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Abstract: Soil salinization is a serious resource and ecological problem globally. The Weigan
River–Kuqa River Delta Oasis is a key region in the arid and semi-arid regions of China with
prominent soil salinization. The saline soils in the oasis are widely distributed over a large area,
causing great harm to agricultural development and the environment. Remote sensing monitoring
can provide a reference method for the management of regional salinization. We extracted the
spectral indices and performed a correlation analysis using soil measurement data and Sentinel-2
remote sensing data. Then, two-dimensional feature space inversion models for soil salinity were
constructed based on the preferred spectral indices, namely, the canopy response salinity index
(CRSI), composite spectral response index (COSRI), normalized difference water index (NDWI),
and green atmospherically resistant vegetation index (GARI). The soil salinity in a typical saline
zone in the Weigan River–Kuqa River Delta Oasis was monitored and analyzed. We found that the
inversion of the CRSI-COSRI model was optimal (R2 of 0.669), followed by the CRSI-NDWI (0.656)
and CRSI-GARI (0.604) models. Therefore, a model based on the CRSI-COSRI feature space can
effectively extract the soil salinization information for the study area. This is of great significance
to understanding the salinization situation in the Weigan River–Kuqa River Delta Oasis, enriching
salinization remote sensing monitoring methods, and solving the soil salinization problem in China.

Keywords: soil salinization; two-dimensional feature space; remote sensing monitoring; Weigan
River–Kuqa River Delta Oasis

1. Introduction

Today, soil salinization is a widespread soil degradation and land desertification
phenomenon [1]. It is a negative result of the movement of soil salts caused by a combination
of natural conditions such as different surface morphologies, climatic conditions, and
hydrological factors [2,3]. It is also a global resource problem caused by a combination
of irrational human activities that do not take into account the laws of nature and the
increasingly fragile ecological environment [4,5]. Saline soils are widely distributed in
China, especially in the arid and semi-arid provinces in northwestern China such as Gansu,
Ningxia, and Xinjiang [6], where salinization is serious due to the influences of human and
natural factors. This substantially restricts the development of the agricultural industry, the
sustainable use of land resources, and the security and stability of the environment [7,8].
Therefore, the monitoring inversion of accurate salinization information and mastering the
salinity of regional arable farmland are important goals that scholars have tried to support
through research.
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Accurate and rapid information on the soil salt distribution is an important prereq-
uisite for achieving the goal of managing and utilizing saline soils on a large scale [9,10].
With the continuous innovation in remote sensing techniques and the improvement in
the spectral and spatial resolution of remote sensing images, efficient, convenient, and
multi-dimensional methods for monitoring salinity information have been developed [11].
Researchers have gradually found that the data carried by different remote sensing images
can be used to identify, classify, and extract the salinization information for a more accu-
rate quantitative inversion monitoring of parameters related to soil salinity in different
regions [12]. As the research means of the inversion analysis of soil salinization based on
remote sensing image data is gradually becoming common, it has become an important
method for research on qualitative and quantitative soil salinization, dynamic analysis,
information extraction, monitoring, and forecasting [13,14]. A remote sensing monitoring
model was constructed with the aim of determining the correlations between the measured
soil salt content and multiple remote sensing modeling factors [15]. Based on the research
and analysis of many scholars in China and abroad, it has been found that the spectral
feature space modeling method can be applied to construct a remote sensing soil salinity
monitoring model [16–18]. Frontier research results have confirmed that the characteristic
spatial models constructed based on remotely sensed parameters have a significant correla-
tion with the soil salinity data. The construction of different combinations of eigenspace
inversion models with different dimensions using quantitative indicators from different
data sources is gradually becoming a mainstream tool for soil salinity monitoring [19]. For
example, Jianli Ding et al. [20] extracted the modified soil adjusted vegetation index and
moisture index from remote sensing images and constructed a two-dimensional feature
space based on them. Their results showed that this two-dimensional feature space was
well-correlated to the surface soil salinity in an oasis in an arid zone. Bing Guo et al. used
the synergistic relationship between soil and vegetation to construct a two-dimensional
feature space model and found that the model has the potential to monitor soil salinization
in the Yellow River Delta region [21]. Juan Feng et al. [22] used the relationships between
various factors such as the surface albedo to construct a feature space. Their results showed
that this monitoring model based on surface albedo and the soil adjusted vegetation index
could analyze the degree of soil salinization in their study area accurately and efficiently.
Lingling Bian et al. [23] quantitatively explored the relationships between the soil salinity
and several surface parameters in the Yellow River Delta region. Their results showed
that this feature space model, constructed based on the salinity index and surface albedo,
had a strong predictive ability and provided a favorable reference for the inversion of soil
salinization in China’s seaside areas. It can be seen that the inversion results obtained
by constructing monitoring models with different uses for study areas with different geo-
graphical features were significantly different [1,2]. It has become a hot topic in the field to
calculate and select the spectral parameters of remote sensing images with high correlations
to the soil salinity in a study area and to construct a specific feature space model based on
them [24–26], in order to further improve the accuracy and efficiency of the inversion of
the saline soils.

Therefore, with the objective of the monitoring and inversion of regional soil salin-
ization, in this study, a typical saline zone in the Weigan River–Kuqa River Delta Oasis in
Xinjiang was taken as the study area. Based on field soil data and Sentinel-2 remote sensing
image data, we calculated and selected the optimal spectral index and then constructed a
variety of different combinations of soil salinity two-dimensional feature spaces, quantified
and analyzed the feature space scatter plot, constructed a soil salinity inversion model,
and analyzed the spatial distribution of the soil salinity in the study area. We then con-
ducted remote sensing monitoring of the soil salinity in a typical saline zone in the Weigan
River–Kuqa River Delta Oasis. This is of great practical importance to further master
advanced remote sensing technology monitoring methods, effectively manage and utilize
land resources, and optimally promote the sustainable development of the oasis region.
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2. Materials and Methods
2.1. Study Area

The Weigan River–Kuqa River Delta Oasis is located in the Xinjiang Uygur Au-
tonomous Region, China, covering the Xinhe, Kuche, and Shaya Counties. It is located
in the southern part of the middle Tianshan Mountains and on the northern edge of the
Tarim Basin in southern Xinjiang (Figure 1) and is a representative of typical oases in arid
regions [20]. The study area in this typical saline zone is mainly located in Kuche County,
where the climate is dry, precipitation is scarce and unevenly distributed, and the evapora-
tion is much greater than the precipitation [27]. The salts in the groundwater and deep soil
rise to the surface along soil capillaries under strong evaporation and accumulate, causing
regional salinization of the soils. In addition, the lack of effective engineered drainage
facilities inside the oasis has made it difficult to reasonably circulate the soil salinity inside
the oasis, thus causing increased salinization and seriously affecting the development of
oasis agriculture in the region.

2.2. Soil Data Collection and Processing

In this study, we conducted surface soil sampling and an environmental investigation
in the typical saline area in the Weigan River–Kuqa River Delta Oasis in July 2022. During
the sampling process, the soil sampling points were evenly distributed throughout the
study area and were distributed in the periphery of the oasis, the oasis–desert interlacing
zone, and the inner area of the oasis, covering different vegetation cover types, land use
types, and soil types, with a total of 78 soil sampling points. During the expedition, based
on the team’s previous experience and results on the soil salinity content in the study
area, several representative areas were visited. The salinized soils of the study area with
different degrees of salinity were photographed and recorded (Figure 2). After the sample
collection, the samples were placed in aluminum boxes and sampling bags were marked
with corresponding numbers. The specific coordinates of the sampling points, land use
patterns, soil salinity, vegetation types, and cover were recorded in detail to facilitate
subsequent analysis. Finally, the collected soil samples were transported to the laboratory
for air-drying, grinding, removing impurities, and sieving to determine the soil salinity
data required for the study.

2.3. Remote Sensing Image Acquisition and Pre-Processing

Sentinel-2 optical images with a spatial resolution of 10 m were selected as the remote
sensing data source for this study. The Sentinel-2 image data for the Weigan River–Kuqa
River Delta Oasis were obtained from the official website. The images were chosen to
completely cover all of the sampling points, and 5 July 2022 was chosen as the imaging time
for correspondence with the acquisition of the field data. The weather in the study area
during this period was clear, with few clouds and rain, dry ground, and sparse vegetation
growth, which made the remote sensing images more effective and facilitated the inversion
of the ground soil salinity. The acquired images were pre-processed using remote sensing
information processing software such as SNAP, ENVI, and ArcGIS to lay the foundation
for the subsequent inversion and application.
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Figure 1. (a) Location of the study area in China. (b) Location of the study area in Xinjiang.
(c) Sentinel-2 image of the Weigan–Kuqa River Delta Oasis. (d) Topographic map of the study
area. (e) Distribution of the sampling sites in the study area.
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Figure 2. Soil types with different degrees of salinization in the study area.

2.4. Spectral Index Calculation and Normalization

The pre-processed remote sensing image data were rich in spectral information about
the various features, which was contained in the reflectance of the different wavelength
bands in the remote sensing data [28,29]. Since the spectral information contained in a
single band is very limited, after extracting the spectral reflectance data from each band of
a remote sensing image, a combination operation can be performed between the different
bands to obtain more and richer information [30–33]. Since salinized soils have stronger
spectral reflectance in the near-infrared band and visible band than other types of soils,
multiple salinity indices composed of reflectance information in different wavelength bands
based on remote sensing data can directly monitor different levels of soil salinity [34]. In
addition, some researchers have found that vegetation indices can also be used as indirect
parameters to discriminate saline soils by expressing different vegetation species and their
coverage [35]. At the same time, soil salinity changes have a great relationship with the
water circulation process as salt moves with water, and soil salinity is prone to shift with
water changes. Therefore, water indices can also be one of the most indirect parameters to
participate in the monitoring of soil salinity [9]. The canopy response salinity index (CRSI),
normalized difference water index (NDWI), and soil adjusted vegetation index (SAVI) were
selected from the 22 commonly used soil salinity-related spectral indices (Table 1). The
reflectance of the different wavelength ranges in the multispectral data from the Sentinel-2
remote sensing images corresponding to each sampling point was extracted using ArcGIS,
and the spectral indices in the study area were calculated and analyzed using the formulas
in the ENVI software. Finally, a series of spectral indices were calculated and correlated
with the measured soil salt content to obtain the optimal spectral indices with a high
correlation to the measured soil salt content for use in the subsequent modeling.
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Table 1. Spectral indices and calculation formulas.

Spectral Index Calculation Formula Reference

Composite Spectral Response Index (COSRI) B+G
R+NIR ×

NIR−R
NIR+R [36]

Canopy Response Salinity Index (CRSI)
√

(NIR×R)−(G×B)
(NIR×R)+(G×B)

[37]

Difference Vegetation Index (DVI) NIR− R [38]

Green Atmospherically Resistant
Vegetation Index (GARI)

NIR−[G+0.9(B−R)]
NIR+[G+0.9(B−R)] [39]

Intensity Index 1 (Int1) G+R
2 [40]

Intensity Index 2 (Int2) G+R+NIR
2 [40]

Normalized Difference Salinity Index (NDSI) R−NIR
R+NIR [41]

Normalized Difference
Vegetation Index (NDVI)

NIR−R
NIR+R [42]

Normalized Difference Water Index (NDWI) G−NIR
G+NIR [43]

Ratio Vegetation Index (RVI) NIR
R [44]

Salinity Index (S1) B
R [45]

Salinity Index (S2) B−R
B+R [45]

Salinity Index (S3) G×R
B [45]

Salinity Index (S5) B×R
G [45]

Salinity Index (S6) R×NIR
G [45]

Soil Adjusted Vegetation Index (SAVI) (1+L)(NIR−R)
NIR+R+L [46]

Salinity Index (SI)
√

B× R [41]

Salinity Index 1 (SI1)
√

G× R [47]

Salinity Index 2 (SI2)
√

G2 + R2 + NIR2 [48]

Salinity Index 3 (SI3)
√

G2 + R2 [48]

Salinity Index 7 (SI7) R×NIR
G [49]

Salinity Ratio Index (SRI) (R− NIR)× (G + NIR) [50]

Note: B is the blue band, G is the green band, R is the red band, NIR is the near infrared band, and L is the soil
adjustment coefficient, which is generally close to 0.5.

In order to eliminate the effect of the differences in the magnitude and units of the data
for the different variables, the maximum and minimum values of the spectral indices for
the study area were obtained, the data were standardized [51,52], and the original values
were mapped to the interval (0, 1) via standardization. The formula is as follows:

Result =
DN − DNmin

DNmax− DNmin
× 100% (1)

where Result is the normalized value; DN is the original image element value; DNmin and
DNmax are the minimum and maximum values of the band, respectively.

2.5. Two-Dimensional Feature Space Inversion Models

Based on the results of many researchers in China and abroad in recent years, it was
found that a two-dimensional feature space method that uses different soil parameters
to form various combinations can be effectively applied to construct a remote sensing
soil monitoring model [53–55] that provides a good reference for the monitoring of soil
salinization. In this study, we analyzed the shape, distribution characteristics, and cor-
relation of the feature space scatter plot based on practical experience to determine the
mutual variation trends between the different covariates. The distance from any point
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in the two-dimensional feature space of the soil salinity covariates to a certain feature
reference point was used to reflect the different levels of soil salinity.

The distribution pattern of the soil salinity was obtained through a statistical combina-
tion of the faceted information so that the corresponding two-dimensional feature space
inversion model could be established using the spatial feature covariates of the scatter
plot [56,57]. Based on this, the degree and distribution of the salinization of the soils in the
study area were characterized. The above eigenspace inversion model was combined with
the measured soil salinity for accuracy verification and comparison, and the determination
coefficient R2 was used to reflect the model accuracy. The closer R2 is to 1, the higher and
more stable the fitting effect of the model. R2 is mathematically defined as follows [58]:

R2 = 1− ∑(ŷi − yi)
2

∑(yi − yi)
2 (2)

where yi is the measured value; yi is the mean sample value; ŷi is the predicted value; i = 1,
2, . . . , n. Finally, the optimal feature space model was selected according to the accuracy
verification results for the inverse analysis of the spatial distribution of the soil salinity in
the study area.

3. Results
3.1. Spectral Index Analysis and Data Normalization

Correlation analysis between the above 22 spectral indices and the measured soil
salinity was performed to obtain a table of the correlation coefficients between the spectral
indices and soil salinity (Table 2). The analysis revealed that among the spectral indices,
the CRSI, composite spectral response index (COSRI), NDWI, and green atmospherically
resistant vegetation index (GARI) had the highest correlations with the soil salinity in the
study area, with R2 values of −0.622, −0.612, 0.609, and −0.605, respectively. Among them,
the CRSI had the highest correlation and was the salt index directly related to the study
target, so it was combined with the other three indices separately as the modeling factors
in the construction of the inversion model when constructing the two-dimensional feature
space, and the four preferred spectral indices were normalized (Figure 3).

Table 2. Correlations between the spectral indices and soil salinity.

Spectral Index Correlation Coefficient Spectral Index Correlation Coefficient

COSRI −0.612 S2 0.229
CRSI −0.622 S3 0.444
DVI −0.576 S5 0.557

GARI −0.605 S6 −0.420
Int1 0.538 SAVI −0.576
Int2 0.341 SI 0.554

NDSI 0.576 SI1 0.539
NDVI −0.576 SI2 0.195
NDWI 0.609 SI3 0.538

RVI −0.516 SI7 −0.420
S1 0.224 SRI 0.558

3.2. Two-Dimensional Feature Space Model Construction and Analysis

The normalized CRSI values were used as the horizontal axis, and the normalized
COSRI, NDWI, and GARI values were used as the vertical axis to build two-dimensional
feature space scatter plots (Figure 4). Based on the distribution characteristics of the soil
salinity in the study area shown by the scatter plots, it can be seen that there were significant
differences in the spatial distributions of the soils with different degrees of salinization.
As shown in Figures 5–7, the green area in the feature space scatter plot represents the
vegetation, which is mainly located in the upper right in the CRSI-COSRI and CRSI-GARI
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scatter plots and in the lower left in the CRSI-NDWI scatter plot. The yellow area and the
orange area represent slightly saline soils and moderately saline soils, respectively. The red
area represents heavily saline soils and is mainly located in the lower left in the CRSI-COSRI
and CRSI-GARI scatter plots and in the upper right in the CRSI-NDWI scatter plot.
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Figure 8 shows the simplified schematic diagrams of the three two-dimensional feature
spaces, and it can be seen that there were clear linear relationships between the combi-
nations of spectral indices. In the CRSI-COSRI and CRSI-GARI two-dimensional feature
space schematic diagrams, the point at coordinates (1, 1) was used as the feature reference
point. This is the point in the study area with the best crop vegetation growth, the highest
plant cover, and the lowest surface soil salinity. The distance from any point in the scatter
plot to the reference point of the feature reflects the different degrees of soil salinization
in the study area. The greater the distance from the reference point, the more severe the
soil salinization, and the shorter the distance from the reference point, the less severe the
soil salinization. In the CRSI-NDWI two-dimensional feature space schematic diagram,
the point with coordinates (1, 0) was used as the feature reference point. The greater the
distance from any point in the scatter plot to this feature reference point, the more severe
the soil salinization, and the shorter the distance, the less severe the soil salinization.
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Based on the point-to-point distance equation in the two-dimensional coordinate
system that expresses the above feature space principles, two-dimensional feature space
remote sensing monitoring models for soil salinity were constructed as follows:

CRSI−COSRI =
√
(CRSI − 1)2 + (COSRI − 1)2 (3)

CRSI−NDWI =
√
(CRSI − 1)2 + (NDWI)2 (4)

CRSI−GARI =
√
(CRSI − 1)2 + (GARI − 1)2 (5)

Using Equations (3)–(5), soil salinization inversions were performed for the entire
study area, and the accuracy of the inversion results was verified based on the actual field
measurements (Figure 9). Among them, the logarithmic function models of the CRSI-COSRI
and CRSI-NDWI two-dimensional feature spaces had the best fits, with R2 values of 0.669
and 0.656, respectively. The power function model of the CRSI-GARI two-dimensional
feature space had the best fit, with an R2 value of 0.604. According to the criteria for
evaluating the validation capability of the model, which were empirically concluded by
the researchers [59], if R2 >0.4, the characteristic covariates in the prediction model can
be considered to have some correlation to the soil salinity information in the study area.
If R2 >0.5, the model can be considered as more sensitive to the soil salinity content and
can predict the soil salinization information to some extent. It can be seen that the R2

of all three models in the feature space model based on Sentinel-2 image spectral index
proposed in this study was greater than 0.6. The feature covariates in the models had a
high sensitivity to the soil salinity information. The three soil salinity inversion models
could predict the degree of surface soil salinity more accurately and had a good soil salinity
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inversion ability. Among them, the best soil salinity monitoring model for the study area
was the CRSI-COSRI two-dimensional feature space model with an R2 of 0.669.
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3.3. Spatial Distribution of Soil Salinization

The Jenks natural interruption point grading method is a grading method based on
statistical theory and the principle of clustering. The principle of this method is to construct
a cluster, which ends when the variance between groups reaches the maximum and the
variance within groups reaches the minimum. Thus, the advantage of this grading method
is the ability to minimize the sum of the variances within each class [60,61]. In order to
more clearly and unambiguously distinguish the different levels of soil salinization, the
grading method was used to classify the soil salinity inversion results of the CRSI-COSRI,
CRSI-NDWI, and CRSI-GARI two-dimensional feature space inversion models for the study
area. Four salinity intervals (i.e., non-saline, mild salinization, moderate salinization, and
severe salinization) were established, and the regional salinity level breakpoint monitoring
indicators (Table 3) and salinity distribution maps (Figure 10) were obtained for the three
two-dimensional feature space soil salinity monitoring models.

Table 3. Soil salinization level breakpoint monitoring indicators.

Salinization Degrees Non-Saline Mild Salinization Moderate Salinization Severe Salinization

CRSI-COSRI >0.24, ≤0.39 >0.39, ≤0.56 >0.56, ≤0.69 >0.69, ≤1.27
CRSI-NDWI >0.10, ≤0.38 >0.38, ≤0.56 >0.56, ≤0.70 >0.70, ≤1.27
CRSI-GARI >0.13, ≤0.54 >0.54, ≤0.66 >0.66, ≤0.76 >0.76, ≤1.26
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As shown in Figure 10, the areas of moderate and severe salinization in the study
area were large, and the overall soil salinization in the study area was high. The heavily
saline areas with the highest salinity were mainly located in the northeastern part of the
study area in the oasis-desert staggered zone, in the eastern part of the oasis-peripheral
desert area, and in the southern part of the oasis-desert staggered zone. Some of these areas
such as the central part of the oasis-desert staggered zone in the study area showed more
severe salinization. The interior of the oasis was dominated by mostly non-salinized soils,
with lightly salinized areas scattered among them, and the overall soil salt content was
low. With the outward extension toward the edge of the oasis, areas of light and moderate
salinization began to appear. Overall, the salinization was higher in the eastern region
than in the western region, and there was a transition from mild salinization to moderate
salinization to heavy salinization from east to west. Taking the edge of the oasis as the
starting point, the further away from the oasis, the more salinization of the soil. Up to
the desert area in the eastern part of the study area, due to the sparse natural vegetation,
low rainfall, and excessive evaporation ratio, the salinity gradually rose to the surface
under the effect of strong evaporation, and the water desalinization remaining led to the
accumulation of soil salinity day by day, finally forming the current situation of a more
serious salinization degree. In summary, the inversion results and spatial distribution
prediction of soil salinization in the study area showed a better result. This is consistent
with the actual salinization situation in the study area observed during the fieldwork
undertaken for this study.

4. Discussion

At present, with the development of remote sensing image modeling and monitoring
technology, the construction of feature space models has been increasingly used to monitor
soil salinity in salinized areas. The two-dimensional feature space can clearly express the
distribution pattern of the factors affecting the soil salinization process. In this study, the
typical saline zone in the Weigan River–Kuqa River Delta Oasis in Xinjiang was taken as the
study area. Based on Sentinel-2 remote sensing images and the field soil survey data, after
selecting the optimal spectral index, remote sensing inversion models were constructed
using the CRSI-COSRI, CRSI-NDWI, and CRSI-GARI two-dimensional feature spaces, and
the spatial distribution pattern of the soil salinization in the study area was analyzed and
studied. The following conclusions were obtained.

1. The validation results of the two-dimensional feature space modeling showed that
the three soil salinity inversion models could accurately reproduce the degree of
the surface soil salinization. Among the models for the inversion of the surface soil
salinity in the study area, the CRSI-COSRI two-dimensional feature space monitoring
model constructed using the salinity index and composite index was the most accu-
rate, followed by the CRSI-NDWI two-dimensional feature space monitoring model
constructed using the salinity index and the water body index, and the CRSI-GARI
two-dimensional feature space monitoring model constructed using the salinity index
and the vegetation index was the least accurate.

2. The common characteristics of the spatial distribution of the salinization in the in-
version of the two-dimensional feature space model constructed in this study were
that the overall proportion of the soil salinization in the study area was large, and the
degree of salinization gradually increased from the inner oasis to the oasis–desert inter-
lacing zone to the outer oasis area. This was generally consistent with the monitoring
results of previous researchers and the results of our field sampling campaign.

Analyzing and discussing the above research results, and combining the results of
many researchers in recent years, it can be seen that the feature spatial modeling method
using various combinations of different feature parameters can be effectively applied to the
modeling of the remote sensing monitoring of soil salinity. The spatial inversion model
of the soil salinity characteristics can be established by using the principle of the spatial
characteristics of a scatter diagram by obtaining the distribution pattern of soil salinity
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through the statistical combination of the faceted information of the selected parameters.
This can effectively distinguish saline soils from non-saline soils, characterize the degree of
salinization and the distribution of soils in the study area, and provide a good reference
for monitoring the soil salinity information. The CRSI-COSRI two-dimensional feature
space constructed in this study was more accurate than the CRSI-NDWI and CRSI-GARI
two-dimensional feature spaces. The reason for this is that for the CRSI and COSRI, as a
salinity parameter and composite parameter that directly reflect the degree of salinization,
respectively, their two-dimensional feature space inversion models can better fit the typical
saline area in the Weigan River–Kuqa River Delta Oasis where the salinization is more
severe. The two-dimensional feature space model is more suitable for this study area than
the other two models composed of indirect features. The CRSI-NDWI two-dimensional
feature space can also be monitored with a high accuracy in the study area because of the
strong relationship between the soil salinity changes and the water circulation processes,
and the ease of soil salinity transfer through water changes.

Analysis of the inversion results of the model constructed in the paper shows that
the moderate and heavy salinization areas were mainly located in the desert areas on the
periphery of the oasis in the eastern part of the study area and in the oasis–desert interlacing
zone in the southwestern part of the study area. This may be due to the fact that the desert
areas on the periphery of the oasis are not heavily used for large land development, and
that the topography of the oasis in the Weigan River–Kuqa River Delta Oasis is high in
the north and low in the south. The spatial distribution of the soil salinity is directly
affected by the flow of the surface water and groundwater, and the salts gradually rise
to the surface and accumulate under the effect of strong evaporation. In contrast, due to
the limited precipitation and high evaporation in the oasis–desert interlaced zone region,
which hinders the leaching of salts to greater soil depths, soil salts from higher areas tend to
accumulate in lower areas, which also leads to waterlogging in the downstream watershed
area in the southern part of the region. In addition, the intense evaporation movement
causes the soil salts to accumulate in the surface water. Some of the more saline areas
within the oasis are due to a lack of effective engineered drainage facilities, which makes it
difficult to circulate the soil salts within the oasis, thus causing increased salinity.

5. Conclusions

The use of remote sensing monitoring technology to extract soil salinity information
has become a hot topic in the field of remote sensing research. Many scholars in China and
abroad have gradually developed new technical means and research methods to achieve
more abundant research results through the high-precision monitoring of regional soil
salinity [62–64]. In this study, three two-dimensional characteristic spatial monitoring mod-
els of soil salinity were constructed based on the soil salinity-related spectral indices. Based
on the inversion results, the spatial distribution status of soil salinity and its distribution
characteristics in the typical saline zone of the Weigan River–Kuqa River Delta Oasis were
analyzed. This provides a favorable basis for the spatial distribution and prediction of
regional salinization.

At the same time, the two-dimensional feature space model can clearly express the
distribution pattern of factors affecting the soil salinization process in the study area, and the
two-dimensional feature space scatter diagram between various soil salinization parameters
has been investigated by many scientists. Although the results of the CRSI-COSRI two-
dimensional feature space soil salinity inversion model were better for the specific arid semi-
arid oasis environment in our study area, the generalizability of the model to other regions
requires further study and evaluation. The two-dimensional feature space model can be
constructed by selecting suitable spectral feature parameters according to the different
surface morphology, climatic conditions, hydrological factors, and human intervention
measures, which can extract the soil salinization information more scientifically, accurately
and efficiently. In light of the future development path of soil salinity quantification, the
two-dimensional feature space model may no longer be able to satisfy the simultaneous
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participation of multiple factors related to soil salinity in the analysis and display. With the
gradual development of remote sensing monitoring methods, the emergence of advanced
technologies can help promote the development of soil salinity characteristic space research
to the three-dimensional or even multi-dimensional characteristic space. Efficient use and
timely innovation of remote sensing monitoring models for soil salinization are of great
practical significance to comprehensively grasp the degree of salinization in the region,
maintain the soil fertility quality and productivity level, promote sustainable agricultural
development, and enhance the comprehensive management and utilization of regional
soil salinization.
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