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Abstract: Evaluating and predicting the occurrence and spatial remarks of climate and rainfall-related
destructive hazards is a big challenge. Periodically, Sinai Peninsula is suffering from natural risks
that enthuse researchers to provide the area more attention and scientific investigation. Extracted
information from the morpho-metric indices aids in understanding the flood potentiality over various
sizes of drainage catchments. In this work, the morpho-metric analysis has been used in order to
model the relative signals of flood vulnerability of 16 catchments in northern Sinai. The geospatial
technique has been applied to process the digital elevation models (DEMs) in order to produce differ-
ent analysis maps. Basic geometries, in addition to several morpho-metric indices, were extracted
and analyzed by investigating the digital elevation models. Three different effective methods were
applied separately to build up three models of flood susceptibility behaviors. Finally, two flood
susceptibility signals were defined: the integration method and accurate pixel level conditions models.
The integrated method analysis indicates that the western half of the study landscape, including
catchments (12, 13, and 14), presents high levels of flood susceptibility in addition to catchment 9 in
the eastern half, whereas the other catchments were found to provide moderate levels. The integrated
flood susceptibility final map overlaid one of the most effective topographic indices (topographic
position index, TPI). The integrated results aided in understanding the link of the general catchments
morphometry to the in situ topography for mapping the different flood susceptibility locations over
the entire study landscape. Therefore, this can be used for investigating the surface-specific reduction
strategy against the impacts of flood hazards in the proposed landscape.

Keywords: flood hazards; morphometric analysis; integrated method; topographic analysis;
Wadi Al-Arish; northern Sinai; Egypt

1. Introduction

Globally, hazards that are driven by flooding are big obstacles to strategic develop-
ment plans, causing numerous deaths and dreadful damages [1–3]. Due to the dramatic
acceleration in flood hazard impacts during the last decades, numerous flash events have
been discussed and assessed in different localities by different methods [4–9]. In Europe,
significant scenarios and models had been presented to recognize changes in flood risks
and hydrological behavior [10]. In Greece, geological and geomorphological parameters
were applied to map a flood risk assessment model for some urban regions [8]. In Asia,
flash floods are investigated and assessed using the most modern methods and applica-
tions. For example, a GIS technique was developed to assess the flood risk for the Makkah
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metropolitan region in Saudi Arabia utilizing the most advanced and detailed datasets [11].
In Pakistan, floods, groundwater characteristics, and their socio-economic impacts on the
country were commonly discussed by many authors [12,13]. In addition, modern tech-
niques such as geographic information systems were applied to estimate and evaluate the
total quantity of water bodies of the Peshawar basin [14]. Regarding Africa, particularly in
Egypt, flood risk signatures between the El-Qussier and Marsa-Alam coastal region along
the western coast of the Red Sea were investigated and preliminary evaluated [3]. Regard-
ing impacts of flood hazards and rainfall storms on geomorphic changes, analogue and
numerical significant works were discussed and presented [15–17]. For example, Ref. [15]
discussed the geomorphic variance including deposition and erosion produced by huge
floods. The flood hazards above were investigated and evaluated using various types
of data and techniques. Therefore, collecting and analyzing high-resolution spatial data
in addition to building reliable and comprehensive models aid in designing an effective
mitigation plan against these natural hazards. The evaluation of relative activity signals,
uplifting, drainage systems, and catchments analysis of active folds, faults, and uplifting
rates can be effectively recognized through a deeper understanding of the tectonic geomor-
phology applications [17]. Studying and calculating morpho-metric parameters, including
a catchment total area (A), a catchment perimeter (P), the total length of a catchment (Lc),
average elevations of catchments, stream orders (Su), total stream lengths (Lu), stream num-
bers (Nu), bifurcation ratio (Rb), stream frequency (Fs), form factor (F), drainage density
(Dd), texture ratio (Rt), infiltration number (If ), catchment relief (Hr), ruggedness number
(Rn), and elevation ratio (Rr) are very useful and effective keys to evaluate to attempt to
mitigate the impact of recent flash flood hazards.

Regarding the natural hazards response side, communities are not prepared enough
to face the negative effects of flood hazards representing a great challenge to the gov-
ernments and hazards management institutions [18,19]. Despite of huge efforts of most
hazards-prone countries, it may take a long time to recover from the loss of lives and
infrastructure [20]. One of the most effective warning methods is hazard monitoring, which
represents the first step in reducing the serious damages of potential flash floods. Under-
standing flood vulnerabilities is not only a vital strategy to face flood hazards, but also
dealing with capacities and precipitation may help in implementing appropriate signals of
flood hazards reduction [20]. Flood hazard communication plays an important role in the
hazard perception of people by transferring information about oncoming flood hazards
and improving their knowledge about the preventive measures [21]. In addition, many
studies claim that these communication tools may be are affected by the sources of the
hazards [22–24].

The Sinai landscape is a distinct triangular landform connecting Asian and African
continents. It is surveyed as a region between 27◦45′–29◦55′ (latitudes) and 32◦40′–34◦50′

(longitudes). It is fully surrounded by the Aqaba Gulf, the Suez Gulf, and the Mediter-
ranean Sea from the east, west, and north, respectively (Figure 1). This study deals with
the Wadi Al-Arish landscape, which accounts for the largest water system catchment in the
Sinai Peninsula, occupying a major part of Egypt and a small part of Palestine country. Re-
cently, the Egyptian government provided the Sinai Peninsula more attention for study and
development. Huge construction and economic projects were initiated to start the prelimi-
nary steps of developing a plan; the government motivated and supported researchers to
focus on finding solutions to help reduce the impact of hazards and environmental changes.
This paper is aiming to (a) present a new model by quantifying several morpho-metric
indices to examine the flash flood signals, (b) investigate anomalies in order to produce a
new scheme of flood hazard assessment, (c) and expand our knowledge and understanding
of the morphological behaviors under the impact of the flash flood risks.
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Figure 1. Hill-shade image (data from SRTM-30; https://earthexplorer.usgs.gov/, accessed on 23 Sep-
tember 2022) of Northern Red Sea presenting Sinai Peninsula, Suez Gulf, and Aqaba Gulf. Blue 
dashed thin line states the political boarder. The index map and box with yellow dashed thick lines 
show location of the study landscape. 

2. Study Landscape 
The Wadi Al-Arish catchment landscape lies in the northern part of Egypt occupying 

most of the Sinai Peninsula (Figure 1). The Wadi Al-Arish catchment is recognized be-
tween 29°00′ and 31°00′ north and 33°05′ and 34°45′ east, providing an area of ~23,300 km2, 
which represents ~36% of the total space of the Sinai area. Most water tributaries come 
from the Sinai Peninsula (~91%), and a few run from the adjoining El-Naqb Desert [25–
27]. The Wadi Al-Arish catchment drains the central Sinai highlands and its upstream trib-
utaries drain from El-Teeh and El-Egma plateaus [26]. Climatologically, The climatic char-
acteristics of the Sinai landform provide important factors in developing Sanai’s ecological 
conditions over the entire Peninsula [27]. Although Sinai is known as an arid region, it is 
characterized by frequent flash floods that occur with various magnitudes [25,27,28]. In a 
recent flood (January 2010), around 12 people were affected and many properties were 
damaged [25,29]. This was followed by another major flood in March 2014, continuing for 
20 h and causing huge damages [29]. The cumulative data from the temperature and rain-
fall state that Wadi Al-Arish is a big dry catchment, where the average temperature in 
summer ranges from 25 °C to 43 °C. The recorded temperature during the winter varies 

Figure 1. Hill-shade image (data from SRTM-30; https://earthexplorer.usgs.gov/, accessed on
23 September 2022) of Northern Red Sea presenting Sinai Peninsula, Suez Gulf, and Aqaba Gulf. Blue
dashed thin line states the political boarder. The index map and box with yellow dashed thick lines
show location of the study landscape.

2. Study Landscape

The Wadi Al-Arish catchment landscape lies in the northern part of Egypt occupying
most of the Sinai Peninsula (Figure 1). The Wadi Al-Arish catchment is recognized between
29◦00′ and 31◦00′ north and 33◦05′ and 34◦45′ east, providing an area of ~23,300 km2, which
represents ~36% of the total space of the Sinai area. Most water tributaries come from the
Sinai Peninsula (~91%), and a few run from the adjoining El-Naqb Desert [25–27]. The
Wadi Al-Arish catchment drains the central Sinai highlands and its upstream tributaries
drain from El-Teeh and El-Egma plateaus [26]. Climatologically, The climatic characteristics
of the Sinai landform provide important factors in developing Sanai’s ecological conditions
over the entire Peninsula [27]. Although Sinai is known as an arid region, it is characterized
by frequent flash floods that occur with various magnitudes [25,27,28]. In a recent flood
(January 2010), around 12 people were affected and many properties were damaged [25,29].

https://earthexplorer.usgs.gov/
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This was followed by another major flood in March 2014, continuing for 20 h and causing
huge damages [29]. The cumulative data from the temperature and rainfall state that
Wadi Al-Arish is a big dry catchment, where the average temperature in summer ranges
from 25 ◦C to 43 ◦C. The recorded temperature during the winter varies between 10 ◦C
and 3 ◦C. The available precipitation data of Wadi Al-Arish were extracted and processed
from the data Access viewer NASA Power site (https://power.larc.nasa.gov/data-access-
viewer/, accessed on 20 February 2022) between 2013 and 2021 (Figure 2). The lowest mean
annual rainfall was recorded for 2006, while the highest quantities were observed for 2018
(Figure 2).
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Figure 2. (a) precipitation pattern of 2006; (b) precipitation pattern of 2018; and (c) precipitation
rainfall from 2003 to 2021.

The lithology of the Sinai has been recognized and mapped by several researchers [30–33].
The lithological distribution of Wadi Al-Arish was remodified due to the recent literature
and Conoco geological maps of Egypt [30] (Figure 3). The lithological units and formations
in Wadi Al-Arish range from Pre-Cambrian units to Quaternary deposits. The recorded
Middle Jurassic age is represented by Safa Formation. Masajed Formation was deposited af-
ter representing the middle–upper Jurassic age. The Risain’Aneiza Formation was mapped
in the study area recording the lower Cretaceous age, while the upper Cretaceous age is
represented by Matulla and Suder Formations, respectively. Regarding the Tertiary age,
the Paleocene provides deposits that are recognized as Esna Formation, while the Thebes
group was observed and mapped in the study area recording lower Eocene. Finally, the
Plio-Pleistocene and Quaternary ages were recorded, covering the majority of the studied
landscape. More details about the units and formations of the current study landscape are
presented in Figure 3.

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
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Structurally, the Wadi Al-Arish catchment is highly deformed by different structural
features (Figure 3). Two major shear zones were recognized, they are Ragabet El-Naam and
Minsherah Abu kandu Shear zones crossing Wadi Al-Arish in an E–W and NE–SW trend,
respectively (Figure 3). Fractures that are observed in the study catchment provide clues
to two different fracture systems including NE–ENE and NW–WNW trends. Therefore,
authors in References [27,34] state that these recorded fractures play a significant role
in the trending and incision rate of the majority of the proposed drainage systems. For
example, the southern part of the Wadi Al-Arish catchment presents a compatibility relation
between the main courses of the water systems and the majority of the fractures trending.
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Additionally, Wadi Al-Arish records many anticlinal folds. They are distributed between
the northern tip of Wadi Al-Arish and the Ragabet El-Naam Shearing, providing mostly
NE–SW trends (Figure 3) [34].

Morphologically, Wadi Al-Arish provides several morphological signatures due to the
effect of tectonics and different rock types [27]. The study by [26] states that the morpho-
logical differences, including variations in elevations and positions, are the direct cause
of the differences in climatic conditions during the same season. Regarding topography
impacts, the surface elevation of the Wadi Al-Arish landscape recorded its highest values
in the south part as 1632 m a.s.l., while the lowest topographic values were observed in
the northern parts of the studied region. Therefore, we can simply describe the general
surface elevation of Wadi Al-Arish as a major landscape with high elevation at the south
that gradually decreases towards the Mediterranean Sea (Figure 4a). The slope map is
derived from the DEM using the ArcGIS 10.4 software. The slope information was ana-
lyzed, providing values between 0 and 57◦ (Figure 4b). Usually, the height slope values
are encountered along the basins upstream, while the lowest values indicate the basin
outlets [27]. Therefore, the variations in the general slopes of Wadi Al-Arish are controlled
by topographical variation signals.
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of Wadi Al-Arish region.

3. Materials and Methodology

Different vector and raster datasets were collected and applied in this work. Two
geological maps of Conoco, 1987 (Northern Sinai and Southern Sinai sheets), were used
to distinguish the lithological units and formations and extract the different structural
elements of the study landscape. Remotely sensed data of the digital raw form of the
DEMs (Shuttle Radar Topography Mission, SRTM) data with 30 m resolution were acquired
from the USGS website, https://earthexplorer.usgs.gov/, accessed on 23 September 2022.
The topographical maps (Scale: 1:100,000), in addition to DEMs data, were combined and
rectified to extract the different topographical data (e.g., elevation and hill-shade maps).

The methodology runs through various steps and processes as shown in Figure 5. The
pre-processing section deals mainly with the raw data of the DEMs. Rectifications and
data corrections were the first step for preparing data extraction. Filling correction step,
raster flow direction, raster flow accumulation, snap pour step, stream order, and stream
feature step were run from the hydrology toolbox to extract the drainage systems and

https://earthexplorer.usgs.gov/
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different watersheds delineation. In this study, the Wadi Al-Arish landscape was classified
into 16 catchment utilizations of greater than the fourth order (Figure 6a,b) using the
hydrology tools in ArcGIS 10.4 software. The derived values of the catchments’ geometric
characteristics, including catchment total area, catchment perimeter, catchment length, and
catchment average elevation show that: the biggest area is recorded for catchment 14, while
the highest extracted values of perimeter was accounted for in catchment 12. The extraction
geometries also show that the longest catchment length was recorded in the southern site
of the study landscape for catchment 11. Catchment 5, located at the northern part of
the study landscape, provides the lowest value of the catchment area and perimeter as
81.78 km2 and 46.12 km, respectively. The lowest catchment length value was observed for
catchment 5. The results for all catchments are tabulated in Table 1. The processing section is
mainly covering the idea of an integrated methods approach. In this study, the comparative
quantitative analysis between watershed level, El-Shamy, and ranked techniques was tested
and used to figure out the results compatibility levels through three different quantitative
methods. The final processing step aimed to merge the final integrated methods of the
flood susceptibility map with two effective surface and witness flow-affecting morphology
indices (TPI and TWI, Table 2). This combination process aims to recognize comparative
flood risk signals of different catchments and classify accurately the different spots within
the catchments illustrating higher flash flood susceptibility levels. This process runs based
on the conversion of all data to the raster format through the same (WGS 1984; UTM 37 N
zone) projection.
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Table 1. Basic geometric attributes of the proposed catchments.

Catchments
Area
(km2)

(A)

Perimeter
(km)
(P)

Length
(km)
(Lu)

Elevation
(m)

Max (H)

Elevation
(m)

Min (h)

C1 142.2 100.74 41.1 149 04
C2 402.45 149.65 61.2 463 27
C3 164.18 76.38 29.6 341 93
C4 1067.01 201.15 34.5 1023 151
C5 81.78 46.12 14 460 162
C6 1000.85 169.06 50.9 1030 172
C7 104.69 46.42 19 461 189
C8 124.25 70.3 28.2 656 190
C9 2888.03 283.34 62.2 999 231

C10 2347.29 277 95.2 1198 305
C11 2454.98 273.13 104 1630 372
C12 3237.79 314.27 96.9 1603 372
C13 3111.62 301.95 80.5 1050 288
C14 3351.79 301.25 78.3 1077 45
C15 220.16 92.87 23.7 897 189
C16 119.73 54.1 17.4 908 178

3.1. Integrated Method Analysis
3.1.1. General Watershed Level Method

In our first method, we aimed to understand differences in relative flash flood haz-
ards of the classified catchments by examining values that come from basic geometries
and morpho-metric indices. For a consistent analysis, the calculated values of the se-
lected morpho-metric indices of every single catchment are subsequently classified into an
adapted common evaluation scale of 1–3 as low, moderate, and high flood susceptibilities.
Regarding the nature of the range within a single morpho-metric index (− or + relation
about flash flood level scale), a new averaged value is stated for each index of all the catch-
ments. Lastly, a cumulative value digit is extracted in order to assign the flood vulnerability
levels for every single catchment in a final flood susceptibility map.
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3.1.2. El-Shamy Method

The concept of this method is mainly applied to just three major morpho-metric indices:
drainage density index, stream frequency index, and bifurcation ratio index, presenting
three different levels of flood hazard degrees (low, moderate, and high). To evaluate the
flood hazard levels of the Wadi Al-Arish landscape, the approach developed by the author
in Ref. [35] is applied. This method uses two diagrams for measuring effectively the
hazardous degree of the different landscapes. It states the relations between the bifurcation
ratio index against stream frequency and drainage density indices for every single proposed
catchment. Each diagram presents three zones: zone 1 (A) is covering catchments that are
characterized by high conditions of ground recharge and low vulnerability degree for flash
flood events; zone 2 (B) indicates areas with high potentiality conditions for flash floods
and providing low remakes of groundwater recharge; and finally, zone 3 (C) provides
intermediate degrees for both floods and groundwater recharge.

3.1.3. Ranked Method

Regarding this method, Authors in Ref. [36] recognized and developed an effective
method to evaluate the flood hazard levels of landscape catchments [37,38]. Scaling flood
risk into 6 levels is the core analysis of this method. The levels are set to all calculated
morpho-metric indices for all catchments of the study landscape. Fold levels present
numbers 1, 2, 3, 4, and 5, indicating low, moderate, high, very high, and extreme flood risks,
respectively [36,38]. To calculate the actual risk levels for a catchment using the ranked
method, a geometric relationship developed by the author in Ref. [39] is required. The
following geometric relations are set for the indices that provide a directly proportional
relationship and an inversely proportional relationship, respectively.

Flood risk level = [4 × (X − Xmin)/Xmax − Xmin)] +1 (1)

Flood risk level = [4 × (X − Xmax)/Xmin − Xmax)] +1 (2)

where X indicates values of the morpho-metric index for every single catchment, while Xmax
and Xmin parameters define the maximum values and minimum values of the calculated
index through the proposed all catchments. For a consistent strategy of the methods applied
in this study, the flash flood evaluation scale was modified and reset into 3 risk levels,
providing number 1 (low level), number 2 (moderate level), and number 3 (high level).
Thus, the calculations of this method are applied through the following modified geometric
proportional relationship as direct and inverse, respectively.

Flood risk level = [2 × (X − Xmin)/Xmax − Xmin)] +1 (3)

Flood risk level = [2 × (X − Xmax)/Xmin − Xmax)] +1 (4)

3.2. Morpho-Metric Analysis

Quantitative values of the morpho-metric indices have long been calculated to examine
the elementary flood vulnerability signals and understand the origin and nature of the
drainage catchments [3,40–45]. Based on the considerable influence of the morph-metric
behaviors on the various hydrological impacts of the catchments (Figure 7), many studies
have discussed how drainage catchment morphometry acts as a significant key in the
intensity and occurrence of flood events [3,45,46].
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Table 2. Morpho-metric and topographic indices for the present study.

Index Mathematical Equation References

Catchment Area (A, km2) A measures the total area from drainage divide to catchment outlet edge [17,47]

Perimeter (P, km) P measures the total catchment length [3,47]

Catchment length (Lc, km) Lc indicates the maximum length of the catchment is defined parallel to the main
catchment course [47]

Stream number (Nu) Nu = N1 + N2 + N3 + N4 + . . . . . . . . . . . . + Nn [48]

Stream length (Lu) Lu = L1 + L2 + L3 + L4 + . . . . . . . . . . . . . . . + Ln [48]

Stream order (Su) Hierarchical rank [49]

Bifurcation ratio (Rb) Rb = Nu/Nu + 1, where streams number values of any calculated order, and Nu + 1
represents the stream number value for the next higher order [47]

Stream frequency (Fs) Fs = Nu/A, where Nu provides the total number of all stream orders and, A measures
the catchment total area [46]

Form factor (F) F = A/Lc2, where A measures the catchment total area, and Lc2 represents the squared
catchment length

[43]
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Table 2. Cont.

Index Mathematical Equation References

Texture ratio (Rt) Rt = Nu/P, where Nu provides the total number of all stream orders, and P measures
the exact catchment perimeter [50]

Drainage density (Dd) Dd = Lu/A, where Lu measures the catchments segments total length, and A is
providing the catchment total area [48]

Infiltration number (If ) If = Fs/Dd, where Fs represents the average stream frequency, and Dd presents
drainage density [51]

Catchment relief (Hr, m) Hr = Hmax − Hmin, where Hmax and Hmin indicate the highest and lowest elevation
points of the given catchment, respectively [47]

Ruggedness number (Rn) Rn = Dd × (Hr/1000), where Dd indicates the drainage density, and Hr presents the
catchment topography [52]

Elevation–relief ratio (Rr) Rr = Hr/L, where Hr measures the catchment topography, and Lc provides the
catchment total length [48]

Topographic position
Index (TPI)

TPI = M0 − ∑n
n=0(Mn/n), where M0 provides elevation of the model point under

evaluation, Mn measures the elevation of the grid, and n measures the total number of
surrounding points applied in the evaluation processes

[53]

4. Results and Discussion
4.1. Morpho-Metric Analysis

In this study, the basic morpho-metric indices were investigated and extracted. In
the next subtitles, the calculated results of the quantitative analysis of the morpho-metric
indices, average calculated values, topographic position analysis, and flood susceptibility
levels are analyzed and discussed.

4.1.1. Stream Number Index (Nu)

In general, drainage watersheds that provide dense stream numbers, present a high
level of runoff conditions and reach a high peak flow during heavy rainfall events [45,54,55].
Stream number results provide the highest value for the biggest catchment (C14), while the
lowest value was observed for catchment 5, providing the least runoff capacity conditions
(Table 1 and Figure 8).

4.1.2. Stream Order Index (Su)

The stream order (Su) index is one of the most important indexes of hydro-geomorphology
to measure and examine the size of the catchments water paths. It is used to present a
rank classification of the streams and rivers [40]. In the current study, catchments 4, 6, 9,
10, 11, 12, 13, and 14 provide the highest order of streams (VI), whereas catchments 2, 3, 5,
7, and 8 record IV orders as height orders (Table 3). Generally, high stream orders reflect
the existence of large streams and rivers in the catchments fed by various small rivers and
streams presenting high possibilities of flow velocities and water discharge based on the
studied relief characteristics [45].
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Table 3. Stream order (Su) and stream number (Nu) of the proposed catchments.

Catchments I II III IV V VI Total

C1 51 27 21 0 0 0 99
C2 144 72 37 34 0 0 287
C3 53 24 22 6 0 0 105
C4 380 202 103 19 45 6 755
C5 35 19 8 7 0 0 69
C6 350 168 69 65 39 7 698
C7 38 23 8 6 0 0 75
C8 37 19 9 7 0 0 72
C9 1020 466 276 173 83 18 2036

C10 838 409 207 96 61 60 1672
C11 794 379 223 94 52 41 1583
C12 1167 555 300 195 93 18 2328
C13 1083 510 299 166 63 39 2159
C14 1179 556 323 150 110 38 2357
C15 82 38 31 13 0 0 164
C16 50 27 10 6 5 0 98

4.1.3. Stream Length Index (Lu)

The stream length (Lu) index is recognized as a dimensional index indicating the
characteristic size of the water network and its impact on catchment surfaces [40]. It
is calculated by dividing the total length of rivers and streams in a given order by the
total number of segment lengths in the order. The total stream length of all catchments
reaches 216,708.8 m. The stream length values re range from 0.789 km (C5) to 38.206 km
in catchment 14. The stream length index represents one of the important parameters to
measure surface runoff conditions. Long Lu is an indicator of less infiltration and high
runoff conditions [43]. The results indicate that consistency with the results comes from the
stream number index; the highest and lowest values of them are recorded in C14 and C5,
respectively (Table 4 and Figure 8).

Table 4. Calculated values of morpho-metric indices for every single catchment.

Catchments Nu Lu Rb Fs F Rt Dd If Hr Rn Rr

C1 99 140.89 1.58 0.69 0.08 0.98 0.99 0.70 145 0.14 03.52
C2 287 431.02 1.67 0.71 0.10 1.91 1.07 0.66 436 0.46 07.12
C3 105 184.65 4.52 0.63 0.18 1.37 1.12 0.56 248 0.27 08.37
C4 755 1005.93 3.43 0.70 0.89 3.75 0.94 0.75 872 0.82 25.27
C5 69 78.93 1.78 0.84 0.41 1.49 0.96 0.87 298 0.28 21.28
C6 698 990.06 2.56 0.69 0.38 4.12 0.98 0.70 858 0.84 16.85
C7 75 110.98 1.95 0.71 0.29 1.61 1.06 0.67 272 0.28 14.31
C8 72 129.37 1.78 0.57 0.15 1.02 1.04 0.55 466 0.48 16.52
C9 2036 2953.69 2.43 0.70 0.74 7.18 1.02 0.68 768 0.78 12.34
C10 1672 2348.20 1.75 0.71 0.25 6.03 1.00 0.71 893 0.89 09.38
C11 1583 2501.54 1.84 0.64 0.22 5.79 1.01 0.63 1258 1.28 12.09
C12 2328 3205.29 2.55 0.71 0.34 7.40 0.98 0.72 1231 1.21 12.70
C13 2159 3413.22 1.97 0.69 0.48 7.15 1.09 0.63 762 0.83 09.46
C14 2357 3820.63 2.05 0.70 0.54 7.82 1.13 0.61 1032 1.17 13.18
C15 164 237.37 1.92 0.74 0.39 1.76 1.07 0.69 708 0.76 29.87
C16 98 119.03 1.58 0.81 0.39 1.81 0.99 0.82 730 0.72 41.95
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4.1.4. Bifurcation Ratio Index (Rb)

The bifurcation ratio (Rb) index represents one of the very effective parameters, rec-
ognizing the ramification level of the catchment drainage [56]. This index is expressed
as a dimensionless index recognizing the ratio of rivers/streams of an examined given
order (Nu) to the total number of rivers/streams of the next higher order (Nu + 1). Re-
garding this analysis, the highest values of the bifurcation ratio have been observed for
catchments 3, 4, and 12, as 4.52, 3.43, and 2.55, respectively. Subsequently, the lowest values
of the Rb are recorded for catchments 1 and 2 as 1.58 and 1.67, respectively (Table 4 and
Figure 8). The authors in Refs. [45,46] discussed that, the bifurcation ratio usually provides
the highest values over the dissected and mountainous catchments, while providing the
lowest values over the rolling or flatness drainage catchments. Therefore, the northeastern
area in addition to southern part of the study landscape suggest high conditions of runoff,
providing potential associated with low values of lag time for generating floods during
heavy rainfall events.

4.1.5. Stream Frequency Index (Fs)

In this analysis, the estimated stream frequency index value for all catchments is
11.3350. The Fs index provides its highest value in catchment 5, covering the northern
spot of the study landscape as 0.84, while 0.57 was recorded as a lowest value deriving
from this analysis for catchment 8 (Table 4 and Figure 8). The Fs index is commonly used
in flood analysis and reveals that high values generally indicate a high volume of runoff
transmission, which is a factor of an impervious surface of soils and rocks, high-relief
characteristics, and scattered vegetation cover [45,57,58].

4.1.6. Form Factor Index (F)

The form factor (F) index has broadly been used to predict the intensity of the flow
of a catchment (e.g., Ref. [59]). The results from this analysis record the highest value for
catchment 4 as 0.89 in the northeastern part of the landscape. The F lowest results were
calculated for catchment 1 as 0.084 (Table 4 and Figure 8). The authors in Refs. [45,59]
applied this index in their research and suggested that the high value of F indicates
a high volume of discharge in short duration events, while low F values presents low
discharge volumes.

4.1.7. Texture Ratio Index (Rt)

The texture ratio (Rt) index is a factor of climate, slope, rainfall, vegetation, relief, rock,
and soil types [45,60]. Regarding this index, soft formations overlaid by vegetation cover
and associated with no topographic surface produce fine texture, hard rock reliefs (consol-
idated formations) generally provide coarse texture [60]. In this study, Rt is categorized
into four texture classes: very fine texture (Rt > 15 in km), fine texture (15 > Rt > 10 in km),
moderate texture (4 < Rt < 10 in km), and coarse texture (Rt < 4 in km) [50]. The Rt index
records values between 0.98 and 7.82 for catchments 1 and 14, respectively. Analysis of this
index presents values between 4 and 10 for 7 catchments, thus nearly half the catchments
reflect intermediate texture and suggest a high peak discharge generation response (see
Table 4 and Figure 8). The remaining catchments reveal coarse texture with the lowest
values (<4) (see Figure 5 for catchments positions).

4.1.8. Drainage Density Index (Dd)

The drainage density (Dd) index was first recognized and applied by the authors in
Refs. [43,46] to describe the drainage catchment characteristics. Authors in References [61,62]
introduced Dd as the ratio of the total stream length versus the catchment total area.
Authors in Ref. [45] provide a definition of Dd as a total length of all studied orders, which
are divided by the total area of the investigated catchment. In the present study, drainage
density was recorded to be highest in catchment 14 with a value of 1.13 (Table 4), thus this
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catchment is likely producing the highest runoff; whereas catchment 4 provided the lowest
Dd value of 0.94 (see Figure 8 for catchments positions).

4.1.9. Infiltration Number Index (If )

With common and recent morpho-hydrological research, the infiltration number (If )
index was vastly applied in order to understand the infiltration aspects of different water
bodies [45,50]. In this work, the highest values of If are observed for catchment 5 as 0.87,
providing a suitable condition for the high rate of infiltration and high amount of runoff [63].
The relatively minimal infiltration characteristics were observed in catchment 8, providing
the least infiltration ratio as 0.55 (Table 4 and Figure 8).

4.1.10. Catchment Relief Index (Hr)

The catchment relief (Hr) index helps in effectively in understanding the general
rivers denudation, runoff volume, and landform evolution of a studied catchment. The
observation analysis from this index states that the highest values of the Hr index were
recorded for catchments 11, 14, and 12 as 1258, 11,231, and 1232, respectively (Table 4
and Figure 8). The values extracted from this index are very useful and effective in
evaluating the probability degrees of the flooding events. Generally, high values reveal a
high level of flood possibility signals, while low values indicate weak conditions for any
flash flooding [45].

4.1.11. Ruggedness Number Index (Rn)

The ruggedness number (Rn) index describes the level of slope length and steepness
defining the extent of the landscape instability [48,64,65]. Regarding the current work,
the Rn index values vary from 0.14 (catchment 1) to 1.28 with catchment 11 (Table 4).
A high Rn value usually describes catchments characterized by long and steep slopes,
high erosion conditions, and rapid peak flow signals and flash floods [66]. The higher
ruggedness numbers were recorded as 1.28, 1.21, and 1.17 for catchment 11, 12, and 14,
respectively (see Figure 5 for catchments positions). The previous water bodies show a
rugged topography surface, vulnerable to the process of soil corrosion, and are structurally
complex. Topographically, Ref. [67] classified landscapes, by Rn, into: badland topography
(Rn > 2), undulating topography (1:Rn:2), and flat topography (Rn < 1) [45].

4.1.12. Elevation–Relief Ratio Index (Rr)

The Rr index represents one of the common relief aspect parameters, which indi-
cates the topographic characteristics of a catchment [45]. Regarding the analysis of these
catchments, values of Rr vary from 3.52 (lowest) for catchment 1 to 41.95 (highest) for
catchment 16. The relief ratio index helps in understanding the comparison of relative
relief in catchments regardless of variances of topography scale [65] (Table 4 and Figure 8).
Thus, higher Rr values indicate low values of lag time, unexpected peak discharge, and
high possibility of flood events [57].

4.2. Climatic Changes in Sinai Peninsula

Recently, understanding the general trend of global warming and climatic changes
is a vital challenge that helps in defining the direct causes of natural hazards, particularly
flood risks [5]. Evidence for rapid climate fluctuation in the Sinai Peninsula was reported
based on an analysis of temperatures and rainfall data between 1970 and 2014 [68]. This
evidence indicates a decreasing quantity of rainfall and increasing temperatures. The entire
Sinai landscape was affected by extreme droughts for many years, but recently has been
exposed to sudden heavy rainfall [68].

4.3. Flash Flood Evaluation Based on the General Watershed Level Method

While the general watershed level method has been used to assess different flood
hazards in different environmental localities [5,45]; it was applied precisely to investigate
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the flash hazard signals in our studied landscape. Based on the different cumulative values
calculated from applied methodology, this analysis presents that catchments 1, 9, 11, and 12
describe the highest conditions of discharge volumes, and they are more exposed to heavy
flash floods than the other catchments. The catchments are covered over 142.2 km2 (C1),
2888.03 km2 (C9), 2454.98 km2 (C11), 3237.12 km2 (C12), which together constitute 41.89%
of the total area of the studied landscape (Figure 9). These catchments have been observed
to provide a high flash flood susceptibility level. The catchments C4, C6, C7, C10, C13, and
C14 constitute a total space of 10,703.08 km2 and cover 52.75% of the total study landscape
mapped as moderate flash flood level catchments. The low flash flood level signals were
recorded for catchments (C2, C3, C5, C8, C15, and C16) providing space present as 9.36%.
The results of this method show that the high flash flood susceptibility level catchments,
particularly C9, C11, and C12, are highly fractured more than the other catchments. On
the other hand, folds recorded in the study landscape prevail over the catchments with
moderate levels of flash flood susceptibility (e.g., C13 and C14) (Figure 9). In view of this
method, Nekhel–Suder Al Hetan and Nekhel–Taba roads are exposed to high flash flooding
signals more than other roads in the study landscape (Figure 9).
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4.4. Flash Flood Evaluation Based on El-Shamy Method

This method was applied first by the author in Ref. [35] to figure out the relation
between flash flood opportunities and the recent recharge of aquifers in arid regions. Based
on the analysis of this method, two charts illustrate the bifurcation ratio values from one
side against drainage density and stream frequency values, respectively, on the other side.
These two quantitative graphs were categorized into three classes of flash flood hazard
levels: high level (class B), moderate level (class C), and low level (class A). The relevance
of the bifurcation ratio to drainage density presents that five catchments are plotted within
class B (C2, C7, C13, C13, C14), while class A (the low class) was constituted by just C3.
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Therefore, the rest of the catchments were plotted within class C (Figure 10a). The second
chart, which illustrates the bifurcation ratio versus stream frequency, shows that catchments
5, 15, and 16 have a high flood level (class B), while class A is illustrated by catchment 3. In
this chart, most of the catchments are presented within field C (Figure 10b). A new detailed
hazard level map was extracted from the combination of these charts and presents that the
high flood hazard level was recorded for catchments 2, 5, 13, 14, 15, and 16, providing 30%
of the total study landscape (Figure 11). The low-level hazard was covered by catchment 3
at just 0.07%, while the moderate level provided spaces as 69.92% for catchments 1, 4, 6, 7,
8, 9, 10, 11, and 12. Results of this method suggest that Al Arish–Al Hasana, Nekhel–Al
Hasana, and Nekhel Sadr Al Hetan roads located in the western part of the proposed
landscape are highly vulnerable to the heavy flood hazard more than the other roads.
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4.5. Flash Flood Evaluation Based on the Ranked Method

The ranked method has been applied vastly and is one of the most common techniques
to recognize flood potentialities and evaluate flash food hazards [37,38]. This method is
a linear method equation [38]. It was first applied by the author in Ref. [39] as a new
technique of data analysis and statistics in natural hazards. He used this linear equation as
a scale to expect the flood risk levels. The ranked method scale in this study was classified
into three classes: low class as class 1; moderate class as class 2; and class 3, which indicates
the highest flood risk signals. The results from the analysis of this method define high
flood level risk for four catchments as C9, C12, C13, and C14. The high flood signals were
recorded to cover a space of about 60.47% of the total space of the study landscape (Table 5
and Figure 12). The study observed that the entire western half of the study landscape had
high flood level risks, which are characterized by dense fractures and many anticline folds.
The eastern half of the investigated landscape is mostly covered by moderate flood level
risk catchments (C1: C8, C10, and C11) providing 39.53% of the total landscape space. The
results did not show any catchments belonging to the low flood level risks (Table 5 and
Figure 12).

Table 5. Flood hazard assessment due to the ranking method.

Catchments Nu Lu Rb Fs F Rt Dd If Hr Rn Rr Sum General
Hazard Level

C1 1.02 1.03 1.00 1.55 1.00 0.99 1.48 1.91 1.00 1.00 0.99 13.02 1.18
C2 1.90 1.18 1.06 1.72 1.05 1.27 2.30 1.68 1.52 1.50 1.17 15.68 1.42
C3 1.03 1.05 3.00 1.00 1.25 1.11 2.84 1.07 1.18 1.21 1.23 16.00 1.45
C4 1.59 1.49 2.26 1.66 2.99 1.80 1.00 2.22 2.30 2.05 2.03 21.45 1.95
C5 1.00 1.00 1.13 3.00 1.82 1.15 1.22 2.99 1.27 1.22 1.84 17.67 1.60
C6 1.54 1.48 1.66 1.56 1.74 1.91 1.47 1.93 2.28 2.10 1.63 19.35 1.75
C7 1.00 1.01 1.24 1.75 1.50 1.18 2.19 1.75 1.22 1.22 1.51 15.62 1.42
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Table 5. Cont.

Catchments Nu Lu Rb Fs F Rt Dd If Hr Rn Rr Sum General
Hazard Level

C8 1.00 1.02 1.13 0.41 1.17 1.01 1.99 1.00 1.57 1.53 1.61 13.49 1.22
C9 2.71 2.53 1.57 1.32 2.63 2.81 1.81 1.83 2.11 2.00 1.42 22.78 2.07

C10 2.40 2.21 1.11 1.71 1.43 2.47 1.58 1.97 2.34 2.16 1.72 20.70 1.88
C11 2.32 2.29 1.17 1.05 1.35 2.40 1.77 1.48 3.00 2.77 1.40 21.04 1.91
C12 2.97 2.67 1.47 1.77 1.64 2.87 1.47 2.06 2.95 2.67 1.43 24.21 2.20
C13 2.82 2.78 2.56 1.53 1.97 2.80 2.56 1.47 2.10 2.07 1.28 22.69 2.06
C14 3.00 3.00 3.00 1.62 2.13 3.00 3.00 1.38 2.59 2.61 1.46 25.12 2.28
C15 1.08 1.08 2.37 2.03 1.75 1.22 2.37 1.84 2.01 1.96 2.25 18.86 1.71
C16 1.02 1.02 1.52 2.75 1.76 1.24 1.52 2.67 2.05 1.90 2.83 19.98 1.81

Water 2023, 15, x FOR PEER REVIEW 19 of 27 
 

 

C7 1.00 1.01 1.24 1.75 1.50 1.18 2.19 1.75 1.22 1.22 1.51 15.62 1.42 
C8 1.00 1.02 1.13 0.41 1.17 1.01 1.99 1.00 1.57 1.53 1.61 13.49 1.22 
C9 2.71 2.53 1.57 1.32 2.63 2.81 1.81 1.83 2.11 2.00 1.42 22.78 2.07 

C10 2.40 2.21 1.11 1.71 1.43 2.47 1.58 1.97 2.34 2.16 1.72 20.70 1.88 
C11 2.32 2.29 1.17 1.05 1.35 2.40 1.77 1.48 3.00 2.77 1.40 21.04 1.91 
C12 2.97 2.67 1.47 1.77 1.64 2.87 1.47 2.06 2.95 2.67 1.43 24.21 2.20 
C13 2.82 2.78 2.56 1.53 1.97 2.80 2.56 1.47 2.10 2.07 1.28 22.69 2.06 
C14 3.00 3.00 3.00 1.62 2.13 3.00 3.00 1.38 2.59 2.61 1.46 25.12 2.28 
C15 1.08 1.08 2.37 2.03 1.75 1.22 2.37 1.84 2.01 1.96 2.25 18.86 1.71 
C16 1.02 1.02 1.52 2.75 1.76 1.24 1.52 2.67 2.05 1.90 2.83 19.98 1.81 

 
Figure 12. Flash flood levels of the study landscape based on the ranked method. The gray back-
ground is set as a hills-hade base layer. 

4.6. Overall Evaluation Based on the Combination Methods 
The overall comparison between the general watershed method outputs, El-Shamy 

method plotting, and that of the ranked method results presents that the evaluation ac-
cording to the general watershed level and El-Shamy methods provide three levels of flash 
flood hazards, while the ranked method defines only two levels of flood hazards (moder-
ate and high) (Figure 13a). Catchments 4, 6, 7, and 10 provide similar levels of flood haz-
ards through all applied methods as a moderate level, while catchments 2, 5, 14, and 15 
present different levels as a low level for the general watershed method, moderate level 
for the ranked method, and high degree for the El-Shamy method (Figure 13a). The per-
centage analysis presents that moderate levels prevail through the general watershed and 
El-Shamy methods (52.75% and 69.92%, respectively), while the high level is observed as 
higher than the moderate level in the ranked method (Figure 13b). A final detailed map 
was extracted based on the combination of the applied three methods (Figure 14). A com-
posed index was created for Al-Arish City by the authors in Ref. [69], providing three 

Figure 12. Flash flood levels of the study landscape based on the ranked method. The gray back-
ground is set as a hills-hade base layer.

4.6. Overall Evaluation Based on the Combination Methods

The overall comparison between the general watershed method outputs, El-Shamy
method plotting, and that of the ranked method results presents that the evaluation ac-
cording to the general watershed level and El-Shamy methods provide three levels of flash
flood hazards, while the ranked method defines only two levels of flood hazards (moderate
and high) (Figure 13a). Catchments 4, 6, 7, and 10 provide similar levels of flood hazards
through all applied methods as a moderate level, while catchments 2, 5, 14, and 15 present
different levels as a low level for the general watershed method, moderate level for the
ranked method, and high degree for the El-Shamy method (Figure 13a). The percentage
analysis presents that moderate levels prevail through the general watershed and El-Shamy
methods (52.75% and 69.92%, respectively), while the high level is observed as higher than
the moderate level in the ranked method (Figure 13b). A final detailed map was extracted
based on the combination of the applied three methods (Figure 14). A composed index was
created for Al-Arish City by the authors in Ref. [69], providing three categories of flood
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vulnerability assessments: 13% high vulnerability, 45% moderate vulnerability, and 42%
low vulnerability level. The overall evaluation of our paper shows a totally different pattern
of flood susceptibilities. They are calculated as 43.33% high level of flood susceptibility,
54.33% moderate flood susceptibility level, and 2.43% low flood susceptibility level. The
differences are observed between the high and low levels between the two studies, while
the moderate assessment is nearly the same.
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4.7. Topographic Position Index

The topographic position index (TPI) is a simple and repeatable technique to sort
landscapes into slope position and landform categories [45]. It describes the elevation of a
cell and the average elevation of the surrounding cells [53]. TPI values aid in identifying
various topographic landforms, including different types of slopes, valleys, and topo-
graphic ridges [70–72]. In the current paper, TPI processing reflects three different levels of
waterlogging probability starting from −48 and ending at 40.8. The steep mountain edges
generally show the lowest potential conditions, causing topographic inundation rather
than the areas characterized by low-relief topography. The topographic position index
is a very effective parameter to describe the classification of topographic landscape posi-
tions, the topographic-driven physical equilibrium of the catchment water, and it provides
drainage [73]. TPI positive values provide a higher centric zone than its average neighbors,
while negative numbers express lower values than its surroundings (Figure 15). TPI is gen-
erally used to identify topographic slopes and automate landscape categorizations [45,74].
In this paper, we applied TPI to recognize the different topographic features including flat
plains, depressions, and high-relief ridges. The TPI analysis provides the areas character-
ized by a high probability of waterlogging. Accordingly, we assume that the impact of the
topographic position index is prevailing and effective. Based on this index, the friction of
the investigated catchments is assumed to be fully saturated [45,75]. This index can lead to
recognizing the topographic structure of the water system, gaining insight into drainage
systems, and providing a unique figure of runoff behavior generation [75].
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4.8. Flash Flood Hazard Susceptibility Levels

Generally, the dynamic behaviors of sudden environmental events such as flash floods,
have never been fully expectable or avoidable. It is highly recommended to improve our
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knowledge to investigate the previous events and develop our techniques and methods to
build comprehensive models able to precisely forecast future flood events and reduce the
negative effects of flash floods. Accordingly, new approaches are required to map flood
susceptibility using the most modern and advanced techniques. Three different effective
methods were combined in order to obtain objectives and classify the study landscape
into different flood-susceptible zones. Every single method was successfully applied to
investigate various flash floods [35,45,69], but here we offer this integrated approach to
provide important insights into flood event possibilities and proposed area characteristics.
Regarding the different cumulative values extracted through the adapted methods, the final
analysis suggests that catchments 9, 12, 13, and 14 provide high conditions of discharge-
producing potential, and are highly susceptible to flash flooding risks. These catchments are
observed over 2888.03 km2 (C9), 3237.79 km2 (C13), 3111.62 km2, and 3351.79 km2, which
all constitute 60.74% of the total space of the study landscape (Figure 14). Analysis of the
morphometric indices through the three cumulative methods presents a moderate level of
flash flood susceptibility for catchments 4 (1067.01 km2), 6 (1000.85 km2), 7 (104.69 km2), and
10 (2347.29 km2), which collectively cover 21.71% of the total area. Only these catchments
provide similar levels of flood susceptibility through the applied three methods (Figure 13a).
The overall analysis shows the different three flood susceptibility levels through the adapted
three methods for catchments 15 (220.16 km2) and 16 (119.73 km2). These catchments
have been recorded as low flood susceptibility levels based on the general watershed
method, moderate levels through the El-Shamy method, and high levels according to
the ranked method. Catchment 3 provides a low level of flood susceptibility due to
two adapted methods; therefore, this catchment only was mapped as a low-level flood
susceptibility catchment (Figures 13a and 14). Combining the catchment level susceptibility
final map (Figure 14) in situ with one of the most effective and indicative topographic
index (TPI) results (Figure 15), through the processing of weighted overlay step in ArcGIS
10.4 software, allows to accurately define the flash flood susceptibility for every single
part (30 m × 30 m pixel) in all the examined watersheds (Figure 16). Regarding tectonic
influences, the final detailed map shows dense fractures over catchments 9, 11, 12, and 13
(high-level flood susceptibility catchments), whereas anticline folds prevail over catchments
4, 6, 9, 13, and 14, which are characterized by both conditions of moderate and high flood
susceptibility levels. Additionally, the high susceptibility level catchments are crossed
by E–W shear zones (Minsherah Abu kandu and Ragabet El-Naam). Thus, we assume
that highly fractured regions are more vulnerable to flood risks than other regions. The
final analysis of this study suggests that Nrkhul-Sadr Al Hetan, Nekhel-Al Hasana, and
Al Arish-Al Hasana roads are more exposed to flood hazard signals than the other roads
in the study landscape. Based on some climatic change evidence of the Sinai Peninsula
in addition to our results, we can claim that, if the general tendency of rapid fluctuation
of climate continues, the environmental balance conditions, including the growth of the
population of many important plants and animals, will be harmed in Al-Arish city.
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5. Conclusions and Suggestions

Periodically, several locations worldwide are suffering from rainfall-produced floods
causing loss of lives, personal injuries, economic injury, and property damage. Investi-
gating the flood potential of the different drainage catchments is highly recommended
for minimizing its dangerous effects. In this current study, very useful morpho-metric
indices were derived from the digital elevation model dataset using various analysis tools
through the ArcGIS 10.4 software. These indices affecting flow velocity, water depth, and
runoff volume were evaluated over sixteen different-sized catchments covering the study
landscape. Three different quantitative methods named general watershed level method,
El-Shamy method, and ranked method were run using these indices to assess and gain a
comprehensive understanding of the flash flood hazard behaviors of the Wadi Al-Arish
landscape in the northern portion of Sinai in Egypt. The results present that catchments 9,
12, 13, and 14 reflect a high intensity level of flood events and can produce intense and large
discharge; these catchments provide conditions of high susceptibility flash flood levels
more than the other catchments considered for this study. Catchments 12, 13, and 14 extend
along the entire western half of the study landscape, whereas catchment 9 covers a space of
the eastern half of the study landscape. These high flood susceptibility level catchments are
highly fractured and carry most of the anticline folds that affect the study landscape. Two
large horizontal shear zones run across these catchments as well. In addition to the three
different methods scales characteristics, providing the effective local topographic index
significantly aided in precisely defining and tracing the flood susceptibility signals over all
sixteen catchments and presents the uniqueness of this analysis. Moreover, the dataset ver-
tical accuracy applied in this analysis (30 m resolution, SRTM, and RMSE equal to 8.28 m)
is a point of discussion that restricts practical adaptation of the extracted values/results
at a specific scale, requiring precise information. The flash flood hazard events are not
totally a function of morpho-metric characteristics; thus, the scenarios may vary due to the
impact of other factors, such as lithology, land use, flood management in each catchment,
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and hydraulic structures along the master rivers and channels. Despite this, we do not
assign uncertainties to the dataset and applied methods, the outputs of the current work
provide valuable understanding of flood behavior and help develop the heavy rainfall
mitigation plan for the proposed important landscape. Finally, the current work suggests
some guidelines to improve the flood risk assessment and quick response system in the
study, which in turn can be applied successfully in other regions with similar conditions.
Suggestions are summarized as follows:

1. Focus on applying the most modern advanced methods and data to monitor and
evaluate this kind of serious risk preciously;

2. Provide more attention to regularly updating the climatic datasets;
3. Initiate response systems and monitoring stations in order to develop early risks

warning techniques;
4. Significant efforts such as hazard communication should be performed to help miti-

gate flood hazard effects and keep the environment safe and steady.
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