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Abstract: Water distribution systems (WDSs) require high-quality water for safe consumption. To
achieve this, disinfectants such as chlorine are often added to the water in the system. However, it is
important to regulate the levels of chlorine to ensure they fall within acceptable limits. The higher
limit is to control disinfection by-products, while the lower limit is established to guarantee that the
water is free of organic contaminants. The rate at which chlorine reacts within the pipes is affected by
various factors, such as the type of pipe, its age, the pH level of the water, the temperature, and others.
This variability makes it challenging to accurately model water quality in WDSs, which can impact
the optimal rate of booster injection. To address the uncertainty in the chlorine reaction rate, the
current research proposes a robust counterpart reformulation of the booster chlorination scheduling
problem, which considers the chlorination reaction rate as uncertain. The proposed reformulation
was tested on two benchmark WDSs and analyzed with a thorough sensitivity analysis. The results
showed that as the size of the uncertainty set increased, the injection mass also increased. This
reformulated approach can be applied to any WDS and provides a way to obtain optimal scheduling
within the desired protection levels.

Keywords: water distribution systems (WDS); robust optimization (RO); water quality uncertainty;
bulk reaction coefficient uncertainty; chlorine decay rate uncertainty

1. Introduction

Urban water distribution systems are critical for delivering clean and safe drinking
water to communities. However, increasing demand for high-quality water and growing
populations in urban areas pose significant challenges to these systems. It is crucial to
ensure that these systems are designed and operated optimally to maintain water quality.

One of the most significant challenges facing urban water distribution systems is
maintaining water quality during the transfer from the source to the end user. Water
treatment plants use various processes to remove impurities and disinfect water before
it enters the distribution system. One of the most common disinfectants used is chlorine,
which is added to water to kill bacteria and other pathogens. However, the transfer of
water through pressured pipes in the distribution system can cause a decline in chlorine
concentration, making it difficult to maintain optimal water quality [1]. To mitigate this,
it is necessary to establish minimum chlorine concentration requirements at the end-user
nodes [2]. This ensures that the water delivered to the end users meets the required
standards for safe drinking water. The minimum concentration requirements are usually
set on the basis of factors such as the distance from the treatment plant to the end user, the
size of the pipes, and the flow rate of water.

While chlorine is an effective disinfectant, high concentrations can have adverse effects
on human health and affect the taste and odor of the water, making it unpleasant to
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consume [3]. To ensure a balance between pathogen control and the reduction of DBPs [4],
guidelines for safe chlorine concentrations have been established in different countries,
with general limits ranging from 0.2 mg/L to 4.0 mg/L [5,6]. To maintain safe chlorine
levels, booster chlorination stations are strategically placed and optimally operated.

The optimization of booster chlorination dosage has received significant attention from
the scientific community. To this end, multiple optimization strategies have been employed
to obtain optimal scheduling of booster chlorination, for instance, linear programming
optimization [1,4] and linear least-square models to minimize deviations from the safe
chlorine concentration limits [7]. Furthermore, multi-objective optimization models have
also been proposed to minimize both the chlorine mass and the age of the water that
is within the residual chlorine limits using genetic algorithms [8]. Other variations of
the optimal booster chlorination problem have also been solved using single- and multi-
objective genetic algorithms as well as swarm intelligence algorithms [8–12].

The presence of inherent uncertainty within water distribution systems (WDS) presents
a significant challenge for deterministic optimization strategies employed for both the
design and the operation of these systems. Such uncertainty can arise from multiple
factors, including demand variability, fluctuations in supply, and variations in water
quality modeling parameters [13]. The optimization of a water distribution system’s design
and operations under uncertainty initially focused on hydraulic parameters using chance
constraint formulations on demand and pressure head and pipe roughness coefficient
constraints [14]. Later, reliability-based procedures to handle the uncertainties came into
the subject [15–23] Nevertheless, limited attention has been devoted to uncertainty in
water quality parameters. Pasha et al. [24–26] analyzed the impact of a few water quality
parameters, including bulk and wall reaction coefficients and pipe diameters, on the water
quality of distribution systems. It was determined that the uncertainty in the bulk reaction
coefficient had the most predominant effect on consumer water quality. To further analyze
the impact of this bulk-reaction coefficient uncertainty and its effect on the operation
strategies involved in water quality control, Köker et al. [6] studied the effect of uncertainty
in the bulk reaction coefficient on the optimal booster disinfection dosage problem. To
address this problem, chance constraint programming was utilized, in which the water
quality constraints were formulated as chance constraints. Later, Wang and Zhu [27,28]
proposed an inexact two-stage chance-constrained programming approach. To date, there
have been no studies exploring non-probabilistic optimization techniques, such as robust
optimization, to address the optimal booster chlorination problem under uncertainty.

The current study aimed to investigate the impact of uncertainty on the optimal
booster disinfection problem to determine the optimal dosage of disinfectant required
to maintain residual disinfectant levels within the safety standards of the country. The
introduction of uncertainty into the system model allowed for an examination of the
relationship between the required level of robustness and the total dosage amount, as
indicated by the objective function (cost). The attainment of a more reliable and robust
water distribution system necessitates the maintenance of quality standards while ensuring
that booster dosages are uniformly distributed and kept at low concentrations. The primary
source of uncertainty under consideration was the “Bulk reaction rate coefficient” of the
disinfectant. To address the booster disinfectant dosage problem, a non-probabilistic
technique, specifically robust optimization, was employed. While robust optimization has
proven successful in addressing water distribution system problems in the past, it has not
been utilized for the optimal booster dosage problem. Therefore, the primary focus of this
study was to bridge this research gap.

2. Robust Optimization

Deterministic optimization strategies are typically used for the design and operation
of WDS. However, the presence of uncertainty in these systems presents a challenge for
these traditional optimization methods. To address this issue, researchers have reformu-
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lated traditional deterministic problem formulations to incorporate uncertainty. Robust
optimization is a good approach to optimization under uncertainty.

The technique of robust optimization (RO) was independently developed by several
authors, as referenced in sources [29–31]. This technique provides more conservative
solutions to worst-case methods by bounding the uncertain parameters within standardized
uncertainty sets [32]. The key advantage of this approach is its tractability within specified
uncertainty sets, such as box or ellipsoid sets. Additionally, RO can provide a more robust
and stable solution compared with other optimization methods, especially when the input
data is noisy or when the system is subject to significant uncertainty that is difficult to
quantify. The versatility of RO makes it a useful technique for addressing uncertainty
in water distribution systems, which has been proven in references [33–37]. Overall, RO
represents a promising approach for addressing the optimal booster chlorination problem
under uncertainty, and its potential benefits merit further exploration in future research.
The current research wished to explore how box uncertainty sets (we considered only box)
can be used to bound uncertain reaction coefficients and the impacts on the robustness and
conservatism of the optimization solutions.

2.1. RO-A Short Tutorial

Consider the following linear programming problem Equation (1):

min
x∈X

CTx

Such That :

Ax ≥ b

(1)

where x ∈ X ⊆ Rn is a vector of decision variables, C ∈ Rn is the cost coefficient vector
associated with the objective function, A ∈ RmXn is the constraint coefficient matrix, and
b ∈ Rm is a right-hand side inequality constraint vector.

In a typical LP problem, the vectors C, b, and matrix A are deterministic, and we
solve the problem and obtain the optimal solution. In the RO problem, we consider
some/all of these parameters as uncertain yet lying within a specified set. This set is called
the uncertainty set, which defines the limits on uncertainty to which the robust solution
to this problem is immune. In this RO approach, the uncertain parameters of the LP
problem are converted into a constraint that reflects the immunity within the uncertainty
set. The converted tractable constraint of the uncertain constraint is called the robust
counterpart [38,39]. Let us assume that the coefficients of x are uncertain and lie in some
arbitrary uncertainty set U. The problem then becomes:

min
x∈X

CTx

Such That :

Ax ≥ b, ∀ A ∈ U

We obtain an infinite number of constraints in order to satisfy the constraint for all
possible values of the coefficients in U, and the problem becomes intractable. For a feasible
solution x, the infinite number of constraints should be satisfied by x. We can see that
if min

A∈U
Ax ≥ b is satisfied by x, then all the infinite constraints are satisfied by x since

Ax ≥ min
A∈U

Ax ≥ b. This is the main idea of robust optimization. Using this, we can

reformulate the original problem as:

min
x∈X

CTx

Such That :

min
A′∈U

A′x ≥ b
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If the minimization (maximization, in some cases) in the constraint can be performed,
we can obtain a tractable optimization problem. This is explained in detail for a box
uncertainty set below.

Box Uncertainty

Let us assume that the constraint coefficient matrix A is uncertain, i.e., every element
in the matrix A (ãij, i = 1, 2, 3 . . . , n, j = 1, 2, 3, . . . , m) is uncertain where the coeffi-
cient is bounded within a box uncertainty set (UB). Let us define the uncertainty set as
UB ≡ {ã : |ã− a| ≤ ε|â|}; here, a is the mean and â is the deviation from the mean. The
uncertainty can be removed by replacing the uncertain constraint with a minimization
counterpart constraint, which can be written as follows.

min
ã∈UB

{
n

∑
i=1

ãijxi

}
≥ bj = min

ã:|ã−a|≤ε|â|

{
n

∑
i=1

ãijxi

}
≥ bj (2)

The minimization gives us a new constraint, as shown in Equation (3):

min
ã:|ã−a|≤ε|â|

{
n

∑
i=1

ãijxi

}
= ∑n

i=1 aijxi − ε ∑n
i=1

∣∣âij
∣∣∣∣xij

∣∣ ≥ bj (3)

This reformulated constraint is robust within the uncertainty set, and with this new
constraint, the uncertain LP can easily be solved [38]. The optimization problem with an
objective as in (1) and with a constraint as in (3) is called the robust counterpart, which is
shown in Equation (4).

min
x∈X

CTx

s.t.

min
ã:|ã−a|≤ε|â|

{
n

∑
i=1

ãijxi

}
= ∑n

i=1 aijxi − ε ∑n
i=1

∣∣âij
∣∣∣∣xij

∣∣ ≥ bj

(4)

3. Problem Formulation

This section defines the optimization problem and the solution methodology.

3.1. Optimal Booster Chlorination Problem

The assessment of water quality in a water distribution system (WDS) is commonly
measured by residual chlorine concentration. During the design phase, water quality
is evaluated using water quality models, such as EPANET. To input the bulk reaction
coefficient of chlorine into such models, various factors, such as the type of contaminants
present in the water, age, the material of the pipes, pH, the temperature of the water, and
other external factors, are considered. However, accurately predicting these parameters can
be challenging, resulting in an uncertain reaction coefficient parameter. This uncertainty
in the reaction coefficient makes it difficult to plan the optimal rate of disinfectant mass
injection to maintain water quality requirements over an extended period of operation. The
optimal booster disinfection problem is to obtain the amount of disinfectant required to be
injected into the system to maintain the required residual chlorine concentrations levels at
the consumer nodes.

3.1.1. Decision and Uncertain Variables

The decision variables used in this study were operational: the disinfectant concentra-
tion xit injected at each booster station (i) at a time (t). The uncertain parameter considered
was the disinfectant first-order bulk reaction rate coefficient kB used in the EPANET model
for water quality (WQ) calculations.
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3.1.2. Optimization Problem Formulation

To obtain the residual disinfectant levels at each water quality sensor, we used a
linear superposing concept proposed by Boccelli et al. (1998) [4]. The linear superposition
model states the following: let us assume that there are three booster stations (A, B, C) and
one water quality sensor (S1) downstream. Let us assume that, when a unit amount of
disinfectant is added to the system from station A, the residual disinfectant amount at S1 is
RCAU . Similarly, RCBU , RCCU is the residual disinfectant amount at S1 when a unit amount
of disinfectant is added at B and C, respectively. Then, if xA, xB, xC are the disinfectant
amounts added to the system from booster stations A, B, and C, the combined final residual
disinfectant concentration at S1 can be written as xA ∗ RCAU + xB ∗ RCBU + xC ∗ RCCU . A
detailed explanation of this model is discussed in Boccelli et al. (1998) [4]. For n booster
stations and N sensor locations, the set of all residual disinfection levels for unit injection
becomes an nxN matrix, which is called response matrix (B). As the reaction coefficient was
uncertain in this research work, the response matrix was also uncertain (B̃).

3.1.3. Water Quality Objective

For each water quality sensor location, the penalty associated with residual disinfectant
concentration was evaluated on the basis of a penalty-based function [40,41], as described
in Figure 1. This is a different approach that does not restrict the water quality to be within
the hard bounds of

[
CLower, CUpper

]
residual disinfection limits.
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The objective used in this study for residual disinfectant concentration was as follows
in Equation (5):

obj : F(x) =
T

∑
t=1

S

∑
n=1

Fq(Cn(t)) (5)

where S is a set of sensor nodes (n) where water quality is estimated, Fq() is the water
quality function explained in Figure 1, and Cn(t) is the residual concentration at sensor
node n for time instant t ∈ T. The sensor nodes and the water quality bounds can be
altered according to the requirements. The residual disinfection function can be written
as shown in Equation (6). Here, fi are the linear functions based on Figure 1, where
c1 = c4 = Fmean, c2 = c3 = 0, d1 = M1, d2 = Fmean

C0−CLower
, d3 = −1 ∗

(
Fmean

CUpper−C0

)
,

d4 = −1 ∗ M2, C1 = CLower, C2 = C3 = C0, C4 = CUpper . For our current study, we
used Fmean = 5, M1 = 10, M2 = 2, C0 = 0.5. Clower = 0.2, Cupper = 4.

Fq(Cns(t)) = max
i=1,2,3,4

fi where fi = ci + di(Ci − Cns) (6)
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By using Equation (6), our booster disinfectant optimization problem can be written
as follows in Equations (7) and (8), where uncertian response matrix B̃ ∈ UB. UB is the
uncertainty set of the uncertain response matrix

min
x

F(x) =
T

∑
t=1

S

∑
ns=1

max
i=1,2,3,4

fi(cns(t)) (7)

such that:
cns(t) = B̃ns(t)x, ∀ns ∈ S, ∀B̃ns ∈ UB; x ≥ 0 (8)

The maximum of a piece-wise linear function can be rewritten as Equation (9):

min
x

F(x) =
T

∑
t=1

S

∑
ns=1

zt,ns

such that :

f1(cns(t)) ≤ zt,ns

f2(cns(t)) ≤ zt,ns

f3(cns(t)) ≤ zt,ns

f4(cns(t)) ≤ zt,ns

cns(t) = B̃ns(t)x, ∀ns ∈ S, ∀B̃ns ∈ UB

x ≥ 0

(9)

3.1.4. Robust Counterpart Formulation

Let us assume that the bulk reaction rate coefficient (Kb) can vary within an uncertainty
set [Lkb, Ukb]; we can assume that the response matrix also varies within a box uncertainty
set UB

∣∣∣ B̃ns ∈ [LBBns , UBBns ] . The lower and upper bounds of the matrix can be obtained
by obtaining the response matrices for the upper and lower bounds of the bulk reaction
rate coefficient, i.e., Lkb, Ukb. The mechanism to obtain the bounds of the response matrix is
explained through the flowchart in Figure 2.

The robust reformulation for the problem expressed in Equation (9) can be written as
follows in Equation (10):

min
x

F(x) =
T
∑

t=1

S
∑

ns=1
zt,ns

such that :
max

Bns
f1

(
B̃ns(t)x

)
≤ zt,ns , ∀ns ∈ S, ∀B̃ns ∈ UB

max
Bns

f2

(
B̃ns(t)x

)
≤ zt,ns , ∀ns ∈ S, ∀B̃ns ∈ UB

max
Bns

f3

(
B̃ns(t)x

)
≤ zt,ns , ∀ns ∈ S, ∀B̃ns ∈ UB

max
Bns

f4

(
B̃ns(t)x

)
≤ zt,ns , ∀ns ∈ S, ∀B̃ns ∈ UB

x ≥ 0

(10)

Consider the maximization part of the first constraint in the reformulation shown in
Equation (10):

max
∀Bns∈UB

f1

(
B̃ns(t)x

)
=> max

Bns
c1 + d1

(
C1 − B̃ns(t)x

)
∀ns ∈ S, ∀t ∈ T (11)
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The uncertainty set can be written in terms of constraints as follows:

max
∀Bns∈R

c1 + d1

(
C1 − B̃ns(t)x

)
such that :

LBBns(t) ≤ B̃ns(t) ≤ UBBns(t) ∀ns ∈ S, ∀t ∈ T,

(12)

max
∀Bns∈R

c1 + d1

(
C1 − B̃ns(t)x

)
−
(

B̃ns(t)−UBBns

)
α−

(
LBBns − B̃ns(t)

)
= max
∀Bns∈R

c1 + d1(C1)− d1B̃ns(t)x−
(

B̃ns

)
α + UBBns α− (LBBns)β + B̃nsβ

= max
∀Bns∈R

c1 + d1C1 + UBBns α− LBBns β + (β− d1x− α)B̃ns(t)

=

{
c1 + d1C1 + UBBns α− LBBns β i f (β− d1x− α) = 0

∞ else

s.t. α, β ≥ 0

(13)
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Similarly, we can write the maximization for all the other constraints in the reformula-
tion shown in Equation (10), and the final optimization problem can be written as follows
in Equation (14):

min
x

F(x) =
T
∑

t=1

S
∑

ns=1
zt,ns

such that :
ci + diCi + UBBns,t αi,t,ns − LBBns,t βi,t,ns ≤ zt,ns ∀ns ∈ S, t ∈ T, i ∈ [1, 2, 3, 4]

βi,t,ns − dix− αi,t,ns = 0 ∀ns ∈ S, t ∈ T, i ∈ [1, 2, 3, 4]
x, αi,t,ns, βi,t,ns, zt,ns ≥ 0 ∀ns ∈ S, t ∈ T, i ∈ [1, 2, 3, 4]

(14)

This formulation is completely linear and can be easily solved using any linear pro-
gramming tool.

4. Case Studies

The above formulation was applied to two benchmark water distribution system
problems.

4.1. Network System 1

The initial focus of this study was on a small-scale water distribution system (WDS)
known as “NET-1” in the EPANET WDS analysis software. The WDS comprises 10 inter-
connected nodes linked by 12 pipes with a reservoir featuring a water level of 243.8 m
and a pump with a maximum flow rate of 189.3 L/s and a shutoff head value of 101.3 m.
Node 10 houses an elevated cylindrical storage tank measuring 15.4 m in diameter situated
at a ground level of 259.1 m. The WDS supplies water to eight consumers positioned at
nodes 1–8, with base demands ranging from 6.5 to 13 L/s. The demand multipliers for
these consumers vary between 0.4 to 1.6, while the pipes’ assumed roughness coefficients
are 100. A visual representation of the WDS is provided in Figure 3.
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4.2. Network System 2

The Fossolo system, which serves the Fossolo neighborhood in Bologna, Italy, was
modeled after its water distribution system. Its average demand is 3000 CMD, and it was
initially introduced by Bragalli et al. in 2008 [42] as part of a design study. A general
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diagram of the system can be seen in Figure 4. The Fossolo network (FOS) is a complex
water distribution system comprising 58 pipes, 36 demand nodes, and a single reservoir
that maintains a fixed head of 121.00 m. All the pipes in the network are constructed using
high-density polyethylene with a roughness coefficient of 150, which is relatively high.
The FOS network has been widely utilized in various research studies, including design
optimization problems for water distribution systems [36], optimal sensor placement for
leak localization [37], optimal pressure-reducing valve (PRV) placement [37], leak detection
studies [38], and multi-quality optimization of the system [22].
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5. Results and Discussion
5.1. Network System 1

The analysis of water quality requires the consideration of the lower and upper bounds
for chlorine concentration, which have been established at 0.2 mg/L and 4 mg/L [4,5],
respectively. A simulation of the network was conducted for 480 h to ensure stability and
periodicity, with the final 24 h of the simulation dedicated to calculating water quality
for the estimation of the lower- and upper-bound response matrices. Four different cases
were evaluated as shown in Figure 5 (numbered 1 to 4). Each case was obtained by fixing
the location of the three booster stations (out of four possible choices) represented by
the crossed circles in the Figure 5. The residual chlorine concentration was measured at
hourly intervals over 24 h for each case. To evaluate the impact of uncertainty on decay
rate coefficients, three different uncertainty sets were considered, namely {[−0.4, −0.6],
[−0.3, −0.7], and [−0.2, −0.8]}. For each combination, the total mass injected and resulting
penalty-based function values were calculated. The objective of the study was to determine
the optimal total amount of chlorine injection that would ensure minimal deviation from
the established limits. The results indicated that the optimal total amount of chlorine mass
injected (mg/min) and the penalty-based objective function were influenced by the booster
locations, with an increase in injection mass observed for larger reaction rate uncertainty
sets. These findings are presented in Figure 6.
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Figure 6a illustrates the trend of objective function values for all four cases as the size
of the uncertainty set of the bulk reaction rate coefficient increased. The graph depicts a
clear increase in penalty as the uncertainty set size increased. Notably, the case 3 booster
station configuration resulted in the most favorable outcomes when compared to the other
three cases. Upon examining the total amount of chlorine mass injected into the system, as
depicted in Figure 6b, a similar trend of increasing chlorine mass to accommodate higher
reaction rate coefficients within the uncertainty sets could be observed. This trend was in
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line with the objective of the study, which was to optimize the total amount of chlorine
injection while minimizing deviation from the established limits. Overall, the findings
presented in Figure 6 indicate that the booster station configurations had a significant impact
on the optimal injection mass and the resulting penalty-based objective function values.

5.2. Network System 2

For the second example network system, the Fossolo WDS was considered. This
benchmark network is traditionally subjected to a single loading condition, which is
available in the network database [43]. In order to analyze it under multiple loading
conditions, the demand pattern used for the first network example (the NET-1 example)
was applied to simulate the loading conditions for 24 h. Three different combinations of
four booster chlorination locations were considered for the study, as shown in Figure 7. The
water quality condition of the system was estimated from the measurements taken from
four different sensor locations (nodes 4, 5, 7, and 9). The water quality measurements were
taken for the last 24 h of the 480 h extended period simulation of the network at every 1 h
interval. The network was assumed to have a chlorine level of 0.5 initially which degrades
over time. The chlorine levels of the system are boosted from the booster injections. For
each combination, the total mass injected and the penalty-based objective function were
calculated for four different uncertainty sets of the decay rate coefficients {[−0.4, −0.6],
[−0.3, −0.7], [−0.2, −0.8], [−0.1, −0.9]}.
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The results in Figure 8 show the optimal total amount of chlorine mass injected
(mg/min) and the penalty-based objective function for all three cases. The results depict
the effect of booster locations on the optimal injection mass as well as the objective function.
An increase in the mass injection was observed with an increase in the size of the reaction
rate uncertainty set, similar to the network system 1 example.
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The graph depicted in Figure 8b exhibits the relationship between the objective func-
tion values for all three cases and the size of the uncertainty set of the bulk reaction rate
coefficient. Notably, the graph illustrates a clear increase in the penalty as the uncertainty
set size increased, emphasizing the importance of managing uncertainty when evaluat-
ing water quality. It is noteworthy that all three booster station configurations yielded
similar performance outcomes, with only minor variations in both the optimal objective
function values and the total injected mass for a given uncertainty set. By examining
the corresponding graph for the total amount of chlorine mass injected into the system
(Figure 8a), a similar trend of increasing the chlorine mass to accommodate higher reaction
rate coefficients within the uncertainty sets could be observed. This trend highlights the
importance of carefully managing chlorine injection amounts to maintain water quality
within the established limits.

5.3. Sensitivity Analysis

From the previous results, we can clearly understand the effect of the location of
the booster stations as well as the effect of reaction rate uncertainty in the optimal mass
injection to meet the required water quality regulations. To understand the effect of other
assumed parameters in the problem formulation, a sensitivity analysis was performed.

5.3.1. Effect of Varying the Desired Residual Chlorine Concentration C0

For this sensitivity analysis, the first case of the Fossolo network was considered with
the lower and upper bounds of the network set as [0.2, 4] mg/L. The desired residual
chlorine level varied between five different values {0.5, 1, 1.5, 2, 2.5}. The network was
subjected to similar variations of the reaction rate coefficients {[−0.4, −0.6], [−0.3, −0.7],
[−0.2, −0.8], [−0.1, −0.9]}. The total mass injected into the system as well as the objective
function values were compared using bar graphs, as shown in Figure 9. The variation of
the desired residual chlorine concentration had a significant effect on both the total chlorine
mass injection as well as the penalty-based objective function. A unique trend of decrease
and increase was observed in the objective function values. This variation can be explained
because of the linear gradual increase in the objective function when moving from Co. As
c0 = 1, 1.5 lies close to the center of the feasibility range of [0.2–4], the slight deviation
from the desired concentration had a very small penalty.
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5.3.2. Effect of Residual Chlorine Regulation Limits

Similar to the previous sensitivity analysis, only case 1 from the Fossolo network
study was considered. To understand the effect of regulation limit variations, four different
regulation limits were considered: {[0.2, 0.8], [0.2, 1], [0.2, 2], [0.2, 4]}. The network
was subjected to variations of the reaction rate coefficients {[−0.6, −0.4], [−0.7, −0.3],
[−0.8, −0.2], [−0.9, −0.1]}, keeping the desired residual chlorine concentration C0 = 0.5.
The total mass injected into the system as well as the objective function values were
compared using bar graphs, as shown in Figure 10. The width of the feasibility region also
had a significant effect on both the mass injected as well as the objective function. We can
see the correlation between the mass injected and the objective function values. When the
feasibility region is narrow i.e., [0.2, 0.8], very little chlorine needed to be injected, but the
penalty objective function was higher because it is difficult to control the residual chlorine
and limit in that narrow feasibility range.
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6. Conclusions

The primary objective of this study was to determine the optimal booster chlorination
doses required to maintain water quality within regulatory limits while considering un-
certainties in reaction rate coefficients. To address this uncertainty, the study employed
robust optimization (RO) principles to convert the uncertain problem into a tractable one
and applied linear programming optimization techniques to solve it. To model water
quality, the study used a surrogate model based on the linear superposition method intro-



Water 2023, 15, 1777 14 of 16

duced by Boccelli et al. (1998) [4]. Response matrices for the study were derived through
extended-period water quality simulations using the EPANET tool.

The novelty of this work lies in its framework, which incorporated disinfectant reaction
rate coefficients as uncertain variables and applied RO optimization to solve this uncertain
optimization problem. The study utilized a non-conventional penalty-based function
developed by Kurek et al. [41] as its objective function. The proposed methodology can
be applied to any other network that uses chlorine as a disinfectant. The major limitation
of this study is the assumption of linear superposition proposed by Boccelli et al. (1998);
this is only feasible when we consider the first-order decay reaction of the disinfectant and
use the basic water quality model available in EPANET. Nevertheless, this assumption
is well accepted, and many studies, even in the recent past (especially studies related to
optimization under uncertainty) have used this assumption [6,28].

The research detailed in this article indicates that as the size of the uncertainty set
increases, the necessary booster injection mass and the deviation from the desired residual
chlorine level increase accordingly. Furthermore, the effect of the booster location configura-
tion was found to have a significant impact on both the objective function and the injection
mass. Sensitivity analysis further demonstrated that both the desired residual chlorine
level and the feasibility region strongly influenced the results, highlighting the potential for
other parameters to impact optimal booster chlorination dosage solutions. To expand upon
this research, future work may involve the incorporation of additional uncertainty in the
feasibility region, specifically regarding regulatory limits for residual chlorine. Additionally,
exploring alternative uncertainty sets, such as ellipsoidal uncertainty sets, may prove useful
in furthering the understanding of this issue. Another potential area for extension involves
the integration of this approach with the optimal booster location problem, which could
provide a more comprehensive solution to the booster chlorination problem.
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