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Abstract: Water quality prediction is an important part of water pollution prevention and control.
Using a long short-term memory (LSTM) neural network to predict water quality can solve the
problem that comprehensive water quality models are too complex and difficult to apply. However,
as water quality time series are generally multiperiod hybrid time series, which have strongly
nonlinear and nonstationary characteristics, the prediction accuracy of LSTM for water quality is not
high. The ensemble empirical mode decomposition (EEMD) method can decompose the multiperiod
hybrid water quality time series into several simpler single-period components. To improve the
accuracy of surface water quality prediction, a water quality prediction model based on EEMD–LSTM
was developed in this paper. The water quality time series was first decomposed into several intrinsic
mode function components and one residual item, and then these components were used as the
input of LSTM to predict water quality. The model was trained and validated using four water
quality parameters (NH3-N, pH, DO, CODMn) collected from the Xiaofu River and compared with
the results of a single LSTM. During the validation period, the R2 values when using LSTM for
NH3-N, pH, DO and CODMn were 0.567, 0.657, 0.817 and 0.693, respectively, and the R2 values when
using EEMD–LSTM for NH3-N, pH, DO and CODMn were 0.924, 0.965, 0.961 and 0.936, respectively.
The results show that the developed model outperforms the single LSTM model in various evaluation
indicators and greatly improves the model performance in terms of the hysteresis problem. The
EEMD–LSTM model has high prediction accuracy and strong generalization ability, and further
development may be valuable.

Keywords: water quality prediction; ensemble empirical mode decomposition; deep learning; long
short-term memory network; Xiaofu River

1. Introduction

With the rapid development of the economy over the past few decades, many water
bodies in China have been seriously polluted, which affects people’s quality of life and
the safe water quality level [1,2]. Water environmental management and protection have
gradually become the focus of attention. Water quality prediction is an important link in
the management and protection of aquatic environments. Scientific and accurate water
quality prediction can help to understand the changing laws and development trends of
the water environment, provide technical support for water environmental protection and
water pollution prevention and control, and improve the decision-making initiatives of
management departments [3,4].

Many researchers have used comprehensive water quality models to simulate and
predict water quality [5–9]. At present, the comprehensive water quality models that have
been widely used in water quality simulation and water environment management include
the Water Quality Analysis Simulation Program (WASP) [10], QUAL series model [11],
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the Environmental Fluid Dynamics Code (EFDC) [7], Delft3D model [12], etc. However,
there are many water quality parameters in comprehensive water quality models, and
a large amount of measured water quality data is needed to set initial conditions and
boundary conditions during simulation. Comprehensive water quality models are too
complex and difficult to apply, and they are always data-intensive and time-consuming
to develop [13,14]. In addition, the use of complex models in the absence of data reduces
the reliability of water quality prediction. Therefore, although water quality models can
simulate the complex dynamics of water quality variables well, water quality prediction
remains difficult.

Using deep learning methods for water quality prediction can solve the problem of
difficult application of comprehensive water quality models, as deep learning methods
can effectively establish relationships between water quality parameters without complex
boundaries and initial conditions [3]. Deep learning methods have been widely used
in engineering problems [15–17]. In recent years, artificial intelligence models, such as
artificial neural networks (ANNs), have gradually been applied to hydrological process
analysis [18–20] and water quality prediction [7,21,22]. However, sequential order infor-
mation is not reflected in the ANN training process, and ANNs do not perform well in
nonlinear simulations [23]. To overcome the shortcomings of ANNs, researchers have
proposed recurrent neural networks (RNNs) and long short-term memory (LSTM) net-
works [24,25]. LSTM is an improved network structure proposed on the theoretical basis
of RNNs. The network effectively overcomes the long-term dependence and easy gradi-
ent disappearance problems in RNNs and has better long-term and short-term memory
function. Since LSTM was proposed, some researchers have applied it to the field of water
quality modeling. For example, Zheng et al. [26] used LSTM to effectively predict the
concentration of chlorophyll-a and the outbreak of harmful algal blooms in a water body
and provide another method for water resource management. Liang et al. [3] found that
LSTM could achieve the prediction accuracy of a comprehensive water quality model (such
as EFDC). When the types of water quality data available are relatively simple, LSTM can
be an effective tool for water quality prediction.

However, due to the influence of hydrometeorological factors and human factors,
water quality time series are nonlinear and nonstationary, so the prediction accuracy of
LSTM for surface water quality is not high [23,27,28]. Surface water quality time series
are generally multiperiod hybrid time series. According to the different periods, the
water quality time series can be divided into high-frequency components (periods of
1–10 days) and low-frequency components (periods > 10 days). The main factors affecting
the high-frequency components are sudden pollution and discontinuous nonpoint source
pollution. These factors are closely related to the physical and chemical properties of
pollutants, water quality, temperature, hydraulic condition and other factors [29]. The
changing trend of these factors is large, which has a great influence on the accuracy of
water quality prediction. The main factors affecting the low-frequency components are
climate change, constant point source pollution, endogenous pollution and so on. The
changing trend of these factors is relatively stable. Therefore, the main difficulty in water
quality prediction is accurately predicting the high-frequency components in water quality
time series. However, in existing studies, separately predicting the high-frequency and
low-frequency components when using the LSTM model for water quality prediction has
rarely been considered, and the fluctuation term of the water quality series cannot be
accurately predicted. Signal decomposition techniques can decompose the original water
quality time series into a set of components with specific meanings and provide more
detailed information. When predicting water quality, we can focus on high-frequency
components to enhance the details and reduce the impact of interference information with
signal decomposition techniques. Generally, the residence time of pollutants in water is
5–10 days. When the period of decomposed components is consistent with the degradation
cycle of pollutants, the prediction accuracy of LSTM is likely to be improved. To overcome
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the limitations of a single LSTM method, LSTM can be combined with signal decomposition
techniques to improve the accuracy of water quality prediction.

Among signal decomposition algorithms, empirical mode decomposition (EMD) is
widely used due to its orthogonality and convergence. It is easier to apply than wavelet
decomposition. Huang et al. [30] proposed EMD, a data-adaptive time frequency analy-
sis method for nonlinear and nonstationary time series. EMD decomposes the original
sequence into multiple intrinsic mode functions (IMFs) and residuals to reduce the complex-
ity of the sequence. However, EMD has limitations such as modal confounding and end
effects. Zhaohua and Norden [31] proposed an improved empirical mode decomposition
algorithm, EEMD, which addressed the modal confounding problem of EMD. EEMD can
effectively reflect the nature of the original signal and has been widely used in many fields
in recent years [23]. For example, Wang et al. [32] used EEMD to extract the oscillation
period and the trend of runoff series and analyzed the relationship between runoff and
climate phenomenon indicators. Niu et al. [33] used EEMD to decompose the original
monthly flow series, combined the improved gravitational search algorithm (IGSA) and
extreme learning machine (ELM) for hydrological prediction, and successfully predicted
the monthly runoff of the Three Gorges. Huan et al. [34] developed a combined prediction
model based on EEMD and a least squares support vector machine (LSSVM), which had
high prediction accuracy and strong generalization ability for dissolved oxygen (DO). From
previous research, we know that EEMD can decompose the original water quality series
into components arranged from high frequency to low frequency, and the time period of
the high-frequency components is likely to be consistent with the degradation cycle of
pollutants. Therefore, EEMD is suitable for decomposing water quality series into several
components for water quality prediction using LSTM separately.

Based on the above, the main objectives of this study are: (1) to acquire better prediction
performance of the surface water quality; (2) to develop a hybrid water quality prediction
model based on the ensemble empirical mode decomposition method and long short-term
memory neural network; (3) to compare the performance of the hybrid model and the single
LSTM model, test and verify the effectiveness of the hybrid model. The original water
quality time series is decomposed into high-frequency and low-frequency components
by EEMD, and the details in the time series are enlarged so that the fluctuation degree of
the subsequence is more stable than that of the original series, which greatly reduces the
data complexity. Then, each subsequence is predicted by LSTM separately to focus on the
high-frequency components that have a greater impact on water quality changes. Finally,
the prediction results of different components are aggregated to obtain the water quality
prediction results.

2. Study Area and Data
2.1. Study Area

The study area selected for this research is part of the Xiaofu River in Shandong
Province, China (Figure 1). The study area is a temperate monsoon climate zone, with the
same period of rain and heat, strong seasonal rainfall, and approximately 70% of annual
precipitation falls during the flood season (June to September). The Xiaofu River is a
first-class tributary on the right bank of the Xiaoqing River [35]. The total length of the
river is 136 km. The average gradient of the river is 1.8/1000. The Xiaofu River basin is
located at 36◦25′N~37◦07′ N, 117◦42′E~118◦08′ E. The watershed is 40 km wide from east
to west and 76 km long from north to south, and the watershed area is 1705 km2. The main
tributaries are the Fanyang River, Banyang River, Mansi River, Gan River, Zhulong West
River and others [36].
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Figure 1. Overview map of the study area.

Since the 1980s, the Xiaofu River has been used as a sewage channel for factories,
mines, enterprises, and residents along the river. In addition, rainfall is relatively low,
so the water pollution of the Xiaofu River is significant [37]. The lack of water resources
upstream of the Xiaofu River and the impact of sluice gates and dam impoundments have
led to poor water connectivity, poor self-purification ability, and fragile aquatic ecosystems.
In recent years, a series of water environment improvement projects have been carried out
in the Xiaofu River basin, and the quality of water resources has improved, but the overall
situation of the water environment is still not satisfactory. Predicting the water quality of
the Xiaofu River can help design water environmental treatment plans.

2.2. Data Sources

In this paper, water quality data from the Zhangzhouluqiao Provincial Control Station
along the Xiaofu River (36◦48′19′ ′ N, 117◦56′08′ ′ E) are used as the research object. The
quality of the water collected from this station is poor, and there is great room for im-
provement. The main water quality indicators monitored are based on the Environmental
Quality Standards for Surface Water (GB3838-2002) and include chemical oxygen demand
(COD), ammonia nitrogen (NH3-N), permanganate index (CODMn), pH, dissolved oxygen
(DO), electrical conductivity, turbidity, and water temperature. The data were collected
every 24 h from 13 April 2019, to 12 April 2021. There are a total of 1096 groups of data,
which fully reflect the periodic changes in water quality. According to the water quality
of the Xiaofu River, pH, DO, CODMn and NH3-N were selected in this paper as the water
quality prediction indicators. Statistical analysis was performed on the data series to check
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for missing data. The statistical analysis results are shown in Table 1, including average
value, standard deviation value, maximum value, minimum value, and number of missing
data. The values of water quality parameters meet the general water quality standards.
The discrete degree of the pH and NH3-N time series is small. The numbers of missing
data in the water quality time series are very few.

Table 1. Statistical descriptions of data series.

Variable
Name Description Average Standard

Deviation
Maximum

Value
Minimum

Value
Number of

Missing Data

pH Pondus hydrogenii 7.912 0.437 8.83 6.02 0

DO Dissolved oxygen
(mg/L) 8.779 2.379 18.9 0.5 0

CODMn
Permanganate index

(mg/L) 4.327 1.149 9 1.82 1

NH3-N Ammonia nitrogen
(mg/L) 0.472 0.415 5.16 0.028 1

3. Method

The prediction accuracy of LSTM for multiperiod hybrid water quality time series is
not high. To improve the accuracy of LSTM in predicting water quality, a surface water
quality prediction model based on EEMD–LSTM is developed. The flowchart for the
EEMD–LSTM prediction model is shown in Figure 2.

Figure 2. A schematic flowchart for EEMD–LSTM.

The EEMD–LSTM consists of the following steps.
Step 1: Data preprocessing. The min-max normalization (MMN) method is used

to normalize the original water quality series [38]. MMN can accelerate the speed of
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the gradient descent method to find the optimal solution and improve the accuracy of
the prediction model. Then, the isolation forest algorithm is used to identify abnormal
fluctuations, and the input and output samples are determined according to the selected
sliding time window width.

Step 2: Series decomposition. After the preprocessing of the original water quality
time series, EEMD is used to decompose the series into multiple components that contain
high-frequency and low-frequency components. The high-frequency components mainly
reflect the influence of sudden pollution and discontinuous nonpoint source pollution,
and the low-frequency components mainly reflect the physicochemical properties and
long-term trend of surface water quality.

Step 3: Period calculation. The fast Fourier transform (FFT) method can reflect the
periodic characteristics of signals that cannot be extracted in the time domain from the
frequency domain and is a commonly used signal analysis method [39]. The compo-
nents that have a great impact on water quality changes are identified according to the
significant period.

Step 4: Independent LSTM submodels are then developed for each decomposed
component. When training the LSTM submodels, the mean squared error (MSE) of the
training dataset is chosen as a criterion to calibrate the model, and the Adam algorithm is
chosen as the optimizer. Finally, the prediction results of each submodel are aggregated to
obtain the final water quality prediction results.

3.1. Ensemble Empirical Mode Decomposition (EEMD)

Huang et al. [30] proposed a new analysis and preprocessing method for nonlinear
signals, which is referred to as empirical mode decomposition. This method is suitable for
dealing with nonlinear and nonstationary time series. The EMD must obey the following
two rules at the same time: (1) all the extrema and zero crossing numbers must be the same
or different at most by one; (2) all upper and lower envelopes must be locally symmetrical
along the time axis.

To solve the problem of mode mixing (i.e., decomposed IMFs that contain multiple fre-
quencies), Zhaohua and Norden [31] proposed an ensemble empirical mode decomposition
method. EEMD utilizes the sensitivity of the signal-to-noise, first adding Gaussian white
noise to the original signal to match the signals of different frequencies to the corresponding
time scale and then implementing the EMD process.

Given an original signal x(t), the specific process of EEMD is as follows:
(1) Add Gaussian white noise to the original signal, ni(t) ∼ N

(
0, σ2).

xi(t) = x(t)− ni(t) (1)

where i represents the number of times Gaussian white noise is added.
(2) Decompose the mixed signal xi(t) by EMD into IMFs Ci

j(t), (j = 1, 2, . . . , n) and

residual ri(t).
xi(t) = ∑n

j=1 Ci
j(t) + ri(t) (2)

where Ci
j(t) represents the jth IMF component obtained by decomposing the ith

mixed signal.
(3) Repeat the above steps N times with different Gaussian white noise each time and

find the corresponding IMFs.
(4) Average the summation of corresponding decomposed IMFs N times to eliminate

the influence of the added white noise on the original signal.

Cj(t) =
1
N ∑n

j=1 Ci
j(t) (3)

where Ci
j(t) represents the jth IMF component.
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Finally, after being decomposed by EEMD, the original signal x(t) can be expressed as:

x(t) = ∑N
j=1 cj(t) + r(t), i = 1, 2, . . . , N (4)

3.2. Long Short-Term Memory (LSTM)

A long short-term memory network is an improved network structure proposed on
the basis of RNNs that effectively overcomes the long-term dependence problem and
gradient vanishing problem of RNNs [24]. LSTM is suitable for processing and predicting
events with long time intervals and delays in time series [23]. LSTM introduces gates,
which can selectively remove or add information. The LSTM cell mainly includes four gate
structures: forget gate, input gate, update gate and output gate [24]. The function of the
forget gate is to forget the irrelevant state information of the previous moment. The input
gate determines what information can enter the memory cell at the current moment. The
output gate determines the output of the complex network. The memory unit of LSTM can
use these three gate structures to screen long-term and short-term memory information.
The general architecture of the LSTM cell is shown in Figure 3.

Figure 3. LSTM memory cell unit structure [24].

The key to LSTM is the transmission of the cell state, which controls the information
passed into the network through the combination of three gates and determines the cell
state. In Figure 3, Xt represents the input of the network at time t, ht represents the output
of the network at time t, and Ct represents the cell state at time t.

ft = σ
(

W f ∗ [ht−1, Xt] + b f

)
(5)

The operation ‘*’ represents the elementwise multiplication of the vectors.

it = σ(Wi ∗ [ht−1, Xt] + bi) (6)

ot = σ(Wo ∗ [ht−1, Xt] + bo) (7)

∼
Ct = tanh(Wc ∗ [ht−1, Xt] + bc) (8)

Ct = ft ∗ Ct−1 + it ∗
∼
Ct (9)

where σ is the logistic sigmoid function (σ(x) = 1
1+e−x ), W f , Wi, Wo and Wc represent

the weight matrices of the forget gate, the input gate, the output gate and the tanh layer,
respectively, b f , bi, bo and bc represent the bias vectors of the forget gate, the input gate, the

output gate and the tanh layer (tanh(x) = 1−e−2x

1+e−x ), respectively, ft, it and ot represent the
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output of the forget gate, the input gate and the output gate at time t, respectively, and
∼
Ct

is an update vector for the cell state.
Finally, the output ht of the memory cell is obtained through the hyperbolic tangent

activation function tanh.
ht = Ot ∗ tanh (Ct) (10)

LSTM is suitable for processing and predicting time series data due to its good ability
to deal with the long-term dependence problem on time series data and the problem of
gradient disappearance.

3.3. Data Preprocessing
3.3.1. Data Normalization

Data normalization is an important data preprocessing step that can accelerate the
speed of the gradient descent method to find the optimal solution and improve the accuracy
of the forecasting model. A large amount of unscaled data will slow the learning speed of
the artificial neural network and the convergence speed of the model. Since LSTM is very
sensitive to fluctuations in time series data and to capturing the trends in time series data,
the data need to be normalized before being fed to the neural network [40]. Original data
are normalized using the min-max normalization (MMN) method, which linearly scales
unnormalized data to predefined lower and upper bounds [38]. The equation is given
as follows:

xn =
x− xmin

xmax − xmin
(11)

where xn represents the normalized time series data, x represents the original time series
data, xmin represents the minimum value of the time series data, and xmax represents the
maximum value of the time series data. The min-max normalization method scales the
data between 0 and 1.

3.3.2. Outlier Detection

The real-time monitoring data of water quality are usually unprocessed raw data.
Weather factors, such as strong wind and heavy rainfall, may affect the results of real-
time water quality monitoring, and problems, such as abnormal monitoring equipment or
manual input errors, will lead to missing values, abnormal values or noise in the original
data. Abnormal values will affect the accuracy of the model prediction. Certain methods
are used to identify these outliers and deal with them. The characteristics of abnormal data
are as follows: (1) they represent a small proportion of the sample data; and (2) they have
significantly different properties compared with normal sample data.

Liu et al. [41] proposed the isolation forest algorithm and applied it to data outlier
detection. The isolation forest algorithm has a linear time complexity and high accuracy
and is a neural network algorithm that meets the requirements of big data processing. Any
outlier detection method requires an anomaly score, and the calculation equation of the
search path length of the isolation forest is as follows:

c(n) = 2H(n− 1)− (
2(n− 1)

n
) (12)

where n is the number of samples, H(i) is the harmonic number and can be estimated by
ln(i) + ξ (Euler’s constant), and c(n) is the average path length of the binary search tree.

By normalizing the length of the isolated binary tree, a number between 0 and 1 can be
obtained as the abnormal score of the detected sample. The anomaly score s of an instance
x is defined as:

s(x, n) = 2
E(h(x))

c(n) (13)

where h(x) represents the path length from the root node to the x node, and E(h(x)) is
the average of the path lengths of all the isolated trees in the isolated forest for the sample
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point x. When the anomaly score is larger, the sample point is more likely to be an outlier.
Based on the anomaly score s, we can make the following assessments [41]:

(1) If the anomaly score is very close to 1, then the data are definitely anomalies.
(2) If the anomaly score is much smaller than 0.5, then it is safe to regard the data as

normal instances.
(3) If all the anomaly scores are approximately 0.5, then there are no distinct outliers in

the sample.

3.4. Performance Evaluation

To objectively and comprehensively evaluate the prediction performance of each
model, four different evaluation indicators are selected: root mean square error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE) and determination
coefficient (R2). RMSE is sensitive to errors that are evident in the experimental data. MAE
is the average value of absolute error and can truly reflect the state of the model’s error in
prediction. MAPE is the expected value of the absolute error and percentage of the true
value. The values of RMSE, MAE, and MAPE are all from 0 to +∞. The smaller the RMSE,
MAE, and MAEP, the more accurate the prediction result and the better the model effect.
The value of the determination coefficient R2 is between 0 and 1, and the closer to 1 the
value is, the better the model’s prediction ability of the regression effect. Generally, if the
coefficient of determination exceeds 0.8, the model is considered to have high goodness of
fit. The specific calculation equation of each loss function is as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi − y∗i

)2 (14)

MAE =
1
N

N

∑
i=1
|y i − y∗i | (15)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − y∗i
yi

∣∣∣∣× 100% (16)

R2 = 1− ∑N
i=1
(
yi − y∗i

)2

∑N
i=1

(
yi −

−
yi

)2 (17)

where N is the number of samples, yi is the measured value, y∗i is the predicted value, and
−
yi is the average value of the measured data.

The values of RMSE, MSE, and MAPE are not of the same order of magnitude for
different water quality parameters. Therefore, we primarily use R2 as the main criterion
for model selection, with higher values indicating better prediction ability. Additionally,
considering other performance evaluators, such as RMSE, MAE, and MAPE, can provide a
more comprehensive evaluation of the model’s accuracy and prediction performance.

4. Results
4.1. Data Preprocessing

Since there were few missing data (<10%) in the water quality time series, the mean
smoothing method was used to fill in the missing part of the data; the missing data were
replaced by the average value of the two adjacent data on the left and right of the missing
data. The min-max normalization method was used to convert the original values into
values between [0, 1]. The normalization results are shown in Figure 4. This figure shows
that the water quality parameters have apparent fluctuations.
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Figure 4. The normalization results of the water quality data: (a) pH, (b) DO, (c) CODMn, and
(d) NH3-N.

The isolated forest algorithm described above was used to identify abnormal fluctu-
ations, such as some data jumps in the original series of water quality parameters (the
maximum abnormal sample ratio was set to 0.025), and the outliers were marked. The
outlier identification results are shown in Figure 5. Considering the small number of
outliers and the large difference between an outlier and its adjacent values, outliers were
directly removed from the original series, and the average value of the data on both sides
of an outlier was used to fill missing values. This figure shows that compared with the
original series, obvious outliers in the denoised water quality time series were removed.
However, this time series is still complex and has obvious nonstationary and nonlinear
characteristics from the overall trend. Measures are still needed to reduce the complexity
of the water quality time series.

Figure 5. The outlier detection results of (a) pH, (b) DO, (c) CODMn, and (d) NH3-N.
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4.2. EEMD Decomposition Results

After data preprocessing, the water quality time series was decomposed by the EEMD
method. The ensemble number was set to 100, and the standard deviation of Gaussian
white noise ni(t) was 0.05 [42,43]. The EEMD results of each water quality parameter are
shown in Figure 6. The NH3-N, pH and DO time series were decomposed into eight IMFs
and one residual item Res and arranged in the order of frequency from high to low. The
CODMn time series was decomposed into seven IMFs and one residual item Res.

Figure 6. Decomposition results of the (a) NH3-N, (b) pH, (c) DO, and (d) CODMn time series.

The first four IMF components fluctuate greatly, among which IMF1 has the strongest
nonlinearity, the largest amplitude and the highest frequency. The residual item can repre-
sent the long-term trend of the time series [42,43]. As illustrated in Figure 6, the residual
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items of the NH3-N and CODMn time series have obvious declining trends, indicating that
the water environmental control measures of the Xiaofu River achieved some results in
recent years.

In this paper, the FFT method was used to find the significant period of each IMF
component, and the period with the largest autocorrelation coefficient was used as the
period of the time series. The residual item (Res) represents the long-term trend of the water
quality time series, so Res is not calculated in the period extraction of each IMF component
in the following. The period identification results of IMF components for different water
quality parameters are shown in Table 2.

Table 2. The period of IMF components for water quality parameters.

Variable
Name

Period (Day)
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

NH3-N 3 7 38 41 152 356 534 534
pH 3 7 22 53 89 356 534 534
DO 5 9 20 42 97 356 356 534

CODMn 4 8 12 59 66 356 356 -

Table 2 shows that the period of the first two IMF components is 3–9 days, which
corresponds to the number of days that the pollutants are naturally degraded in the water
body. Therefore, IMF1 and IMF2 may represent the fluctuation of water quality due to
water affected by sudden pollution, discontinuous nonpoint source pollution and so on.
IMF3–IMF5 mainly reflect the seasonal changes in water quality, and IMF6–IMF8 mainly
reflect the interannual changes in water quality. The seasonal and interannual changes
in the water quality series are relatively stable, but the fluctuations caused by sudden
pollution and discontinuous nonpoint source pollution are large and complex. Therefore, to
obtain more accurate water quality prediction results, it is necessary to accurately simulate
the high-frequency components. The EEMD method is able to separate the high-frequency
components, enhance the details and transform nonlinear water quality series into several
relatively simple and stationary time series that help improve prediction results.

4.3. Model Training and Parameter Optimization

In this paper, we chose the MSE of the training dataset as a criterion to calibrate the
model and chose the Adam algorithm as the optimizer. The Adam algorithm can solve
the problems of a disappearing learning rate and slow convergence property of the error
term. It can optimize the performance of the model and has lower running costs with high
computational efficiency and less running memory [44]. The Adam algorithm was adopted
to train the model multiple times and update the parameters continuously. When the error
between the actual value and the predicted value meets the accuracy requirements, the
model was saved. The hyperparameters of the LSTM model were finally determined, as
shown in Table 3. The number of neurons was 50, the number of epochs for each training
was 100, and the batch size was 16. In general, the larger the batch size, the faster the
training. However, if the batch size is too large, the network easily converges to the local
optimum [45].

Table 3. The optimal parameters and structure of LSTM.

Parameter Name Number

epochs 100
batch size 16

number of LSTM layers 1
number of neurons in the input layer 1

number of neurons in the hidden layer 50
number of neurons in the output layer 1
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Different sliding time window widths n impact the output of the model. In this paper,
the water quality time series of the corresponding time width was divided from the dataset
as the input sample, and one time step water quality value after the sliding window was
used as the output sample. Using n = 4 as an example, its dynamic modeling process is
shown in Figure 7.

Figure 7. Dynamic modeling process.

To improve the prediction accuracy of the model, the model performance is compared
under different sliding time window widths, and the results are shown in Table 4. This
result illustrates that the optimal sliding time window widths for NH3-N, pH, DO and
CODMn are 5, 5, 8 and 7, respectively.

Table 4. The LSTM model performance under different sliding time window widths.

Water Quality
Indicator

Sliding Time
Window Width

RMSE
(mg/L)

MAE
(mg/L)

MAPE
(%) R2

NH3-N

4 0.096 0.071 67.387 0.423
5 0.089 0.057 31.901 0.783
6 0.089 0.060 42.082 0.727
7 0.089 0.059 39.477 0.746
8 0.093 0.067 60.726 0.545

pH

4 0.080 0.049 1.787 0.656
5 0.078 0.045 1.425 0.741
6 0.078 0.046 1.521 0.722
7 0.078 0.046 1.558 0.721
8 0.087 0.059 1.908 0.656

DO

4 0.590 0.420 7.831 0.769
5 0.587 0.424 7.600 0.772
6 0.594 0.434 7.741 0.763
7 0.591 0.429 7.630 0.769
8 0.588 0.422 7.628 0.777

CODMn

4 0.246 0.167 11.041 0.748
5 0.247 0.168 12.646 0.724
6 0.244 0.165 11.538 0.743
7 0.249 0.170 10.615 0.752
8 0.243 0.165 11.701 0.744

4.4. Water Quality Prediction by EEMD–LSTM

The water quality data were divided into a training period and validation period; the
first 85% of the data were from the training period, and the last 15% of the data were from
the validation period. After the model is trained, the learning situation of the model can
be judged by the loss curve. If the loss curve declines smoothly or continues to decline
at the end of the training period, it indicates that there is an underfitting phenomenon.
If the loss curve continues to decline, but begins to rise at a certain point or there is an
upward trend in the fluctuation, it means that there is an overfitting phenomenon. When
the loss values of the model in the training period and the validation period decrease and
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become stable at the same time, the model training effect is good and can be used for water
quality prediction.

To fully verify the performance of EEMD–LSTM, ANN, LSTM, and EEMD–LSTM
were used to predict water quality parameters using the same data as input. The prediction
results of ANN, LSTM, and EEMD–LSTM are shown in Figure 8, and their performance
metrics results are listed in Table 5. It can be seen from Figure 8 that the performance of
LSTM and EEMD–LSTM is better than the performance of ANN in water quality prediction.
Although LSTM can predict the trend of water quality changes, the error between observed
and predicted values is large, and the prediction accuracy of details and jump points is
insufficient. EEMD–LSTM can more accurately predict the detailed changes and greatly
improve the model performance in terms of the hysteresis problem. It is also evident in
Table 5 that the EEMD–LSTM model outperforms ANN and LSTM in water quality time
series prediction. Compared with LSTM, the prediction accuracy of EEMD–LSTM on the
four evaluation indicators of RMSE, MAE, MAPE and R2 has improved. The RMSE, MAE,
and MAPE of NH3-N decreased by 80.0%, 82.6%, and 93.7%, respectively, and R2 increased
by 63.0%. The RMSE, MAE, and MAPE of pH decreased by 71.3%, 74.3%, and 82.4%,
respectively, and R2 increased by 46.9%. The RMSE, MAE, and MAPE of DO decreased by
78.2%, 80.4%, and 78.8%, respectively, and R2 increased by 17.6%. The RMSE, MAE, and
MAPE of CODMn decreased by 69.8%, 73.9%, and 84.1%, respectively, and R2 increased by
35.1%. These indicators illustrate that the EEMD method can better extract essential features
of the water quality time series and reduce the interference of random factors. They also
indicate that the prediction performance of the model is greatly improved with the EEMD
method. Figure 8 also shows that compared with the single LSTM model, the predicted
values of EEMD–LSTM are closer to the observed values in the extreme value prediction.

Figure 8. Cont.
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Figure 8. The ANN, LSTM, and EEMD–LSTM prediction results of (a) NH3-N, (b) pH, (c) DO, and
(d) CODMn.

Table 5. Model performance comparison of ANN, LSTM, and EEMD–LSTM.

Model
Water Quality

Indicator

Training Validation

RMSE
(mg/L)

MAE
(mg/L)

MAPE
(%) R2 RMSE

(mg/L)
MAE

(mg/L)
MAPE

(%) R2

ANN

NH3-N 0.268 0.148 51.028 0.615 0.018 0.017 89.344 0.315
pH 0.167 0.107 1.393 0.851 0.026 0.017 2.106 0.627
DO 1.311 0.889 13.245 0.713 0.031 0.022 5.022 0.757

CODMn 0.587 0.426 8.835 0.703 0.062 0.039 19.208 0.462

LSTM

NH3-N 0.169 0.111 37.694 0.754 0.110 0.109 50.381 0.567
pH 0.136 0.080 1.032 0.872 0.122 0.113 1.554 0.657
DO 1.151 0.826 10.807 0.733 1.027 0.820 4.685 0.817

CODMn 0.457 0.314 7.239 0.811 0.440 0.326 13.990 0.693

EEMD–LSTM

NH3-N 0.077 0.050 5.419 0.950 0.022 0.019 3.150 0.924
pH 0.047 0.032 0.321 0.988 0.035 0.029 0.273 0.965
DO 0.531 0.355 2.245 0.945 0.224 0.161 0.994 0.961

CODMn 0.189 0.131 2.756 0.969 0.133 0.085 2.219 0.936

A scatterplot of the observed and predicted values of the three models during the
validation period is shown in Figure 9. The scatterplot intuitively shows that the EEMD–
LSTM prediction results are closer to the observed value and have better performance.
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Figure 9. Scatterplot of the observed and predicted values by ANN, LSTM, and EEMD–LSTM in the
validation period. (a–d) represent the observed and predicted values of NH3-N, pH, DO, CODMn by
ANN, respectively. (e–h) represent the observed and predicted values of NH3-N, pH, DO, CODMn

by LSTM, respectively. (i–l) represent the observed and predicted values of NH3-N, pH, DO, CODMn

by EEMD–LSTM, respectively.

In addition, the reason why EEMD–LSTM improves water quality prediction perfor-
mance is further discussed. There are seasonal changes, interannual changes and short-term
fluctuations in surface water quality parameters. The subsequences obtained by decom-
posing the original water quality sequence can more clearly show the seasonal periodic
changes, interannual periodic changes and short-term fluctuations and reduce the com-
plexity of the input data, which is beneficial to the learning and training of the model.
At the same time, the high-frequency components IMF1 and IMF2 decomposed by the
EEMD method can reflect the fluctuations in the water quality series caused by sudden
pollution, and the prediction of these components separately can effectively improve the
prediction accuracy.

5. Discussion

LSTM has achieved high accuracy prediction results in applications of many fields.
However, the prediction accuracy of water quality is not satisfactory, as water quality series
are generally multiperiod hybrid time series that have strong nonlinear and nonstationary
characteristics, and LSTM is not suitable for predicting multiperiod hybrid time series. In
this paper, we introduced the EEMD method to decompose the water quality time series
into several simpler single-period components. The EEMD method can decompose the
original water quality series into some components arranged from high frequency to low
frequency. Among the IMFs decomposed by EEMD, IMF1 and IMF2 reflect the changing
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process of sudden pollutants discharged into surface water, and these components have
great impacts on the accuracy of water quality prediction. The main difficulty in water
quality prediction is accurately predicting the extreme water quality time series values.
The extreme values are mainly affected by sudden pollution and dis-continuous nonpoint
source pollution. We can focus on IMF1 and IMF2 to enhance the details and reduce the
impact of interference information. Predicting these high-frequency components separately
can improve the accuracy in predicting extreme values and the overall performance of the
model. Therefore, the predicted values of EEMD–LSTM are closer to the observed values
in the extreme value prediction, and the whole prediction accuracy of the EEMD–LSTM
model is also improved compared with the single LSTM model.

The EEMD–LSTM model achieved good results in the time series prediction of water
quality. The MAE, MAPE and RMSE of EEMD–LSTM for DO are 0.161, 0.994 and 0.224,
respectively. The performance predictors of other water quality parameters also achieved
high accuracy. Li et al. [46] developed a multimodal water quality prediction model called
MSVR and proved that the combination of EEMD and SVR could achieve better prediction
performance. The MAE, MAPE and RMSE of MSVR for DO were 0.175, 2.153 and 0.228,
respectively [46]. This shows that EEMD–LSTM is reliable in predicting water quality.
Limited by time and effort, only the performance of the hybrid model EEMD–LSTM was
studied in this paper for water quality prediction. Subsequently, other methods to improve
the performance of LSTM will be considered.

The influence of different sliding time window widths on the prediction accuracy is
also discussed in this paper. The optimal sliding time window width of different water
quality parameters is different, which is related to the migration, transformation and
degradation rates of pollutants in water. The degradation coefficients of CODMn and NH3-
N in rivers are 0.08–0.15 and 0.2–0.44 day−1, respectively [47]. Therefore, the residence
times of CODMn and NH3-N in water are 6.7–12.5 and 2.3–5 days. The optimal sliding
time window widths for NH3-N, pH, DO and CODMn are 5, 5, 8 and 7, respectively. This
indicates that the optimal sliding time window width is consistent with the degradation
time of pollutants in water. This is because after pollutants are discharged into the water,
the concentration of pollutants at any point in the water increases with time and then
tends to balance to the equilibrium value. As the number of predicted time steps increases,
the prediction accuracy of the model will decline, so the EEMD–LSTM model can only
predict short time steps at present. Water quality prediction over long time steps is still a
challenging issue.

6. Conclusions

To achieve highly accurate water quality prediction results, a water quality prediction
model based on the combination of the EEMD method and LSTM network is developed
in this paper. The water quality monitoring data of the Xiaofu River are used as a sample
for verification, and the four water quality parameters (NH3-N, pH, DO, CODMn) of the
Xiaofu River are predicted. The following conclusions were drawn from this study:

(1) The EEMD method can decompose time series into components arranged from high
frequency to low frequency. In this study, it is used to decompose the water quality
time series to obtain several single-period components, which can effectively reduce
the complexity and nonlinearity of the original time series. Among all components,
the high-frequency components have the greatest impact on the accuracy of water
quality prediction. Predicting the high-frequency components and the low-frequency
components separately when using LSTM can significantly improve model accuracy.

(2) Compared with LSTM, EEMD–LSTM significantly improves the accuracy of water
quality prediction and greatly improves the model performance in terms of the hys-
teresis problem. During the validation period, the RMSE, MAE, MAPE and R2 of
EEMD–LSTM for NH3-N were 0.022 mg/L, 0.019 mg/L, 3.150% and 0.924, respec-
tively. The RMSE, MAE, MAPE and R2 of EEMD-LSTM for pH were 0.035 mg/L,
0.029 mg/L, 0.273% and 0.965, respectively. The RMSE, MAE, MAPE and R2 of
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EEMD-LSTM for DO were 0.224 mg/L, 0.161 mg/L, 0.994% and 0.961, respectively.
The RMSE, MAE, MAPE and R2 of the EEMD-LSTM for CODMn were 0.133 mg/L,
0.085 mg/L, 2.219% and 0.936, respectively. This shows that EEMD–LSTM has high
prediction accuracy and strong generalization ability. In addition, the predicted values
of EEMD–LSTM are closer to the observed values in the extreme value prediction.

In summary, EEMD–LSTM can be an effective tool for water quality prediction. The
EEMD–LSTM model can quickly and accurately predict water quality changes, which can
reflect the trend of future water quality changes and can provide a basis for formulating
water environment governance measures. In future work, model structure optimization
and other hybrid models can be tried. In addition, the spatial and temporal relationships
between upstream and downstream are not considered in water quality prediction. This
can be added to the developed algorithm in future work.
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