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Abstract: Mapping high-spatial-resolution surface water bodies in urban and suburban areas is
crucial in understanding the spatial distribution of surface water. Although Sentinel-2 images are
popular in mapping water bodies, they are impacted by the mixed-pixel problem. Sub-pixel mapping
can predict finer-spatial-resolution maps from the input remote sensing image and reduce the mixed-
pixel problem to a great extent. This study proposes a sub-pixel surface water mapping method based
on morphological dilation and erosion operations and the Markov random field (DE_MRF) to predict
a 2 m resolution surface water map for heterogeneous regions from Sentinel-2 imagery. DE_MRF first
segments the normalized difference water index image to extract water pixels and then detects the
mixed pixels by using combined morphological dilation and erosion operations. For the mixed pixels,
DE_MRF considers the intra-pixel spectral variability by extracting multiple water endmembers and
multiple land endmembers within a local window to generate the water fraction images through
spectral unmixing. DE_MRF was evaluated in the Jinshui Basin, China. The results suggested that
DE_MRF generated a lower commission error rate for water pixels compared to the comparison
methods. Because DE_MRF considers the intra-class spectral variabilities in the unmixing, it is better
in mapping sub-pixel water distribution in heterogeneous regions where different water bodies with
distinct spectral reflectance are present.

Keywords: sub-pixel surface water mapping; Sentinel-2; morphological dilation and erosion;
intra-class spectral variability

1. Introduction

Urban and suburban surface water bodies, including lakes, rivers, small reservoirs,
fishponds, on-farm reservoirs, and paddy fields, are crucial natural resources. As such,
it is important for water resource assessment and for agricultural and irrigation man-
agement to accurately monitor and map these surface water bodies to understand their
spatial extent and temporal dynamics [1]. Monitoring large-scale water bodies has been
greatly facilitated by the development of optical and synthetic aperture radar satellite
remote sensing. Compared with synthetic aperture radar images, which are often noisy,
optical remote sensing images, in which water and land are distinct in spectral reflectance,
have been extensively utilized in mapping surface water at different scales [2]. For ex-
ample, high-spatial-resolution images, such as from QuickBird and PlanetScope, have
greatly facilitated the monitoring of small water bodies and rivers at resolutions finer than
10 m [2–4]. However, the high-spatial-resolution images have not been planned to cover the
entire surface of the world in a regular time frame, and the commercial images are costly
and have a narrow image span, which typically limits their use in mapping large-scale sur-
face water bodies. Compared with high-spatial-resolution images, low-spatial-resolution
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images such as those from the moderate-resolution imaging spectroradiometer (MODIS),
which has a spatial resolution of 250 m to 1 km, enable the mapping of large lakes at the
global or continental scale at a daily frequency [5,6] but are limited to monitoring the spatial
details of many small ponds and river nets. The medium-spatial-resolution Landsat series,
with a history of approximately 50 years, has mapped global and regional water bodies,
including rivers and reservoirs, at relatively medium spatial (typically 30 m) and temporal
(approximately 16-day repetition rate) resolutions [7,8]. The medium-spatial-resolution
Sentinel-2 satellite, launched in 2015, provides a multispectral high-spatial-resolution image
at a typically 10 m spatial resolution, which enables the mapping of small water bodies,
such as ponds and on-farm reservoirs, in heterogeneous regions [3,9–11].

Sentinel-2 image, which has 13 spectral bands, has been extensively used in many
surface water mapping studies [9,12–17]. With the rich spectral information from Sentinel-
2, studies have reported mapping water bodies on the basis of state-of-the-art machine
learning methods, such as random forest [18,19] and the naïve Bayes classifier [20,21].
Spatial and spectral information from Sentinel-2 has been combined in an object-based
analysis to map surface water bodies [22,23]. Moreover, with the development of deep
learning techniques, the convolutional neural network has been utilized to extract deep
semantic information about water bodies for Sentinel-2 surface water mapping [15,24–26].
The machine learning and deep learning methods require supervision and prior information
about the water bodies [15,24–27]. The water index thresholding method is unsupervised
and fully automatic, and has been extensively used because of its robustness and simplicity
without inputting any prior information about the study area [14,28–31]. In particular,
the water index method first extracts water indices, such as the normalized difference
water index (NDWI) [32], modified NDWI (MNDWI) [33], automated water extraction
index (AWEI) [34], 2015 Water Index (WI2015) [35], and Sentinel-2 water index (SWI) [16],
and then utilizes thresholding algorithms to the water index image to produce the binary
surface water map.

Although the aforementioned surface water mapping methods have mapped various
water bodies from Sentinel-2 imagery, they all assign a Sentinel-2 pixel to either the water
or land label and produce a binary water–land map. Therefore, these methods suffer from
the mixed-pixel problem when both water and land classes contribute to the observed
spectral response of the pixel. The mixed-pixel problem results in a large uncertainty in
the accurate extraction of the water–land boundary [36–39]. To reduce the mixed-pixel
problem in surface water mapping, spectral unmixing has been utilized to estimate surface
water fractions (or area proportions) within each pixel [11,40]. Although the surface
water fraction images contain sub-pixel water areal information relative to the pixel-based
binary classifications, the spatial distributions of the surface water within the pixels are
still unknown.

Sub-pixel mapping (SPM) is a method that predicts the land cover spatial distri-
bution within mixed pixels [41,42]. SPM is a post-processing method applied to class
fraction images and provides more information than spectral unmixing in land cover
mapping. Various SPM methods have been proposed, including Markov random field
(MRF) [43,44], Hopfield neural networks [45–47], pixel swapping algorithm (PSA) [42],
spatial regularization [48], soft-then-hard model [49,50], attraction model [51,52], max-
imum a posteriori model [53], multi-objective optimization [44], spatial allocation [54],
evolution algorithm [55], radial basis function interpolation [56], and deep learning [57,58].
Furthermore, SPM has been utilized in many fields, including mapping sub-pixel scale
forests [59,60], trees [61], impervious surfaces [62], and surface water. For example, SPM has
been used to map the spatial extent [36,38,63] and spatial–temporal dynamics of lakes [37].
The sub-pixel waterlines mapped from SPM have satisfied the mapping at 1:5000 standards
using 20 m resolution imagery [64,65]. SPM has also been extensively used in mapping
floods in floodplain regions [66], wetland regions [67,68], urban regions [69,70], and river
basins [71–73]. In SPM for surface water mapping, the main focus is mapping sub-pixel
surface water distribution within the water–land mixed pixels. Most SPM methods first
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detect the water–land mixed pixels from the image, which are then spectrally unmixed to
water fractions. Finally, an SPM algorithm is utilized as a means to post-process the water
fractions and map sub-pixel surface water within the mixed pixels [36,70]. Although SPM
can greatly reduce the mixed-pixel problem in surface water mapping, several challenges
still exist for SPM in heterogeneous regions.

First, the accuracy of SPM is directly dependent on the detection of the mixed pixels.
If the mixed-pixel number is underestimated, the mixed pixel is incorrectly labeled as
pure water or land pixels. Recent studies have used different thresholding segmentation
methods to detect pure pixels in SPM. For example, Li et al. [36] applied a thresholding
method to the histogram of the 250 m MODIS band to find pure water pixels. Liu et al. [70]
applied OTSU thresholding segmentation to the NDWI image to extract pure water pixels.
To the best of our knowledge, all of these methods apply only the morphological dilation
operation to the water pixels in the binary water map to detect the mixed pixels. Dilation
operation adds pixels to the boundaries of water pixels, which are assumed to be the water–
land mixed pixels in the SPM model. However, the dilation operation fails to consider the
existence of the potential mixed pixels within the water pixels that are segmented from
the thresholding method. Moreover, considering that the detection of pure water pixels is
difficult and has uncertainties and that the detected pure water pixels may be mixed in real
scenarios in heterogeneous regions, it may be inappropriate to only use the morphological
dilation operation in detecting mixed pixels for SPM.

Furthermore, SPM utilizes spectral unmixing for the mixed pixels, and the accuracy
of the surface water fraction images is greatly dependent on the selected endmembers.
Currently, sub-pixel surface water mapping has considered the variability of endmembers
in unmixing the mixed pixels and uses local water (or land) endmembers within a local
window around each target mixed pixel for spectral unmixing [36,70,74,75]. Although
spectral unmixing is locally adaptive, recent studies often averaged the water spectrum and
the land spectrum within the local window. The methods used in these studies are suitable
for mapping large lakes where the water or land reflectance is homogeneous within the
local window, but are unsuitable in heterogeneous regions where various water reflectances
are encountered owing to factors such as different water contaminations and turbidities.
The previous SPM methods, which averaged different water spectra and averaged different
land spectra to produce local water and land endmembers in a local window, failed to
consider the intra-class variability for water class and land class in spectral unmixing, and
may have generated inaccurate water fraction images for SPM as a result.

Finally, various SPM algorithms can be applied to the surface water fraction images
to produce the sub-pixel surface water map. The accuracy of the resulting surface water
map is dependent on the algorithm used. Most studies often adopt SPM algorithms such
as PSA, the attraction model, or the soft-then-hard model, which do not change the water
fractions between the water fraction image (as the SPM input) and the sub-pixel surface
water map (as the SPM output). In other words, the errors in the spectral unmixing are
propagated into the resulting sub-pixel surface water map, resulting in lower accuracy and
jagged land cover boundaries in the resulting map [76,77]. Therefore, the use of other SPM
algorithms that can deal with spectral unmixing errors should be explored in Sentinel-2
surface water mapping.

This study proposes a new sub-pixel surface water mapping method using Sentinel-2
images that addresses the aforementioned challenges. In particular, the proposed method
combines morphological dilation with morphological erosion, which removes pixels on
water boundary pixels, to decrease the uncertainty in detecting the mixed water–land pixels,
which are then unmixed on the basis of multiple water endmembers and land endmembers.
In addition, the proposed method uses the MRF-based SPM algorithm to reduce the impact
of water fraction image errors on the resulting surface water map. Unlike other sub-pixel
surface water mapping methods that are applied to Landsat images, the proposed sub-pixel
surface water mapping using dilation and erosion operations and the MRF (DE_MRF) is
applied to a 10 m Sentinel-2 image to produce a 2 m surface water map. The proposed
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method was applied to the Jinshui Basin, China, which has a heterogeneous landscape
of various water bodies, including lakes, rivers, paddy fields, and small reservoirs, near
Wuhan, China. The proposed method was then assessed and compared with the state-of-
the-art machine learning and deep learning water mapping methods [14,78,79] and several
SPM algorithms [36,42].

2. Methods

DE_MRF predicts a 2 m resolution surface water map using Sentinel-2 multispectral
images. First, the 20 m Sentinel-2 bands, including B5 (visible and near-infrared (VNIR)
band), B6 (VNIR band), B7 (VNIR band), B8a (VNIR band), B11 (short-wave infrared (SWIR)
band), and B12 (SWIR band), are downscaled to 10 m on the basis of the area-to-point
regression kriging method, which has the advantage of preserving the spatial details when
downscaling the low-spatial-resolution band to a high-spatial-resolution scale [80]. Then,
the NDWI image is generated, and the edge-guided OTSU method is utilized to produce
an initial 10 m binary surface water map. Both the morphological dilation and erosion
operations are applied to the water pixels to generate the initial water pixels, land pixels,
and mixed pixels. The water pixels and land pixels are then divided into water or land
pixels of different sub-classes on the basis of k-means clustering. The mixed pixels are
unmixed based on local water and land endmembers from multiple sub-classes (clusters)
within a moving window. With the 10 m water fractions in the mixed pixels, an MRF-based
SPM is used for producing the final 2 m surface water map. Figure 1 presents a flowchart
of DE_MRF.
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Figure 1. Flowchart of the proposed sub-pixel surface water mapping method.

2.1. Sentinel-2 Mixed-Pixel Detection Using Morphological Operations

The DE_MRF produces an initial 10 m resolution binary surface water map from the
Sentinel-2 image and then detects the mixed water–land pixels used for spectral unmixing
and SPM. In this study, the water index thresholding method, which is fully automatic
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without any prior information about the study area, is used to produce the binary surface
water map. The NDWI image calculated from the multispectral Sentinel-2 images is selected
as the water index used for mapping surface water [81]. The main reason for selecting
NDWI is that it is computed from the 10 m resolution green and VNIR bands from Sentinel-2,
whereas most of the other water indices, such as MNDWI [33], AWEI [34], WI2015 [35], and
SWI [16], require the Sentinel-2 SWIR bands at 20 m spatial resolution in which some spatial
details of the water bodies may be distorted [30]. Although pansharpening algorithms
can downscale the 20 m SWIR bands to 10 m in the computation of the water index, great
uncertainty exists in the selection of the pansharpening algorithm and the selection of a
pan-like band in pansharpening [14,70]. In addition, previous studies have suggested the
effectiveness of using only finer-spatial-resolution bands instead of combining all of the
spectral bands in surface water spectral unmixing and SPM. For example, the spectral
unmixing [74] and SPM [36] studies adopted only the 250 m MODIS bands and discarded
the 500 m MODIS bands in water–land segmentation to maintain spatial details of water
bodies. Finally, the NDWI image has indicated its effectiveness in the SPM for water
bodies from Landsat imagery [70]. Therefore, the NDWI image generated from the 10 m
Sentinel-2 bands is adopted and segmented into an initial binary water map using the edge-
guided OTSU method [82]. Compared with the traditional OTSU segmentation method
that is applied to entire image pixels to search for the optimal threshold for distinguishing
water/land, which may be inaccurate when the water pixels only account for a small
proportion in the image, the edge-guided OTSU selects pixels from edge pixels, so the
number of potential water and land pixels used for determining the optimal threshold
is similar. With the optimal NDWI threshold determined by the edge-guided OTSU
segmentation, the initial 10 m binary water body map is produced.

DE_MRF applies morphological operations to the binary water body map to determine
the mixed pixels in the image. In the binary surface water map, the mixed pixels are
assumed to be located near the border between the water pixels and land pixels. In
contrast to previous methods that only use the dilation operation to determine the mixed
pixels [36,70], the proposed method considers that the mixed pixel can be located in both
the initial water pixels and land pixels at the water–land pixel borders and uses both
dilation and erosion operations to determine the mixed pixels. Assume A is the binary
water map and B is the structuring element (e.g., the 3 × 3 structuring element highlighted
with gray squares in Figure 2). The morphological dilation operation, i.e., A ⊕ B, is
used for expanding the binary water map (A) using the structuring element (B), and the
morphological erosion operation, i.e., A 	B, is used for shrinking the binary water map (A)
using the structuring element (B). Therefore, dilation adds pixels to the boundaries of water
objects, whereas erosion removes pixels on water object boundaries. Figure 2 presents a
sketch map illustrating the morphological dilation and erosion operations using the 3 × 3
binary structuring element.

2.2. Mixed-Pixel Spectral Unmixing Using Local Multiple Endmembers

The multispectral Sentinel-2 image is spectrally unmixed using endmembers au-
tomatically estimated from the Sentinel-2 image. Considering that the water and land
endmembers vary greatly in the image and that using global water and land endmembers
in the image would result in a loss of local endmember variability information, the pro-
posed method uses local endmembers for spectral unmixing of the mixed pixels. Thus, for
a detected mixed pixel in the Sentinel-2 image, the local endmembers are selected using a
local square window that uses the target mixed pixel as the window center. Specifically,
for a detected mixed pixel, the local endmembers are selected on the basis of a 5 × 5–sized
square local window with the target mixed pixel as the window center. The 5 × 5 local
window may be relatively small and does not contain the refined pure water or pure land
pixels within the window. In this case, the window size is enlarged iteratively (from 5 × 5
size to 7× 7, 9× 9, . . . , and the target mixed pixel has remained as the local square window
center) until the window contains at least one refined pure water pixel and one refined



Water 2023, 15, 1446 6 of 22

pure land pixel. Then, the refined pure water and pure land pixels within this square
window are used to produce the local water and local land endmembers for the target
mixed pixel. The local window is applied to each mixed pixel to select the corresponding
local endmembers for that mixed pixel.
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Figure 2. Sketch map illustrating the mixed pixels determined by the morphological dilation and
erosion operations. (a) The high-spatial-resolution image overlapped with Sentinel-2 pixels. The
pond is represented with dark green in (a). The Sentinel-2 pixels in the black squares contain many
mixed water–land pixels that have red lines (border between water and land) in (a). (b) The binary
water map (A) generated by the segmentation of the Sentinel-2 NDWI image. (c,d) The maps of A ⊕B
and A 	B are the results of applying the morphological dilation and erosion operations to A using
the 3 × 3 binary structuring element (B). The dark green pixels in (c) indicate the dilated pixels, and
the light green pixels in (d) indicate the eroded pixels. The dilated and eroded pixels are combined as
the potential mixed water–land pixels in (e). The real water–land mixed pixels are those where the
water–land borderline (highlighted with the red line) is located within. (e) The water–land borderline
is located within both the dark green pixels (dilated pixels) and light green pixels (erosion pixels),
illustrating that both dilation and erosion operations are required to fully determine the potential
mixed water–land pixels. NDWI, normalized difference water index.

Considering the heterogenic landscapes in urban and suburban regions, the local
window may contain water pixels of various water bodies, such as different ponds, rivers,
lakes, and reservoirs, and different land objects, such as impervious surfaces, soil, and
vegetation, which have different spectral values (Figure 3). Previous SPM methods average
the spectra from all pure water (or land) pixels within the local window to produce the local
water (or land) endmember, whereas the proposed method considers the intra-class spectral
variability within each local window. In particular, the spectral values of the refined pure
water pixels are clustered into nwater clusters on the basis of the k-means algorithm, so
the pure water pixels belonging to the same water cluster have similar spectral values
(Figure 1). Similarly, the spectral values of the refined pure land pixels are clustered into
nland clusters on the basis of the k-means algorithm (Figure 1). Then, for each water or land
cluster, the local endmembers are calculated by averaging the spectra from pixels belonging
to this cluster within the local window. If the local window does not contain the pixels of
the cth cluster, then the endmember of the cth cluster is not considered in unmixing this
target mixed pixel within the local window.
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A sketch map of selecting local pure water pixels from different ponds in a paddy field
region is portrayed in Figure 3. The target mixed pixel, which can be detected by applying
the morphological operations to the binary surface water map as presented in Figure 2,
is highlighted in the red rectangle, and the blue rectangles depict the pure water pixels
within the 5 × 5–sized local window with the target mixed pixel as the window center. The
target mixed pixel is composed of water from three different ponds in which the water has
different spectral reflectances and is thus represented with different colors. The 5 × 5–sized
local window contains eight pure water pixels, i.e., P1,1, P1,2, P2,1, P2,2, P3,4, P4,4, P5,4, and
P5,2 (the subscript number indicates the row and column number in the local window),
highlighted with blue rectangles in Figure 3c. Pixels P1,1, P1,2, P2,1, and P2,2 belong to
pond 1; pixels P3,4, P4,4, and P5,4 belong to pond 2; and P5,2 belongs to pond 3 in Figure 3a.
The pixels in the same pond are similar in optical presence, and the pixels in different
ponds are dissimilar. Traditional SPM methods average the pure water spectra of the pure
water pixels from all three ponds, i.e., {P1,1 ∪ P1,2 ∪ P2,1 ∪ P2,2 ∪ P3,4 ∪ P4,4 ∪ P5,4 ∪ P5,2},
as one water endmember in the unmixing without considering the difference in water
pixels (Figure 3d). By contrast, the proposed DE_MRF could consider the water spectra
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from different ponds to incorporate intra-class spectral variability of water and may group
different water pixels into different subsets in spectral unmixing (Figure 3d). Therefore,
the proposed SPM that uses different subsets of local pixels in endmember estimation and
spectral unmixing is expected to generate a more accurate surface water fraction for the
mixed pixel.

With the selected local water and local land endmembers, DE_MRF applies the fully
constrained least squares linear spectral mixture (FCLS) to the target mixed Sentinel-2 pixel
to generate water fractions within this pixel. With the water fractions predicted by FCLS in
the mixed pixels and by assigning the water fractions of 100% for the pure water pixels
and 0% for the pure land pixels, the 10 m surface water fraction image can be generated
(Figure 1).

2.3. Mixed-Pixel Sub-Pixel Mapping

The MRF-based SPM of surface water is utilized to map the water bodies at the sub-
pixel scale within mixed pixels. The MRF-SPM is formulated by utilizing the maximum
a posteriori rule in the Bayesian framework. The optimal surface water map at the sub-
pixel scale is solved by maximizing the posterior probability of the sub-pixel map given
the surface water fractions, and it selects the most likely sub-pixel map among all the
possible maps given the surface water fraction image. Assuming the resulting sub-pixel
map has the Markov random field property, the model assumes that neighboring pixels
more possibly belong to the same land cover class than different classes. The MRF-SPM was
first proposed by Kasetkasem et al. [44] and has been extended in many fields [36,41,62].
DE_MRF focuses on surface water mapping and adopts the water fraction images as the
input, whereas the classic MRF-SPM in [44] focuses on multiple land covers and adopts the
multispectral remote sensing images as the input. In particular, the MRF-SPM framework
can be demonstrated in Equation (1):

X = argmax[Pr(X|Y)] = argmax[Pr(Y|X)Pr(X)] (1)

where X is the high-spatial-resolution surface water map, Y is the surface water fraction
image, Pr(X|Y) is the posterior probability of X given Y, Pr(Y|X) is the probability of Y
given X, and Pr(X) is the marginal probability density function of X. The details of the
MRF-SPM model and parameter setting are introduced in the Supplementary Materials.

Before SPM, the 10 m surface water fraction image is downscaled to a 2 m resolution
surface water map with a scale factor s = 5. In this step, if the surface water fraction is
f % in a target Sentinel-2 pixel, a total of s × s × f % pixels at 2 m spatial resolution are
assigned to water, and s × s × (100% − f %) pixels at 2 m spatial resolution are assigned to
land. Then, the surface water pixels are randomly allocated within this Sentinel-2 pixel.
Sub-pixels in the pure water pixels and pure land pixels are directly labeled as water and
land, respectively. As this study focuses on the sub-pixel mapping of water–land mixed
pixels, MRF-SPM was applied only to the detected mixed pixels. Moreover, the simulated
annealing (SA) mode is used to update the sub-pixel labels within the range defined by
the mixed pixels in the initial 2 m surface water map to produce the final surface water
map. The SA ends if less than 0.1% of pixels change between two iterations. Note that
the proposed method is only applied to the mixed 10 m Sentinel-2 pixels, and the labels
of water and land pixels in the pure water pixels and pure land pixels are unchanged in
each iteration.

3. Experiments
3.1. Study Area and Data

Jinshui Basin, located at the border of Wuhan and Xianning City, China, was selected as
the study area. This region covers an area of approximately 2616 km2 and has an elevation
of approximately 17–25 m (Figure 4). This basin has several lakes, including the three main
lakes of Futouhu Lake, Xiliang Lake, and Luhu Lake, and is connected to the Yangtze River.
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The basin also contains several wetlands and plays an important role in fishing, irrigation,
rainwater storage, and shipping.
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A Sentinel-2 image acquired on 19 January 2021, was used as the model input (Figure 4).
In this study, only the 10 m and 20 m Sentinel-2 bands that are sensitive to surface water
were used. The 10 m green and VNIR bands were used to calculate the NDWI image in
producing the initial surface water map, and all of the 10 Sentinel-2 bands were used for
local endmember extraction in the spectral unmixing.

3.2. Comparison Methods

DE_MRF was compared with several SPM methods and several state-of-the-art spec-
tral indexes–based, machine learning–based, and deep learning–based surface water map-
ping methods. DE_MRF has two main steps. First, DE_MRF uses morphological dilation
and erosion operations to determine the locations of mixed pixels and uses multiple local
endmembers for unmixing the mixed pixels to generate the surface water fraction image.
Second, with the surface water fraction image, DE_MRF uses the MRF-based SPM to pro-
duce the 2 m resolution surface water map. To assess the effectiveness of the first step,
DE_MRF was compared with previously proposed methods that use only the dilation oper-
ation in mixed-pixel detection and use the average value of the local water endmembers
and local land endmembers to produce the initial surface water fraction map via spectral
unmixing. To assess the effectiveness of the second step, MRF-based SPM was compared
with the popular PSA. The details of the comparison methods are presented in Table 1.
Note that all the SPM methods were applied only to the detected mixed pixels.
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Table 1. Explanation of different sub-pixel mapping methods.

Name

Processes in Spectral Unmixing and SPM

Spectral Unmixing for the Mixed Pixels SPM to Generate the
Sub-Pixel Surface Water Map

D_PSA Using only dilation operations in mixed-pixel detection and averaging
local water and local land endmembers in the unmixing PSA

D_MRF Using only dilation operations in mixed-pixel detection and averaging
local water and local land endmembers in the unmixing MRF

DE_PSA Using dilation and erosion operations in mixed-pixel detection and
using multiple local endmembers in the unmixing PSA

DE_MRF
(proposed)

Using dilation and erosion operations in mixed-pixel detection and
using multiple local endmembers in the unmixing MRF

Furthermore, several state-of-the-art surface water mapping methods were also com-
pared. The methods included the spectral index–based method based on thresholding
methods applied to the water index. The first comparator is the edge-guided OTSU thresh-
olding method applied to the NDWI image, that is, NDWI_OTSU [11,83]; the second
comparator is the edge-guided OTSU thresholding method applied to the MNDWI image,
that is, MNDWI_OTSU [14,33]. The machine learning method support vector machine
(SVM), which has been extensively used in image classification and surface water map-
ping [84,85], was compared, and the deep learning method UNet [78], which has a simple
network structure and lightweight parameters for image segmentation and classification,
was also compared. SVM and UNet were applied to the 10 m Sentinel-2 multispectral
image. The NDWI_OTSU, MNDWI_OTSU, SVM, and UNet all produced a pixel scale 10 m
surface water map that was used for comparison.

3.3. Model Parameter and Accuracy Assessment

The model parameters of different methods were set as follows. In DE_MRF, the
numbers of water and land clusters for spectral unmixing were set to 4, so that the number
of endmembers in spectral unmixing was in the range of 2–8. The reason for this is that
the fully constrained least squares linear spectral mixture was used, which required the
number of endmembers to be no more than the number of spectral bands (10 bands in
this study). Furthermore, for all SPM algorithms, the window size for the calculation of
sub-pixel spatial dependence was set to 5 [86]. For the SVM classifier, the water, vegetation,
impervious surface, and soil endmembers were directly extracted from the image to avoid
the impact of atmosphere circumstances, and the radial basis function was selected as the
kernel type used in SVM. In the UNet model, more than 2000 Sentinel-2 multispectral image
patches and the corresponding label image with water and land in it, with 256 × 256 pixels
in each patch, were used for training. The training images were acquired on similar dates
to the images used in this study to reduce impacts such as crop phenology and satellite
observation condition. Data augmentation operations such as image rotation were applied
to the training image. The graphics processing unit (GPU) is NVIDIA 2060, which has 6 GB
of RAM and uses cuDNN 10.0 for acceleration to run the UNet model.

All the SPM algorithms were assessed on the basis of GF-1 and GF-6 images acquired
on 18 January 2021 (GF-6), 14 January 2021 (GF-1), and 11 January 2021 (GF-1), which
were close to the Sentinel-2 image (19 January 2021) to avoid the impact of land cover
change in accuracy assessment. The GF-1 and GF-6 images had multispectral bands at a
resolution of 8 m and panchromatic bands at a resolution of 2 m. The 8 m multispectral
bands were pansharpened to 2 m resolution. The GF-1 and GF-6 images were co-registered
to the Sentinel-2 image and mosaicked, as presented in Figure 5. A total of 6000 sample
points were adopted for assessing the accuracy of different methods. The 6000 sample
points, including 3000 water pixels and 3000 land pixels, were randomly selected in the
study area highlighted with yellow points in Figure 5. Many water pixels were distributed
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in the homogeneous land cover regions of large lakes. Different SPM algorithms were
only applied to the mixed pixels determined by the morphological operations. Another
8000 sample points, including 4000 water pixels and 4000 land pixels that were selected
within the mixed pixels determined by the morphological dilation and erosion operations to
the NDWI image, were selected to further assess the accuracy of different SPM algorithms.
The 8000 sample points were distributed in heterogeneous land cover regions highlighted
with green points in Figure 5. All of the sample points were visually interpreted by experts
with extensive experience in remote sensing and surface water analysis using the 2 m GF-1
and GF-6 images in Figure 5. The overall accuracy, omission error, and commission error
were used for accuracy assessment. The critical success index was also used to quantify
the accuracy of surface water [87]. The use of better input data (such as images with
finer resolution) and the use of more advanced interpretation methods (such as visual
interpretation by using expert knowledge) are effective to quantify the land cover or surface
water map [37,88–91]. As the sample data were interpreted from the 2 m GF-1 and GF-6
images, the accuracy of the pixel scale classification map outputted from NDWI_OTSU,
MNDWI_OTSU, SVM, and UNet at the 10 m resolution was not assessed using these
8000 samples.
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Figure 5. 2 m resolution GF-1 and GF-6 mosaicked image and the sample points used for the model
assessment. The yellow points were used to assess different surface water mapping algorithms.
The green points, which were mostly distributed within the mixed Sentinel-2 pixels, were used to
assess different SPM algorithms. SPM, sub-pixel mapping. The false color image is composited with
VNIR-red-green as RGB.

4. Results
4.1. Visual Comparison of the Results

The resulting surface water maps from different algorithms are presented in Figure 6.
As shown in Figure 6c, SVM generated more water bodies than other methods. Zoomed-
in areas A–D in Figure 6 are presented in Figure 7. Zoomed-in area A is located at the
border between Futouhu Lake and the land. As illustrated in Figure 7, NDWI_OTSU,
MNDWI_OTSU, SVM, and UNet generated jagged water–land boundaries because the
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map was generated at the 10 m resolution. SVM incorrectly predicted the linear bridge as
surface water, as highlighted with a red ellipse in zoomed-in area D in Figure 6. The main
reason is that SVM is a pixel-based classifier based on pixel spectral information, whereas
the water and the bridge have similar spectral values in the Sentinel-2 image.
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of the five zoom-in areas (A, B, C, D, and E) are shown in Figures 7 and 8.

The sub-pixel maps of D_PSA and DE_PSA contain many jagged boundary pixels.
This is primarily because the PSA used for SPM does not change the surface water fractions
between the input unmixed fraction image and the output sub-pixel surface water map,
and the fraction image error is preserved in the resulting map. For example, if the water
fraction in the unmixed fraction image is 20% higher than the actual water fraction in a
Sentinel-2 pixel, then at least s2 × 20% = 5 land pixels will be incorrectly labeled as a water
pixel in this Sentinel-2 pixel, which may result in jagged water patches. In contrast to PSA,
the MRF-based SPM algorithm does not necessarily preserve the water fraction from the
unmixed fraction images in the final map. As illustrated in Figure 7, D_MRF and DE_MRF
generated smoothed water–land boundaries in zoomed-in area A. The differences between
the PSA and MRF maps are more evident in the zoomed-in area figure in Figure 8, which is
enlarged area E from Figure 6. NDWI_OTSU, MNDWI_OTSU, SVM, and UNet generated
jagged boundaries because of the relatively coarse spatial resolution (10 m) of the Sentinel-2
image. Although the four SPM methods were predicted at the sub-pixel scale with a 2 m
resolution, D_PSA and DE_PSA both generated jagged boundaries because they strictly
preserved the class fractions from the spectral unmixing into the resultant sub-pixel surface
water map. By contrast, both D_MRF and DE_MRF, which smoothed the class boundary
according to the MRF property and did not strictly preserve the unmixed class fractions
to the result, generated more smoothed water–land boundary than D_PSA and DE_PSA.
This finding indicates that D_PSA and DE_PSA are sensitive to the error that is propagated
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from spectral unmixing, whereas D_MRF and DE_MRF are more robust to the spectral
unmixing error.
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Figure 8. Zoomed-in area E in Figure 6 (the surface water maps predicted by different methods).

In Figure 7, zoomed-in areas B and C are located in paddy fields in the Jinshui Basin.
It is clear that many paddy fields and the channels are not spatially connected and that the
spectral reflectances of many water bodies are different. The pixel scale maps outputted
from NDWI_OTSU, MNDWI_OTSU, SVM, UNet, and the sub-pixel D_PSA and DE_PSA
maps contain jagged water–land boundaries. The D_MRF and DE_MRF maps contain
water bodies with more smoothed boundaries. In D_MRF, many paddy fields were mapped
to be spatially connected, such as those highlighted with red circles in zoomed-in areas B
and C, whereas the water bodies were better mapped in the DE_MRF results. This result
reveals that using both morphological dilation and erosion operations in the MRF-based
SPM could reduce the over-smoothing of water pixels. Similar results were obtained for
river water bodies in zoomed-in area D in Figure 7. D_MRF over-smoothed the water
bodies, which are highlighted with the red circle in zoomed-in area D, whereas DE_MRF
could map the small bridge over the river.

4.2. Quantitative Comparison of the Results

Table 2 presents the quantitative assessment results of different methods using the
6000 sample points that are randomly selected in the image as highlighted with yellow
points in Figure 5. UNet generated higher overall accuracy and critical success index
value than the other three hard classifications of NMWI_OTSU, MNDWI_OTSU, and
SVM, showing the advantage of the UNet in extracting the deep semantic information for
water bodies. Among all of the methods, the proposed DE_MRF generated the highest
overall accuracy and the highest critical success index value for the water class. All the
methods generated an overall accuracy value higher than 98% and a critical success index
value higher than 0.96. The main reason for the high water mapping accuracy is mainly
because many water samples were distributed in large lakes with a homogeneous land
cover landscape, and the accuracies were assessed for binary maps with only water and
land in them. It should be noted that, although UNet generated similar accuracy as the
SPM algorithms, it cannot predict sub-pixel water distribution and, therefore, outputted a
jagged water-land boundary, as shown in Figure 8.
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Table 2. Quantitative assessment results of different methods using the 6000 sample points that are
randomly selected in the image as highlighted with yellow points in Figure 5. The highest overall
accuracy, highest critical success index, lowest omission, and lowest commission errors are in bold.

NDWI_OTSU MNDWI_OTSU SVM UNet D_PSA D_MRF DE_PSA DE_MRF

Overall Accuracy (%) 99.0167 98.2167 98.4000 99.6167 99.5333 99.6000 99.6333 99.7167
Critical success index

(Water) 0.9803 0.9644 0.9688 0.9923 0.9907 0.9920 0.9927 0.9943

Omission
Error (%)

Water 1.9333 3.2667 0.5000 0.7000 0.3667 0.4000 0.2667 0.3667
Land 0.0333 0.3000 2.7000 0.0667 0.5667 0.4000 0.4667 0.2000

Commission
Error (%)

Water 0.0340 0.3092 2.6419 0.0671 0.5655 0.4000 0.4657 0.2003
Land 1.8973 3.1725 0.5112 0.6956 0.3674 0.4000 0.2672 0.3661

Table 3 presents the quantitative assessment results of different SPM methods in the
mixed pixels using the 8000 sample points that are selected near the water–land boundaries
highlighted with green points in Figure 5. In general, all of the SPM methods have lower
accuracy in Table 3 than in Table 2, because the samples used for validation in Table 3
were mostly distributed in heterogeneous land cover regions. The overall accuracy for
the DE_PSA is higher than that of D_PSA, and the overall accuracy for DE_MRF is higher
than that of D_MRF. This finding indicates that using a combination of morphological
dilation and erosion operations can improve the overall accuracy more than using only the
dilation operation in surface water mapping. D_PSA and D_MRF generated high omission
errors in land and high commission errors in water, as presented in Table 2. This is because
D_PSA and D_MRF only use the morphological dilation operation, and the mixed pixels,
such as those highlighted in light green in Figure 2d, are all predicted as pure water pixels,
resulting in an overestimation of water pixels and an underestimation of land pixels. In
contrast, DE_PSA and DE_MRF profoundly reduced the omission error rate of land and the
commission error rate of water. D_MRF generated the lowest omission error for water and
the lowest commission error for land, whereas the proposed DE_MRF generated the lowest
omission error for land and the lowest commission error rate for water. Both the omission
and commission error rates of water and land classes are lower than 20% in the detected
mixed pixels for the proposed DE_MRF, indicating the proposed method’s superior ability
to map sub-pixel surface water bodies. Furthermore, both DE_PSA and DE_MRF generated
the highest critical success index, and DE_MRF generated the highest overall accuracy
among the comparators.

Table 3. Quantitative assessment results of different SPM methods in the mixed pixels using the
8000 sample points that are selected near the water–land boundaries highlighted with green points in
Figure 5. The highest overall accuracy, highest critical success index, lowest omission, and lowest
commission errors are in bold.

D_PSA D_MRF DE_PSA DE_MRF

Overall Accuracy (%) 79.1625 80.2000 83.9375 84.4125
Critical success index (Water) 0.6907 0.7023 0.7361 0.7361

Omission
Error (%)

Water 7.0000 6.6000 10.4750 13.0500
Land 34.6750 33.0000 21.6500 18.1250

Commission
Error (%)

Water 27.1588 26.1076 19.4738 17.2496
Land 9.6473 8.9674 11.7680 13.7477

5. Discussion

To assess the proposed method for different water bodies in different parts of the
world, the DE_MRF was also used in mapping sub-pixel surface water in the Dangara
region of Guinea, which borders the Atlantic Ocean to the west (Figure 9), and the Terai
region in Nepal in South Asia (Figure 10). The acquisition dates of the Sentinel-2 image
are 21 April 2022 for the Dangara region in Guinea, and 11 November 2020 for the Terai
region in Nepal. The Sentinel-2 images were processed using the same method that was
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adopted in the Jinshui Basin region. DE_MRF was performed in the two regions, and the
produced 2 m resolution surface water maps were overlapped with the Sentinel-2 imagery
as shown in Figures 9 and 10. In the zoomed-in areas, the 10 m Sentinel-2 image is relatively
coarse to represent the water–land boundary in Figures 9c and 10c. In contrast, DE_MRF
produced a 2 m resolution surface water map, and the waterlines were smoothed according
to the sub-pixel mapping result in Figures 9d and 10d. Considering the ability to map
surface water within the Sentinel-2 pixel, the proposed DE_MRF has great potential in
mapping surface waterbodies at a finer spatial resolution than the input multispectral
Sentinel-2 imagery.
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This study proposed a surface water mapping model to predict a 2 m surface water
map from Sentinel-2 images on the basis of combined morphological dilation and ero-
sion operations and an MRF-based SPM algorithm. The results suggested that DE_MRF
improves surface water mapping when compared with previously proposed methods. Com-
pared with the pixel-based classification that produces a 10 m resolution binary surface
water map from Sentinel-2 and thus suffers from the mixed-pixel problem, the proposed
method can map a 2 m resolution surface water map from Sentinel-2 to reduce the impact
of the mixed pixel to a great extent. Compared with the current SPM algorithms, the im-
provements result from the combination of morphological dilation and erosion operations
in detecting the mixed pixels, and the use of local endmembers and MRF-based SPM in
determining the sub-pixel water body distribution within the mixed pixel. The advantage
of the proposed DE_MRF compared with other SPM methods is evident both visually
and quantitatively. The potential impact factors for the proposed method are discussed
as follows.
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Figure 10. 2 m resolution DE_MRF surface water map (blue indicates surface water, and white
indicates land) overlapped with the Sentinel-2 image in the Terai region in Nepal. The false color
image is composited with VNIR-red-green as RGB.

In the proposed method, spectral unmixing and SPM are applied to the mixed pix-
els detected by applying the morphological operations to the initial surface water map.
Therefore, the error in generating the initial surface water map may be propagated in the
following mixed-pixel detection, spectral unmixing, and SPM. In this study, the initial
surface water map is generated by applying edge-guided OTSU segmentation to the NDWI
image. The reason for using NDWI in this study is because NDWI is calculated from the
10 m green and VNIR bands in the Sentinel-2 image. If the study area is located in a region
where there are many shadows from buildings, it is helpful to incorporate other water
indices, such as MNDWI and AWEI, to further improve the water segmentation in shadow
and dark surface regions. In addition, the edge-guided OTSU is applied to the single NDWI
water index in this study. Previous studies have indicated that using multiple water indices
may produce a more accurate surface water map compared to using a single water index
from Landsat images (i.e., different water indices are calculated from bands of the same
30 m spatial resolution) [92,93]. Future studies could focus on using multiple water indices
calculated from Sentinel-2 bands with different spatial resolutions in producing the initial
surface water map. Finally, the water index thresholding approach is adopted in producing
the initial surface water map for its automation without using any prior information and
simplicity. If prior knowledge about the endmembers or water label training samples is
available, supervised methods such as random forest and deep learning can be adopted to
enhance the accuracy in mapping the binary surface water map.

On the basis of the detected mixed pixels according to the water index thresholding
method and the morphological operations, the proposed DE_MRF applied optimization
algorithms in the spectral unmixing and SPM to the mixed pixels. In particular, the FCLS
is used in spectral unmixing, and the SA is used in the SPM. FCLS and SA, which can
predict sub-pixel information accurately, are used in this study but are relatively time-
consuming. Further research could focus on using fast algorithms, such as partial unmixing
algorithms [40] in spectral unmixing, and iterated conditional modes [94] in the SPM, to
accelerate the process of the model in large-scale surface water mapping.
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The proposed DE_MRF is mainly used to map wall-to-wall water bodies at a finer
spatial resolution than the input Sentinel-2 imagery. Considering that the resultant surface
water maps have more spatial details than those extracted at the pixel scale, it is promising
to further extract water body information from the resulting sub-pixel water map. For
example, it is favorable to extract sub-pixel river net to further calculate river width at the
pixel scale [73], and it is helpful to extract the small ponds by using SPM to reduce the
mixed-pixel problem in current limnology studies [3,11,40].

6. Conclusions

Sub-pixel mapping is effective in reducing the impact of the mixed-pixel problem in
mapping surface water at the sub-pixel scale. This study proposed DE_MRF, a sub-pixel
surface water mapping method, to map a 2 m resolution sub-pixel surface water map from
Sentinel-2 images in the Jinshui Basin, China. Moreover, DE_MRF was compared with
several SPM methods; the results suggested that DE_MRF generated the lowest commission
error rate for water and the lowest omission error rate for land, and, therefore, had the
highest overall accuracy.

Several findings were identified through the experimental results. The sub-pixel
surface water mapping that applies only the morphological dilation operation to detect
Sentinel-2 water pixels could result in a large commission error rate for the water class
because many of the detected water pixels may be mixed. Incorporating the morphological
erosion operation enabled the selection of more potential mixed pixels at the water–land
boundaries used for spectral unmixing and SPM. Experimental results suggested that
DE_MRF using both dilation and erosion operations generated the lowest commission error
rate for water pixels. Moreover, compared with previously proposed methods that simply
averaged the water (or land) pixel spectra when selecting local endmembers in the local
window, the proposed method considered the intra-class spectral variability and was more
suitable for mapping different water bodies that were distinctive in spectral reflectance in
heterogeneous regions. Finally, the use of the MRF-based SPM algorithm could smooth
the jagged boundaries that were present in maps from the PSA-based SPM algorithms
and could reduce the propagation of spectral unmixing error in the final sub-pixel surface
water map to a great extent. In summary, DE_MRF was found to be a simple and effective
method to map sub-pixel surface water from Sentinel-2 imagery, which helps to monitor
surface water resources in heterogeneous regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15081446/s1. Section S1: The estimation of fine resolution
surface water map based on the MRF.
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