollution in watersheds,
but the major factors affecting different pollutants need to be supplemented by other methods.

Keywords: APCS-MLR; PMF; pollution source; surface water quality; Xin’an River Basin

1. Introduction

Water quality problems pose serious threats to human health, ecology, and the envi-
ronment and have attracted widespread attention worldwide [1,2]. Moreover, with the
development of technology, water quality monitoring has become easier; it mainly relies
on sampling analysis and automated monitoring stations [3]. Meanwhile, extensive water
quality parameters are available, and many watersheds have accumulated a large amount
of observed data [4]. Thus, the question of how to effectively use these data to help the
government formulate corresponding policies to control water quality is a critical issue.

The surface water quality is affected by multiple factors, including natural factors
and several anthropogenic factors [5]. The natural factors include catchment lithology,
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topography, and climate and atmospheric deposition [6]. The anthropogenic factors include
domestic sewage, industrial wastewater, agricultural activities, and livestock breeding.
Rivers have been under great pressure [7] because of increasing concentrations of nutrients,
organics, heavy metals, and other pollutants [8,9]. These pollutants are discharged in the
form of point sources or nonpoint sources. Nonpoint source pollution, which is mainly
a season-dependent phenomenon influenced by rainfall runoff processes, carries various
pollutants from urban areas and agricultural fields [10]. Compared with point source
pollutants, nonpoint source pollutants have greater spatial and temporal variabilities and
are relatively easy to deposit and degrade within a river network [11]. Therefore, it is
important to find an easy way to analyze potential pollution sources and identify the
relationships between various pollutants and their sources.

Pollution source analysis methods can be divided into two categories: forward trace-
ability and reverse traceability [12]. Forward traceability begins from the process of pollu-
tants entering a river and is calculated mostly by the pollution source inventory method
and the watershed model method. The traditional pollution source inventory method relies
mainly on the use of a top-down approach to calculate the discharge of each pollution
source or the amount of water into the river (lake). However, determining the export coeffi-
cient of pollutants is difficult, and the spatiotemporal heterogeneity of the pollution source
discharge coefficient is very large [13]. Watershed models such as the SWAT [14], HSPF [15],
and AGNPS [16] models are principally based on mathematical methods used to reproduce
the physical process of pollutant migration in a basin. However, these models are complex,
require a large amount of input data and long-term practice, and are difficult to apply in
the analysis of regional pollution sources lacking data. Reverse traceability mainly starts
with river water quality data and reveals the sources of different pollutants through certain
methods, including isotope analysis and receptor modeling. Isotope analysis can be traced
only to specific pollutants; for example, nitrogen isotopes can be traced only to nitrogen. As
another important element affecting water eutrophication, phosphorus cannot be traced to
phosphorus isotopes, as only one stable isotope of phosphorus exists in nature [17]. Thus,
the receptor model is a better choice for source analysis in areas with a large amount of
observed data.

The absolute principal component score-multiple linear regression (APCS-MLR)
model, which was proposed by Thurston and Spengler [18], combines principal com-
ponent analysis (PCA) and MLR. This model was applied to confirm the contribution
of each possible source defined by PCA [19]. Combined with multiple linear regression,
the contributions of major pollution factors to the water quality of the recipient were
quantified [20]. It was initially applied to the analysis of air pollution sources and has
been widely applied to the analysis of soil [21,22], groundwater [23], and surface water
pollution sources [24] in recent years [25]. However, the PCA model, which identifies the
type of pollution source, revealed a certain degree of subjectivity [8]. The positive matrix
factorization (PMF) model is a new source analysis model improved on the basis of factor
analysis that can apply nonnegative constraints to the factorization matrix to increase the
accuracy of the results. It is a source analysis tool recommended by the US EPA [26,27].
The APCS-MLR and PMF models are the most commonly used methods for the quanti-
tative apportionment of the contribution of pollution sources [28,29]. Previous studies
have combined APCS-MLR and PMF to identify the source apportionment of soil heavy
metals [30,31]. A few studies have focused on storm runoff pollution [32], groundwater
pollution [23], and surface water quality [29].

Due to the global shortage of water resources and the deterioration of water quality,
drinking water safety, water source protection, and other related issues were widely con-
sidered worldwide in the second half of the 20th century [33,34]. The Xin’anjiang Reservoir
is an important source of drinking water for the Yangtze River Delta region of China and
provides drinking water for more than 20 million people [35]. Previous studies have shown
that since the pilot of the basin ecological compensation mechanism, the water quality of
the Xin’an River has improved on the whole, but there was also local water pollution and
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unstable water quality in transit sections. With the acceleration of upstream industrializa-
tion and urbanization, various pollutants are more likely to increase, and the water quality
of some reaches of the Xin’an River showed a downward trend. In particular, the total
nitrogen (TN) and total phosphorus (TP) in some sections exceeded the standard [36,37].
Many studies have focused on nonpoint source pollution upstream of the Xin’anjiang
Reservoir [35,38,39]; however, few studies have conducted overall traceability analyses of
regional pollutant sources. On the other hand, drinking water source basins have higher
water quality requirements, lower concentrations of pollutants, and fewer pollution sources
than other areas. All these methods are similar to heavy metal and groundwater pollution
traceability methods. Thus, in this paper, the upper reaches of the Xin’an River Basin (XRB)
were used to analyze the water quality and pollutant sources from 2011 to 2020 via the
APCS-MLR and PMF models. The major objectives include the following: (1) to identify
the spatio-temporal characteristics of the water quality; (2) to classify the major sources of
surface water pollution and quantitatively analyze the contributions of different pollution
sources to each water quality index; and (3) to compare the two receptor models to provide
a more reliable method for analyzing similar catchments. The results of this study may
be helpful for the method selection of pollution source apportionment and surface water
environment management in similar basins.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area

The XRB is located between 29◦29′~30◦14′ N and 117◦38′~118◦54′ E in southeastern
China, with a total area of 5760 km2. The average annual temperature is between 15 ◦C and
16 ◦C, and the average annual precipitation is approximately 1700 mm [35]. However, the
spatial and temporal distributions are uneven, and most of the precipitation is concentrated
in the flood season from May to August. The vegetation types in the study area are diverse,
with forest coverage accounting for approximately 75% of the total area and agricultural
land accounting for approximately 15%. The specific distribution is shown in Figure 1.
The XRB is the main water source for Qiandao Lake and an important ecological safety
barrier in the Yangtze River Delta. For many years, the overall water quality upstream of
Xin’an River has been stable, and the water quality has remained at Class II–III (the class of
water quality was assessed according to the National Surface Water Quality Standard of
China (GB3838-2002) [40]) annually; the Xin’an River is one of the rivers with less pollution
and better water quality in China. In 2011, the state established the first cross-provincial
pilot ecological compensation mechanism in the XRB to protect the water environment and
control water pollution.

2.1.2. Data Description

Monthly data for 24 water quality indices at 8 monitoring sites along the rivers from
2011 to 2020 were obtained from the Huangshan Municipal Ecology and Environment
Bureau. The 25 water quality indices included pH, dissolved oxygen (DO), potassium per-
manganate index (COD), chemical oxygen demand (CODCr), biochemical oxygen demand
(BOD5), ammonia nitrogen (NH3-N), TN, TP, Cu, Zn, fluoride (F), electrical conductivity
(EC), fecal coliform (FC), As, Cd, Se, Hg, Cr VI, Pb, cyanide, volatile phenol, petroleum,
sulfide, and anionic surfactant (AS). The observed data indicated that 14 indicators (AS,
sulfide, petroleum pollution, volatile phenol, Zn, Hg, Pb, Cd, Cr VI, Cu, F, Se, As, and
cyanide) were not detected, and 2 indicators (BOD5 and CODcr) were inconsistent. Thus,
the other 8 water quality indices were used in this paper. The 8 monitoring sites included
Huangkou, Huangdun, Kengkou, Jiekou, Pukou, Xinguan, Shuaishui, and Hengjiang (see
Figure 1). The annual point source pollution data from 2011 to 2020, including pollutant
concentration and sewage discharge at each sewage outlet, were also provided by the
Huangshan Municipal Ecology and Environment Bureau.
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Figure 1. Study area, land use, and quality-monitoring section (HK: Huangkou, HD: Huangdun, KK:
Kengkou, JK: Jiekou, PK: Pukou, XG: Xinguan, SS: Shuaishui, HJ: Hengjiang).

2.2. Methodology
2.2.1. Principal Component Analysis (PCA)

PCA is a technique from statistics that is used to simplify a dataset. It was developed
by Pearson [41] and Hotelling [42]. The basic principle of PCA is that in the data point graph
under the coordinate system, the direction of maximum “fluctuation” of the data point is
considered the new axis direction, and the coordinates of the data point on the axis are the
first principal component (PC1). The first principal component (PC1) accounts for most of
the variation in the original dataset [43]. Then, the second direction, which is perpendicular
to the new coordinate and can best reflect the “fluctuation” of the data point, is sought; this
direction is taken as the second new coordinate axis direction, and the coordinates of the
data points on this axis are the second principal component (PC2); then, all the principal
components that can express the original information can be obtained. The application of
the PCA method to an evaluation of the water environment quality involves two major
steps: (1) to establish a comprehensive evaluation index, the relative pollution degree of
each monitoring section is evaluated, and the pollution degree of each monitoring section
is ranked; and (2) to evaluate the role of each single index in the comprehensive index,
those minor indices are clearly deleted, and the major components causing pollution are
determined. Based on field measurements, Olsen et al. [44] demonstrated the advantages
of PCA over other methods for better identification of effective pollutant factors across
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river reaches. In this research, PCA was used to determine the major components causing
pollution in the XRB. More details of PCA can be found in other studies [45–49].

2.2.2. Absolute Principal Component Analysis

The APCS-MLR is a receptor model that combines two statistical methods, APCS and
MLR. First, the principal components of the water quality index were extracted as the basis
for pollution source identification and quantification. The principal component score can
be calculated as follows:

PCSjk = ∑i=1 ωijZik (1)

Zik =
cik − ci

σi
(2)

where PCSjk is the score of principal component j for sample k, ωij is the factor coefficient
of pollutant i for principal component j, Zik is the standardized value of pollutant i for
sample k, and cik is the observed value of pollutant i for sample k, mg/L. ci is the arithmetic
mean value of pollutant i. σi is the standard deviation of pollutant i.

The absolute principal component score can be expressed as follows:

APCSjk = PCSjk − PCSjk0 (3)

PCSjk0 = ∑i=1 ωijZik0 (4)

Zik0 =
0 − ci

σi
(5)

where APCSjk is the score of the absolute component principal j for sample k, and PCSjk0 is
the score of principal component j after the water quality index of sample k is set to 0. Zik0
is the standardized value of pollutant i after the water quality index of sample k is set to 0.

2.2.3. Multivariate Linear Regression

Multiple linear regression analysis was carried out to obtain the regression equation.
The details can be seen as follows:

Ci = ∑j aji·APCSji + bi (6)

where Ci is the concentration of pollutant i. aji indicates the regression coefficient of source
j to pollutant i. bi is the constant term of multiple linear regression for pollutant i, which is
considered to represent the contributions of unidentified sources. aji·APCSji represents the
contribution of pollution source j to Ci.

In the past, the calculation results of the contribution rate were positive and negative,
which led to contributions of various factors greater than 100%, possibly affecting the
accuracy of the pollution source analysis. Gholizadeh et al. [28] proposed the absolute
value method to solve this problem, which can be calculated as follows:

PCji =

∣∣aji·APCSji
∣∣

|bi|+
∣∣∣∑n

j=1 aji·APCSji

∣∣∣ × 100% (7)

The contribution rate of the unidentified source is expressed as follows:

PCji =
|bi|

|bi|+
∣∣∣∑n

j=1 aji·APCSji

∣∣∣ × 100% (8)

where PCji is the contribution rate of pollution source j to pollutant i. APCSji is the mean
value of the absolute principal factor scores of all samples of pollutant i.
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2.2.4. Positive Matrix Factorization (PMF)

The PMF model is a multivariate factor analysis tool. Based on the least iterative
square algorithm, the original receptor data matrix (X) is decomposed into a factor score
matrix (G), factor load matrix (F), and residual matrix (E) [50]. The formula is as follows:

Xij = ∑p
k=1

(
Gik × Fkj

)
+ Eij (9)

where Xij is the observed value of pollutant j for sample i; Gik is the relative contribution
rate of pollution source k in sample i; Fkj is the characteristic value of pollution source k to
pollutant j; Eij is the residual; and p is the number of factors.

The original matrix X is decomposed by the PMF model to obtain the optimal matrices
G and F, and the objective function Q is minimized [51]. The objective function Q is defined
as follows:

Q = ∑n
i=1 ∑m

j=1(
Eij

Uij
)2 (10)

The operation of the PMF model does not require accurate pollution source data;
rather, it requires only original measured data and uncertainty data [52]. The uncertainty
Uij is calculated as follows:{

Uij =
5
6 × MDL Xij ≤ MDL

Uij =
√(

σ × Xij
)2

+ MDL2 Xij > MDL
(11)

where σ is the relative standard deviation, and MDL is the detection limit of the method.
For PMF source analysis, the factor number is a key factor in the operation of the PMF

model. Too much or too little of a factor directly affects the accuracy of the analysis result.
The sectional water quality concentration data and uncertainty data were input into the
PMF model, and 2–5 factors were set in this study. The program was run several times
to compare the output Q value, residual, and R2 of different factors, and the appropriate
factor number was ultimately selected.

3. Results
3.1. Variations in Water Quality Indicators

The eight water quality values are presented as the means and standard deviations
of the monthly replicates in Table 1. The maximum values of EC, COD, NH3-N, TN, and
TP occurred in Pukou. Except for TN, the average values of all the other indicators were
above Class II. The average concentrations of TN were more than 1.5 mg/L in addition to
Kengkou (0.08 mg/L), Shuaishui (0.99 mg/L), and Huangkou (1.45 mg/L), which exceeded
Class IV in the surface water environment. The mean concentration of TN in the Pukou
section exceeded the surface water Class V standard.

Figure 2 shows the variations in the monthly water quality indicators from 2011 to
2020 in the different sections. Notably, there was no significant difference in pH across
sections. Most of the pH values were between 7 and 8.5 (Figure 2a). Figure 2b illustrates
that the EC of Pukou had an abnormally high value in some months, and the values in the
other cross sections were generally less than 48. The EC of the SS was low throughout the
observation period. The lower DO concentrations were mostly concentrated in Pukou and
Kengkou, but most of the observed values were greater than 7 (Figure 2c). According to
Figure 2d, the highest COD was 5.5 mg/L (better than that of Class III). Except for Kengkou,
the variation characteristics of daily NH3-N and TN were consistent (Figure 2e,f), which
indicated that Pukou had the highest mean TN concentration, followed by Xinguan and
Huangdun. Moreover, the TN concentration in Xinguan before 2013 was also relatively
higher than that in the other years. Jiekou, Huangkou, and Hengjiang had nearly the same
values of NH3-N and TN during 2014–2015, as did the TP concentration (Figure 2g). The
TN and TP contents in Kengkou were lower than those in the other sections, and TP has
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not been detected since 2017. From 2015–2016, FC had a higher concentration (less than
10,000) than that in the other periods in all sections, and the highest value of 24,200 MPN/L
occurred once in Xinguan in 2016 (Figure 2h).

Table 1. Changes in water quality variables (the data are presented as the means ± SDs of monthly
replicates from 2011–2020).

Parameter pH EC DO COD NH3-N TN TP FC

Unit - µS/cm mg/L mg/L mg/L mg/L mg/L MPN/L

Hengjiang 7.9 ± 0.6 235 ± 101 9.1 ± 1.7 2.1 ± 0.7 0.18 ± 0.14 1.54 ± 0.58 0.053 ± 0.029 4665 ± 3585
Shuaishui 7.9 ± 0.5 67 ± 33 9.1 ± 1.5 1.4 ± 0.5 0.11 ± 0.06 0.99 ± 0.29 0.035 ± 0.022 4087 ± 3267
Xinguan 7.8 ± 0.5 257 ± 77 8.3 ± 1.7 2.0 ± 0.6 0.21 ± 0.15 1.81 ± 1.05 0.055 ± 0.029 4060 ± 3824

Huangkou 7.6 ± 0.5 147 ± 71 9.1 ± 1.5 1.9 ± 0.7 0.25 ± 0.18 1.45 ± 0.50 0.057 ± 0.024 5955 ± 3374
Huangdun 7.7 ± 0.5 152 ± 62 9.7 ± 2.0 2.1 ± 0.9 0.26 ± 0.23 1.62 ± 0.54 0.074 ± 0.034 5280 ± 3632

Pukou 7.7 ± 0.5 345 ± 210 7.8 ± 1.8 2.6 ± 0.8 0.41 ± 0.28 2.24 ± 0.81 0.106 ± 0.038 6342 ± 3339
Kengkou 7.7 ± 0.5 203 ± 107 8.2 ± 1.6 2.3 ± 0.8 0.25 ± 0.19 0.08 ± 0.13 0.031 ± 0.015 4287 ± 3559

Jiekou 7.8 ± 0.5 146 ± 44 8.9 ± 1.5 1.8 ± 0.5 0.02 ± 0.03 1.59 ± 0.26 0.058 ± 0.009 2538 ± 2987

Class I

6~9

- ≤7.5 ≤2 ≤0.15 ≤0.2 ≤0.02 ≤200
Class II - ≤6 ≤4 ≤0.5 ≤0.5 ≤0.1 ≤2000
Class III - ≤5 ≤6 ≤1 ≤1 ≤0.2 ≤10,000
Class IV - ≤3 ≤10 ≤1.5 ≤1.5 ≤0.3 ≤20,000
Class V - ≤2 ≤15 ≤2 ≤2 ≤0.4 ≤40,000

Notes: The class of water quality was assessed according to the National Surface Water Quality Standard of China
(GB3838-2002). Class I to Class V indicate an increasing deterioration in water quality.
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The variations in the average monthly and annual Nemerow indices of the eight moni-
toring sections are shown in Figure 3. It can be noted that, whether monthly or annually,
the Nemerow index of Pukou was the largest. As seen from the annual index variation,
most sections had no significant change trends, except for a significant decrease in Xinguan.
Even the basin outlet of Jiekou substantially increased in 2019. The Nemerow index for
most sections had its lowest value in September or October (Figure 3a), indicating that
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the water quality in the study area was the best during these years. Moreover, the highest
values of most sectional indices occurred in February and December. This indicated that
the water quality in the flood season was better than that in the nonflood season. Rainfall
runoff processes are known to carry slope contaminants into rivers, and the discharge
also increases. When fewer pollutants were carried into rivers, the pollutant concentration
decreased. In the nonflood season, the pollutant concentration may be influenced by point
source pollution. Thus, average annual point source pollutant discharge was calculated
according to sewage volume and pollutant concentration, and the distributions of point
source pollution and the average concentrations of the four indicators are shown in Figure 4.
There was no obvious correlation between the spatial distribution of point sources and the
water quality of the section. Point pollution may have an influence, but these effects were
not significant. For example, statistical results showed that the annual point source TN
was nearly 320 t, whereas the nonpoint source TN was more than 18,500 t [35]. NH3-N,
TN, and TP may have the same pollution sources, as indicated by the high concentration
sections located downstream of farmland. However, for CODCr, the downstream area of
construction land, such as Hengjiang, had a high concentration, which may be influenced
by urban nonpoint sources.
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3.2. PCA Results

The correlation analysis results among the different water quality indices are shown
in Figure 5. Previous studies have shown that correlation analysis can reflect correlations
and can be used to infer sources. There was a strong positive correlation at the 0.05
significance level between EC and COD, between COD and NH3-N, between NH3-N and
TP, and between TN and TP, indicating that these water quality indicators may have similar
pollution sources. NH3-N and TN, EC and TN, and COD and TP had moderately significant
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positive correlations and may have had similar sources. The correlation coefficient between
TN and NH3-N was only 0.34, illustrating that NH3-N accounted for only a small part of
the TN in the study area. Figure 5 shows that pH and FC were only weakly positively
correlated or significantly negatively correlated with other water quality indicators before,
which indicated that the sources of these two indicators were significantly different from
those of the other indicators.
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3.3. Source Identification

For the APCS-MLP model, a previous study [54] showed that absolute factor loadings
of >0.75, [0.5, 0.75], and [0.3, 0.5] were considered strong, moderate, and weak loadings,
respectively. Thus, Table 2 and Figure 7 show that in this research, the eigenvalue of the first
principal component (F1) was 2.377, the variance contribution rate was 29.719%, and the
major load variables included TP, TN, and NH3-N. According to Wang et al. [35], TN and TP
loaded during the flood season (April to July) accounted for 65.0% and 63.2%, respectively,
of the annual total. Taken together, these results indicated that TN and TP were influenced
by rainfall and runoff processes; that is, they mainly originated from nonpoint source
pollution. Thus, F1 can be identified as agricultural nonpoint source pollution. The second
principal component (F2) eigenvalue was 1.429, the variance contribution rate was 17.858%,
and the major load variables included EC and COD. Previous research [38] demonstrated
that the spatial distribution of COD was consistent with that of construction land and
rural residential land in this region. Therefore, F2 can be identified as an urban nonpoint
source and rural domestic pollution. DO was the main load variable of the third principal
component (F3), and the eigenvalue and variance contribution rate were 1.067 and 13.334%,
respectively. Consequently, F3 was defined as a meteorological factor.

For the PMF model, three to five factors were selected for 20 random starting point
iterative operations, and the factor number was 5. The QRobust and QTrue values were
the closest (QTrue is the calculated goodness-of-fit parameter, and QRobust is the calculated
goodness-of-fit parameter excluding the model that does not fit points). The residuals of all
the samples were between −3 and 3, which indicated that the analytical results of the model
had good reliability. According to the PMF model, the contribution rate of each pollution
source to the water quality indicators was calculated, and the results are shown in Figure 8.
Notably, Factor 1 (Figure 8a) in the PMF model had the largest contamination source for FC,
with a contribution rate of 88.32%. FCs are a group of intestinal bacteria that grow in the
intestines of humans and warm-blooded animals and are excreted in the feces. The toilets
of rural residents in the study area have been reformed and are generally not exposed to
the outside; thus, Factor 1 can be identified as a source of livestock and poultry breeding
pollution. Factor 2 (Figure 8b) had the highest contribution to EC and COD, which were
62.87% and 38.50%, respectively, and was the same as the F2 contribution to APCS-MLR.
Thus, Factor 2 can be considered an urban nonpoint source and rural domestic pollution.
Factor 3 (Figure 8c) had the highest contribution rate of TN, which was 87.92%. According
to Wang et al. [36], the TN load from atmospheric deposition accounts for 65–71% of the
total load. Therefore, Factor 3 can be defined as the atmospheric deposition. Factor 4
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(Figure 8d) had the highest contribution to pH and DO, which were 58.28% and 65.62%,
respectively. These variables were mainly affected by meteorological conditions under
natural conditions; thus, Factor 4 can be identified as a meteorological factor. Factor 5
(Figure 8e) had the highest contribution rates to NH3-N and TP, which were 84.23% and
55.27%, respectively. NH3-N and TP were the major pollutants of nonpoint source pollution;
thus, Factor 5 can be defined as an agricultural nonpoint source pollution factor.
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3.4. Source Pollutant Contributions

A total of 7248 samples and eight pollutants were adopted to qualify the sources that
affected the water quality indices, which indicated that the PCA results were reliable in this
research [18]. The APCS-MLR model was used to determine the functional relationship
between each pollution source and the concentration of water quality indicators. Based on
the functional relationship, the concentration of each indicator was predicted, and a linear
comparison between the simulated and observed results is shown in Figure 9. According to
Figure 9, the R2 of the linear fit between the simulated and observed concentrations of each
water quality index in the study area ranged from 0.41 to 0.69, indicating good consistency
between the two. In addition, the ratios of the simulated and observed concentrations
were close to 1, illustrating that the APCS-MLR model has good applicability for the
calculation and allocation of pollution sources in the XRB and that the calculation results
are relatively reliable.

Based on the APCS-MLR model and the pollution source contribution model, the
contribution rate of each pollution source to the water quality indicator was obtained
(Figure 10a). The results demonstrated that for EC, COD, and NH3-N, the major pollution
sources were urban nonpoint sources and rural domestic pollution, accounting for 50.4%,
66.2%, and 55.7%, respectively. The main contamination source of TN was agricultural
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nonpoint source pollution (30.4%), followed by urban nonpoint source and rural domestic
pollution (26.0%) and meteorological factors (23.1%). The effects of these factors on TN did
not significantly differ, which indicated that TN was affected by comprehensive factors
from all aspects. The major pollution sources of the remaining four indicators, pH, DO,
TP, and FC, were unidentified factors and represented 73.9%, 54.1%, 46.5%, and 89.1%,
respectively, of the total pollution. In addition, the secondary pollution source of DO was
meteorological factors (40.0%), and TP was also affected by nonpoint source pollution
(26.6%).
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Same as the APCS data, the simulation of each water quality index by PMF is shown
in Figure 10. All the R2 values were above 0.5, and the slopes were also near 1. The results
indicated that the PMF model had good applicability for simulating the surface water
quality index, and the traceability analysis of the water quality index based on these results
was reliable. The contribution rates of the various pollution sources determined by the PMF
model are shown in Figure 11b. Notably, meteorological factors were the major sources
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of pH and DO. NH3-N and TP were influenced mainly by agricultural nonpoint source
pollution, and the contribution rates were 84.2% and 55.3%, respectively. Atmospheric
deposition was the main pollution source of TN, accounting for 87.9% of the total. FC
was mostly derived from livestock and poultry breeding and accounted for 88.3% of the
total population. EC and COD were mostly affected by urban nonpoint sources and rural
domestic pollution, accounting for 62.9% and 38.5%, respectively.
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3.5. Comparison of the Results

There were some differences between the PMF model and the APCS-MLR model.
First, there were no undefined sources of pollution in the PMF model, which made up a
significant proportion of the APCS-MLR model, especially for pH, DO, and FC. Unidentified
pollution sources accounted for 73.9%, 54.1%, and 89.1% of the total contribution rates of
pH, DO, and FC, respectively. Second, the contribution rates of the same pollution source
to different pollutants also differed from those of the APCS-MLR model. Taking NH3-N
as an example, both methods revealed that NH3-N was affected by agricultural nonpoint
source pollution, urban nonpoint sources and rural domestic pollution, and meteorological
factors. However, the contribution rates of the three factors were 27.7%, 55.6%, and 8.8%,
respectively, in the APCS-MLR model. According to the PMF model, the contribution rates
of the three factors were 84.2%, 14.0%, and 1.7%, respectively. Moreover, the identification
results of influencing factors for the same pollutant were also different. For example, in the
APCS-MLR model, TN was affected by a variety of factors, and the contribution rates of
the different factors were not significantly different. However, in the PMF model, TN was
mainly affected by atmospheric deposition, with a contribution rate of 87.9%.

To evaluate the applicability of the APCS-MLR and PMF models for the analysis of
surface water quality pollution sources, the ratios of the observed and simulated surface
water quality concentrations (O/S) and the coefficient of determination (R2) were further
analyzed (Table 3). According to Shi et al. [55], when O/S is close to 1 and R2 is greater
than 0.5, the source allocation results are considered reliable. The results showed that the
simulated values of the two models fit well with the observed values. Except for the pH
of APCS-MLR, the R2 values of the other water quality indicators were greater than 0.5,
indicating that the reliability of the source analysis results was high. As shown in Table 3,
the O/S value of APCS-MLR was basically 1, but the R2 value of the PMF model was
generally greater than that of APCS-MLR. A comparison of Figures 9 and 10 reveals that the
distribution of points in the PMF model was more concentrated than that in the APCS-MLR
model, but most of the water quality indicators were underestimated.

Table 3. R2 and O/S of the APCS-MLR and PMF models.

Items
APCS-MLR PMF

O/S R2 O/S R2

pH 1 0.41 0.89 0.75
EC 1 0.61 1.17 0.76
DO 1 0.67 1.17 0.53

COD 1 0.69 1.05 0.69
NH3-N 1 0.60 1.16 0.60

TN 1 0.65 1.008 0.82
TP 0.997 0.67 0.96 0.75
FC 1 0.57 0.998 0.93
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The average contribution rates of the various pollution sources determined with the
APCS-MLR and PMF models are shown in Figure 12. The results indicated that both
models identified agricultural nonpoint source pollution, urban nonpoint source pollution
and rural domestic pollution, and meteorological factors. The sum of these three sources
was very close, accounting for 60% and 58%, respectively. In APCS-MLR, the proportions
of the three pollution sources were 15%, 29%, and 16%, respectively. In the PMF model,
the proportions of the three pollution sources were 21%, 16%, and 21%, respectively. This
was mainly because the basic principles of the two models were different. The APCS-
MLR model yielded a few independent factors (pollution sources) that could explain the
main information in the dataset by means of dimensionality reduction, after which the
contribution rate of each pollution source was calculated via linear regression. The PMF
model evaluated the error of each point in the dataset to determine the optimal number of
pollution sources and the corresponding contribution rate. The remaining 40% of the APCS-
MLR data were unidentified, which was also a major shortcoming of the model. According
to the PMF model, the remaining 42% were associated with atmospheric deposition (27%)
and livestock and poultry breeding pollution (15%). In general, the PMF model is more
accurate in this basin, and the analytical results of the two models complement and verify
each other and provide theoretical support for later management departments to formulate
surface water quality source control measures.
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4. Discussion

Nitrogen is one of the main causes of lake eutrophication. Only NH3-N, and not TN
(measured by the lake), is considered in surface water quality standards. As seen from
the previous analysis, the concentration of NH3-N in the river was better than that in
Class II, but the TN concentration in most sections reached only Class IV in this region.
However, the study area was the main inflow river of Qiandao Lake, accounting for 60.2%
of the total runoff [56]. Thus, the TN of rivers is likely to greatly impact TN of lakes, and
understanding the source river TN is important for controlling and protecting the water
environment of Qiandao Lake. The APCS-MLR results indicated that TN was affected by
comprehensive factors, including agricultural nonpoint source pollution (30.4%), urban
nonpoint source and rural domestic pollution (26.0%), and meteorological factors (23.1%),
in the study area. There was no significant difference in the degree of influence of the
different factors on the TN. However, the results of the PMF model indicated that TN
was influenced mainly by atmospheric deposition and accounted for 87.9% of the total
TN. According to Wang et al. [35], the TN load from atmospheric deposition accounts
for 65–71% of the total. On the other hand, about 75% of the study area is forest, and
15% is farmland. In 2011, the state established the first cross-provincial pilot ecological
compensation mechanism in the XRB to protect the water environment and control water
pollution. Meanwhile, the study area is surrounded by major cities such as Nanjing,
Shanghai, and Hangzhou (see Figure 1). Thus, it is reasonable to believe that agricultural



Water 2024, 16, 1356 17 of 20

non-point source pollution was not the main source of TN in the study area; rather, it was
atmospheric nitrogen deposition. However, to effectively control the TN concentration
in the study area, multiple simultaneous approaches are needed. On the other hand, in
current source analysis methods based on statistical methods, identifying pollution sources
involves a certain subjectivity, which is one of the important sources of uncertainty in
source analysis calculations. Thus, more detailed research should be carried out based on
the compositional characteristics of the source in the future, and other methods should be
used to further analyze the source of TN in the study area to test the reliability of the results.

5. Conclusions

In this study, eight pollutants were collected from 7248 samples during 2011 to 2020 in
the XRB, and the APCS-MLR and PMF models were used to identify pollutant sources. Due
to differences in model principles, the quantitative identification of pollution sources was
also different, but there were still some similarities. According to the results, the following
conclusions can be drawn:

(1) The observed water quality analysis results showed that the water quality of Pukou
was the worst among the eight monitored sections, and the maximum values of EC,
COD, NH3-N, TN, and TP occurred in Pukou. In addition to TN, the average values
of the other water quality indicators were above Class II. The variation characteristics
of daily NH3-N and TN were consistent. The Nemerow index was the largest for
Pukou. Most sections had no significant annual change trends, except for a significant
decrease in Xinguan.

(2) The results of the correlation analysis demonstrated that EC and COD, COD and
NH3-N, NH3-N and TP, and TN and TP may have similar pollution sources. The
sources of pH and FC were significantly different from other indicators.

(3) For APCS-MLR, three pollution sources were defined. For EC, COD, and NH3-N, the
major pollution sources were urban nonpoint sources and rural domestic pollution,
accounting for 50.4%, 66.2%, and 55.7%, respectively. The major contamination source
of TN was agricultural nonpoint source pollution (30.4%). The major pollution sources
of pH, DO, TP, and FC were unidentified factors, which represented 73.9%, 54.1%,
46.5%, and 89.1%, respectively, of the total pollution.

(4) For the PMF model, five pollution sources were defined. pH and DO were affected
by meteorological factors. NH3-N and TP were influenced mainly by agricultural
nonpoint source pollution, and the contribution rates were 84.2% and 55.3%, respec-
tively. Atmospheric deposition was the main pollution source (87.9%) of TN. FC
was mostly derived from livestock and poultry breeding (88.3%). EC and COD were
mostly affected by urban nonpoint sources and rural domestic pollution, accounting
for 62.9% and 38.5%, respectively.

(5) Both models identified agricultural nonpoint source pollution, urban nonpoint source
pollution and rural domestic pollution, and meteorological factors. The sum of
these three sources was very close, accounting for 60% and 58%, respectively. The
remaining 40% of the APCS-MLRs were unidentified. According to the PMF model,
the remaining 42% were associated with atmospheric deposition (27%) and livestock
and poultry breeding pollution (15%).
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