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Abstract: Reliable estimations of sediment yields are very important for investigations of river mor-
phology and water resources management. Nowadays, soft computing methods are very helpful
and famous regarding the accurate estimation of sediment loads. The present study checked the
applicability of the radial M5 tree (RM5Tree) model to accurately estimate sediment yields using
daily inputs of the snow cover fraction, air temperature, evapotranspiration and effective rainfall, in
addition to the flow, in the Gilgit River, Upper Indus Basin (UIB) tributary, Pakistan. The results of
the RM5Tree model were compared with support vector regression (SVR), artificial neural network
(ANN), multivariate adaptive regression spline (MARS), M5Tree, sediment rating curve (SRC) and
response surface method (RSM) models. The resulting accuracy of the models was assessed using
Pearson’s correlation coefficient (R2), the root-mean-square error (RMSE) and the mean absolute per-
centage error (MAPE). The prediction accuracy of the RM5Tree model during the testing period was
superior to the ANN, MARS, SVR, M5Tree, RSM and SRC models with the R2, RMSE and MAPE be-
ing 0.72, 0.51 tons/day and 11.99%, respectively. The RM5Tree model predicted suspended sediment
peaks better, with 84.10% relative accuracy, in comparison to the MARS, ANN, SVR, M5Tree, RSM
and SRC models, with 80.62, 77.86, 81.90, 80.20, 74.58 and 62.49% relative accuracies, respectively.

Keywords: Gilgit River; snowmelts; suspended sediment yields; M5Tree; RM5Tree; Upper Indus
Basin (UIB); Hindukush

1. Introduction

Erosion phenomena in nature transport sediments as suspended and bed loads from
cold drainage basins as a result of the hydrological processes of snow and ice melting and
rainfall [1–4]. The sediment particles with different shapes and sizes are transported to
rivers as bed loads [5]. This suspended particle load within a river body is transported by
fluids in a suspension state due to the turbulence of eddies, which enables the sediment
particles to outweigh its particle settling and cause the particles to be in a suspension
state [6]. Global warming is increasing runoff, depleting snow covers and increasing glacier
ablation, which, in turn, is increasing suspended sediments [6,7]. The deposition of these

Water 2023, 15, 1437. https://doi.org/10.3390/w15071437 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15071437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-7183-1819
https://orcid.org/0000-0002-3732-6288
https://orcid.org/0000-0002-3477-0447
https://orcid.org/0000-0001-7847-5872
https://orcid.org/0000-0002-2650-8123
https://orcid.org/0000-0001-7860-3037
https://doi.org/10.3390/w15071437
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15071437?type=check_update&version=2


Water 2023, 15, 1437 2 of 28

suspended solids affects the environment of the river ecosystem, water storage, agriculture
activities, hydropower operations and normal hydrological systems [8–10].

Sediment deposition in water storage reservoirs, rivers and lakes is a serious concern
throughout the world. Siltation of reservoirs due to sedimentation affects water supplies for
irrigation, drinking and hydropower generation purposes in water infrastructure [11,12].
Due to the higher rate of sedimentation, reservoir storage in Asia has decreased by up
to 65% [13]. During the past three decades, Tarbela and Mangla reservoirs in Pakistan
significantly lost their live storage due to high variance in sediment yields and their
incorrect estimations [14,15]. The deposition of suspended sediments in a river also reduces
the cross-section of the river and changes the river planform, resulting in the reduction of
the river habitat of aquatic life [16].

In Pakistan, the Indus River is 2880 km long and provides the cheapest source of
energy generation from hydropower, with its total share of up to 29% of the country’s
total power generation capacity [17–19]. Currently, new hydropower projects of above
30,000 MW capacities are planned for future constructions in the Upper Indus Basin (UIB).
Therefore, an accurate estimation of sediment loads in its river streams is important for the
sustainability of future investments in the water infrastructure of the UIB.

The generation of sediment and its transport is a highly non-linear phenomenon in
nature. Due to the complexity of the physical processes of sediment yield generation,
various factors, such as the amount of runoff, supply of sediments, sources of sediment,
catchment erosion, river bed resistance and its slope, and the type of its sediment particles,
control the amount of sediment loads in a river [20,21]. Therefore, it is very difficult to
precisely estimate sediments due to the reasons discussed above. The accurate estimation
of sediments is crucial for the design and operation of hydraulic structures, such as hy-
dropower dams, as well as for the conservation of river health, agriculture and human
activities [4,5,9].

To overcome these challenges regarding the accurate estimation of sediment yields,
soft computing (SC) models were developed in recent decades. The SC methods have high
computational power and are capable enough to capture highly non-linear processes of
erosions for better estimations of the sediment load in comparison to traditional sediment
rating curves (SRCs).

Literature Review

Researchers used many sediment load prediction models for different basins and
rivers in the last three decades. Artificial neural network (ANN), genetic programming
(GP), support vector regression (SVR) and artificial neuro-fuzzy logic inference system
(ANFIS) models are widely adopted and reported for their accuracy in sediment load
prediction techniques. Studies [22–26] compared the accuracy of multiple linear regression
(MLR), sediment rating curve (SRC) and ANN models to predict sediment load, and the
results showed that better sediment load predictions were made by the ANN as compared
with other practiced techniques. Studies [27–29] compared sediment load predictions
using the ANFIS model, ANN model and SRC model, and the results predicted by an
ANFIS were more accurate than those of the ANN and SRC models. The input variables
used in these studies were different combinations of discharge flows and precipitations.
Studies [30,31] used the ANN model, ANFIS model and gene expression programming
model for sediment load prediction. The results of these studies provided better prediction
results with the gene expression programming model than the ANN model and ANFIS
model. Studies [32,33] compared sediment prediction results using ANFIS, SVR and
ANN models, and their results were better predicted by the SVM as compared with the
ANFIS model and ANN model using different input combinations of flows and sediments.
A study [34] used a combination of flows and rainfall as input parameters in an SVR model
and an ANN model. The results of this study found better sediment prediction results
using the ANN model as compared with SVR. The researchers [35] used modified multiple
linear regressions (MLR) and modified support vector regression (SVR) with principal
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component analysis (PCA) for the estimation of sediments. They found that the overall
SVR model modified by PCA showed a better performance than an empirical model for
the estimations of sediment loads. Studies [36,37] made sediment load predictions through
the SRC model, ANN model, MLR model and wavelet-ANN (WANN) model. The results
of these studies provided better sediment prediction results with the WANN as compared
with other selected prediction models. Study [38] also used deep learning algorithms that
consisted of conventional neural networks (CNNs), recurrent neural networks (RNNs) and
long short-term memory (LSTM) for soil water erosion assessment on spatial scales. It was
found that the performance of the RNN was slightly superior to the other deep learning
models. Study [39] compared the sediment prediction results of the WANN model with a
wavelet-based least-squares SVM (WLSSVM) model and found better sediment prediction
results with the WLSSVM as compared with the WANN model. Studies [40,41] used
hybrid random vector functional link (RVFL) and hybrid ANFIS models in comparison of
standalone models for the investigations of evapotranspiration. In these investigations,
hybrid RVFL and ANFIS models were found to be robust approaches for evaluating the
evapotranspiration process. Similarly, another study [42] used advanced hybrid long short-
term memory (LSTM) and a conventional neural network (CNN) for the prediction of
water temperatures. The authors found that the hybrid models are efficient alternatives
compared with standalone deep learning models in the prediction of water temperature.

Studies conducted by [43,44] used regression models for sediment load prediction,
including multiple adaptive regression splines (MARS), M5 tree and SVR models. These
studies conducted modeling of non-linear processes, such as flows and sediment yield
predictions, within the last decade. To capture the non-linear behavior of sediment yields
and flows, polynomial regressions were introduced and MARS was developed [43,44].
Studies [45,46] also used the M5′ decision tree model with its broad applications to check a
robust and appropriate model to solve complex natural problems. It was found that the
M5′ decision tree model is a robust and suitable modeling approach, both in the fields of
downscaling of climate models and prediction of the ocean wave run-up, due to its highly
precise model results with various model applications

The newly developed MARS, M5 tree and SVR models were adopted to predict
river flows and sediment load in studies conducted by [47–49] in the water resources
management field. A study undertaken by [50] used a dynamic evolving neural fuzzy
interference system (DENIFS) model, MARS model and ANFIS model in combination
with fuzzy c-mean clustering. A study conducted by [51] used a MARS model and an
artificial bee colony (ABC) model and found better-predicted results with the MARS model
as compared with the ABC model for the Coruh River basin area.

A study conducted by [52] predicted the sediment load using a fuzzy least-absolute
regression model (FLAR), fuzzy least-squares regression model (FLSR) and hybrid MARS
fuzzy regression model (HMARS-FR) and the results demonstrated better prediction
through the HMARS-FR model in comparison to the two other selected models in this study.

In different studies [53,54], researchers used the algorithms of the M5 tree model along
with GEP, wavelet regression (WR), ANN, MLR and SRC for the prediction of sediments
and concluded that the performance of the M5 tree model was superior to the other
models. Senthil et al. [55] used hydroclimatic inputs using methods of ANN embedded
with Levenberg–Marquardt, scaled conjugate gradient, REPTree, SVR and M5 tree models
and found that the ANN-LM performance was better than the other models. Toa et al. [56]
used radial basis M5 tree (RM5Ttree) along with classical M5 tree, response surface method
(RSM) and an ANN to model sediments of the Delaware River at Trenton gauging station in
the United States. They used lagged discharge and sediment data as inputs for the models
and found that the RM5Tree enhanced the prediction accuracy. The RM5Tree showed better
performance compared with the classical M5 tree and other models.

The present study had the challenges of data scarcity in a highly glacierized area of
the Gilgit catchment in the UIB. Therefore, the main purpose of this study was to check
the applicability of the RM5Tree model for accurate sediment load predictions in the cold
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region of the Upper Indus Basin (UIB) using the inputs of snow cover and hydroclimatic
datasets, including remote sensing data. To the best of the author’s knowledge, no study
previously checked the applicability of the robust RM5Tree model for the prediction of
sediment yields using input parameters of rainfall, flows, snow cover area, temperature and
evapotranspiration with the non-random sampling of training datasets. The outcomes of
the RM5Tree were compared with ANN, MARS, SVR, M5Tree and traditional SRC models.
The abovementioned studies generally used only rainfall, discharge and sediment data as
inputs to the soft computing models. In the present study, stream discharge, snow cover,
gridded rainfall, gridded temperature and gridded evapotranspiration were used as inputs
for the models when predicting sediment yields.

2. Materials and Methods
2.1. Study Area

The Gilgit River basin, which is a sub-basin of the Upper Indus Basin, lies in the
eastern areas of the Hindukush mountains; its latitude is 35◦55′35′′ N–36◦52′20′′ N, its
longitude is 72◦26′04′′ E–74◦18′25′′ E and its elevations are between 1454 and 7048 m a.s.l.
The Gilgit River basin has a 12,095 km2 drainage area at the Gilgit gauging station. The
river originates from the Shandoor Plains in the North of Gilgit Baltistan, Pakistan, with a
right tributary of Baha Lake and small tributaries of Ghizar, Ishkoman, Yasin and Phandar.

The catchment of Gilgit above 5000 m elevation is approximately 10% of its drainage
area. This is covered with permanent snow and glaciers. About 87% of the catchment
area of the Gilgit basin is covered with winter snow, which is reduced by up to 11% in
summers during the ablation period. From 1981 to 2010, the Gilgit River had an annual flow
discharge of 291 m3/s, with a sediment load of 448 mg/L. The snow starts to accumulate
at the end of October, whereas the ablation period starts after the snow-melting process
in July. About 75% of basin rainfall is received during April–October. The recorded mean
annual is 670 mm in the basin. Similarly, the monthly basin mean temperature varies from
−19.8 to 7.20 ◦C. The geographical features and hydrological characteristics of the Gilgit
River catchment are also shown in Figures 1 and 2.
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Figure 2. (a) Mean temperature (Tmean), discharge (Q) and SSC at the Gilgit gauge; (b) snow-covered
area (SCA), mean rainfall (Rmean) and mean evapotranspiration (Evapmean) for the Gilgit Basin during
1981–2010.

The Water and Power Development Authority (WAPDA) installed stream gauging
stations in the Gilgit River to monitor the stream flow and suspended sediment concen-
trations (SSCs). The Pakistan Metrological Department also installed monitoring stations
to record long-term climate parameters in the catchment area. The WAPDA also installed
meteorological stations at Shendure, Ushkore and Yasin and have recorded data since
1996. The data of stream discharge suspended sediments and climatic variables have been
collected for thirty years (1981–2010) for the Gilgit Basin. Most of the climatic stations are
installed in the valley and data from these stations are scarce (see Figures 1 and 2). To make
better prediction results, data was collected for the Gilgit River basin from 1981 to 2010
as shown in Table 1. This data included climate information, snow cover, evapotranspi-
ration and gridded climate. A Shuttler Radar Topography Missions (STRM) model and
a digital evaluation model (DEM) with a 30 m resolution were used to extract catchment
grid datasets. The rainfall data, river flow data and basin temperature data were recorded
regularly, while suspended sediment concentration (SSC) data were recorded with fixed
intervals in the order of days.

The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD10A2 product of
resolution (500 × 500 m) was collected weekly for 10 years (from 2000 to 2010) from the
online available data server of the National Snow and Ice Data Center Pakistan (NSIDC).
These data were used in the estimation of the snow cover area and snowmelt impacts on
runoff [4,57,58]. A linear interpolation method was applied for the estimation of daily snow
cover fractions during a specified period. Finally, after the validation and calibration of the
snow model with MODIS, the data were analyzed using a temperature index snow (TIS)
model for snow cover fraction estimations during a specific time (1981–2010).

The relationships between input and output variables are shown in Table 2. The
methods of cross-correlation, auto-correlation and partial auto-correlation are commonly
used in the literature when deciding the input combinations of the soft computing models.
The present study also used various input combinations, which were identified based on a
correlation analysis.

To capture the physics of the catchment in soft computing models for sediment yield
estimations, the stream discharge inputs were used for capturing the channel erosion.
The snow cover fraction, rainfall and temperature inputs were also used to capture the
snow/glacier erosion and hill slope erosion. Similarly, inputs of evapotranspiration were
used, which had an indirect relationship with the generation of sediment yields due to
vegetative cover in the basin catchment area.
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Table 1. Data collected for the prediction of suspended sediment yields for the Gilgit River basin.

Variable Data Source Interval Period Source

Q * Mean daily discharge (m3/s) Daily 1981–2010 Water and Power Development
Authority (WAPDA), Pakistan

SSC * Suspended sediment
concentration (mg/L) Intermittent weekdays 1981–2010 Water and Power Development

Authority (WAPDA), Pakistan

SCF

Snow cover fractions
calculated from MODIS

satellite data ranging
from 0 to 1

Weekly 2000–2010 https://nsidc.org/data/MOD10A2
accessed on 24 April 2020

T

Daily maximum, minimum
and mean basin air

temperature for a grid of
5 × 5 km in size (◦C)

Daily 1981–2010 [59,60]

P
Daily mean rainfall

(mm/day) on a grid of
5 × 5 km in size

Daily 1981–2010 [59,60]

Evap

Daily mean
evapotranspiration

(mm/day) on a grid of
5 × 5 km in size

Daily 1981–2010 [59,60]

Notes: * Variables Q and SSC were recorded at the Gilgit gauging station while SCF, T, P and Evap are averages of
the basin grid datasets.

Prior to the training and testing of soft computing models, a log transformation was
applied to the flows and suspended sediments to reduce biases of higher values. The
datasets were split into training (70%) and testing (30%) periods [61]. The daily measured
SSC was not continuously available.

The sediment rating curves (SRCs) were developed for training and testing for flows
and SSC values for the 1981–2003 (1–537 days) and 2003–2010 (538–767 days) periods. In the
present study, non-random sampling for the training and testing periods was conducted
in MATLAB for the sediment yield predictions by using various input combinations in
the black box ANN, MARS, SVR, M5Tree and RM5Tree models during the training and
testing periods in MATLAB to find the best performance of the models for sediment
yield prediction.

Table 2. Relationship between different input variables using Pearson’s correlation coefficient.

Input Variable Description
(Basin Average)

Log Q
(m3/Day)

log SSY
(tons/Day)

SCA
(Fractions)

Tavg
(◦C)

P
(mm)

Evap
(mm/Day)

log Q Logarithm of
discharge 1.000

log SSY Logarithm of
sediment yields 0.870 1.000

SCA Snow cover area −0.850 −0.740 1.000
Tavg. Temperature 0.870 0.790 −0.880 1.000

P Effective rainfall 0.160 0.150 0.090 0.100 1.000
Evap. Evapotranspiration 0.860 0.810 −0.820 0.930 0.060 1.000

2.2. Snow cover Estimation Using the Temperature Index Snow Model

The Gilgit River basin has a scarcity of climatic data for longer periods. Previous
researchers [62–64] found that rainfall amounts above 5000 m of elevation are 5–10 times
higher than the valley-recorded rainfalls. To cater to these data gaps, grid data of tem-

https://nsidc.org/data/MOD10A2
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perature and rainfalls of the Himalayan Adaptation, Water and Resilience (HI-AWARE)
project [59,60] was used.

For long-term estimation of the snowmelt and snow cover area, a spatially distributed
temperature index model was selected in the study. The selected model was calibrated
for ten years (2000–2010) using Moderate Resolution Imaging Spectroradiometer (MODIS)
snow cover fractions. Daily precipitation was split into liquid rainfall and snow in the
temperature index snowmelt model [4,65,66].

The daily maximum, minimum and threshold (TRS) temperature data were used to
separate the amount of snow and liquid rainfall using the following equations:{

Rain = R = CpP
Snow = S = (1−Cp)P

(1)

where Cp is the precipitation factor, which is proportionate to temperature difference and is
calculated using the following system of equations:

Cp = 1 if Tmin > TRS
Cp = 0 if Tmax ≤ TRS

Cp = Tmax−TRS
Tmax−Tmin

if Tmin ≤ TRS < Tmax

(2)

TRS (◦C) was used to group precipitation into the rain or snow categories, while TSM
was used to calculate the snow-melting process. The snow-melting process depends on
several environmental factors, such as the river basin boundary conditions of temperature
and air relative humidity.

The daily snow-melting rate (Msnow (mm/day)) was estimated as follows:{
Msnow = Ksnow(Tmean − TSM) if Tmean > TSM

Msnow = 0 if Tmean > TSM
(3)

where Ksnow is the snow-melting day degree factor (mm/day ◦C), Tmean is the daily
mean/average air temperature (◦C) and TSM is the threshold temperature (◦C).

Later, the snow depth (mm) for each grid point (i) was simulated using the
following equation:

SDi(t) = SDi(t− 1) + Si(t)− Msnowi(t) (4)

Then, the snow cover fraction (SCF) for a number of grids (i = 1, 2, 3, 4, . . . , N) in the
complete basin area was estimated for validation and calibration using the MODIS snow
cover fractions as follows:

SCF (t) =
1
N

N

∑
i=1

H [SDi(t)] (5)

where H is the unit step function (H = 0, SD = 0 and H = 1; then, SD > 0) and N represents
the basin area under investigation, sub-basins, elevation bands, etc.

2.3. Artificial Neural Networks

Artificial neural networks (ANNs) are black box models consisting of a set of neurons
and their connections of weights. The ANN architecture is basically a set of input, hidden
and output layers. Each of the ANN layers is connected by networks of neurons. The ANN
algorithm transfers the input to the output neurons by using neurons of a hidden layer
with an activation function. These hidden neurons are summed to calculate the non-linear
outputs in the output layer. The system of networks generally uses the sigmoid transfer
functions, which are connected with multilayer neurons called a multilayer perceptron
(MLP). Studies [4,67–73] from a literature review further explained the detailed information
about ANN models and their uses in the field of water resources.

Figure 3 shows the multilayer perceptron neural networks (MLPNNs) with networks
of input neurons connected to the output neuron using several hidden neurons of the
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hidden layer. In this study, a robust MLPNN with the Levenberg–Marquardt algorithm of
the feedforward backpropagation approach was used. In feedforward backpropagations,
output errors between actual and model outputs are calculated. These output errors are
then backpropagated through connected networks to hidden layers to correct the neuron
weights. An MLPNN with the Levenberg–Marquardt algorithm is a fast and powerful data
convergence tool; its relationship between the N input variables (xi: I = 1, 2, . . . , N) and M
hidden neurons with one output node (Y) is as follows:

Y = β0 +
M

∑
j=1

wj

[
φ

(
N

∑
i=1

xiwij + βj

)]
(6)
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2.4. Multivariate Adaptive Regression Splines (MARS)

MARS is an adaptive non-linear fitting procedure developed in 1991 [75]. The MARS
model uses a deterministic modeling approach to form a final regression model using the
interactions between specified input variables. Various studies [51,76,77] used the MARS
model as a prediction model in different non-linear processes. The MARS model can easily
interpret the input–output relationships compared with other modeling approaches [78–80].
Figure 4 shows the schematic diagram of the MARS model with an independent variable X
and its dependent variable Y. In the MARS model, the space of the X variable divides the
series of segments with different slopes fitted with a linear basis function to describe the
input–output relationships between the X and Y variables.
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The segments of X–Y relationships are divided into break values known as knots. This
relationship produces piecewise regression lines of basic functions (BFs) [81] according to

Ŷ(x) = β0 +
m

∑
i=1

βiBFi (7)

where β0 is a constant value, BFi is the number of basis functions and βi represents the
coefficient for the BFs. A basis function (BF) using a piecewise relationship is calculated [82]
as follows:

[max (0, x−Ci)] OR [max (0, Ci − x)] (8)

In Equation (8), the variable x is a predictor variable with C knots. In this way, more
equations using BFs are added up in a final regression expression with their independent
variables. The MARS model consists of two phases called forward step and backward step
phases. The forward step phase generates the location of all knots and their possible BFs
by using the generalized cross-validation criterion (GCV). In the backward step, MARS
reduces the number of BFs to improve its model prediction. More details about MARS can
be obtained from the literature [75,77].

2.5. Support Vector Regression

Support vector regression (SVR) is a machine learning model proposed by
Vanpik et al. [83] to predict the outputs of non-linear processes. In SVR modeling, the
regressed function provides small residual values between the actual and predicted output
values [84]. SVR conveys non-linear mapping of input variables into the targeted values. In
SVR, the evolved model y(X, w) increases the prediction accuracy, resulting in insignificant
errors defined [85] as

e[O− y(X, w)] = max{0, |S− f(X, w)| − ε | ε > 0} (9)

where X, S and w are known as the input variable, observed output and unknown coeffi-
cient vector, respectively. ε is an insensitive loss function in Equation (9), which is used to
ignore any error |O− y(X, w)| less than ε. The non-linear relationship between the input
and output datasets in SVR is expressed [86] as

y = b +
N

∑
i=1

wiK(x, xi) (10)

where b is the bias, K(x, xi) is the Kernel function for N feature spaces and w is the weight
vector that connects the Kernel function with the observed response [85,87]. The Gaussian
kernel function in SVR used for non-linear mapping is given [88] as

K(x, xi) = exp
(
−0.5||x− xi||2/σ2

)
(11)

where σ is the kernel parameter used to smooth the kernel mapping function for the value
of σ > 0.

Figure 5 shows the schematic diagram of the support vector regression model to
predict non-linear processes with y target values of the output layer using the input datasets
(x1, x2, x3, . . . , xn) of the input layer, along with the kernel functions, i.e., K(x, xi) of the
hidden layer.
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In the current study, the support vector regression (SVR) model used an optimization
model [83] given as
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2
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In this equation, ε, σ and C are the model parameters of the SVR used for its model
optimization using a trial and error procedure.

2.6. Response Surface Method (RSM)

The RSM involves a non-linear relationship of a second-order polynomial basis func-
tion given as [90–92]

Y = a0 +
M

∑
i=1

aixi +
M

∑
i=1

M

∑
j=i

aijxixj (13)

where Y is the predicted output, M is the number of input datasets, a0 is the bias, ai and aij
are unknown coefficients, xi and xj are weight constants of polynomial elements. The RSM
algorithm is highly dependent upon the values of the bias and model constant weights.
Therefore, the RSM model is calibrated using the least-squares estimator [93,94] given as

a = [P(X)T P(X)]
−1

[P(X)TY] (14)

where P(X) is the polynomial vector of input datasets during the training phase for N data
points and is calculated as follows:

P(X) =


1 x1,1 . . . x2

1,1 x1,1x2,1 . . . x2
M,1

1 x1,2 . . . x2
1,2 x1,2x2,2 . . . x2

M,2
...

... . . .
...

... . . .
...

1 x1,N . . . x2
1,N x1,N x2,N . . . x2

M,N

 (15)

Y =


Y1
Y2
Y3
...

YN

 (16)
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Finally, after substituting Equation (16) into Equation (15), the predicted output values
of Y [95–97] can be calculated as follows:

Y(Xi) = P(Xi)
T [P(X)T P(X)]

−1
[P(X)TY] (17)

and P(Xi)
T is given as

P(Xi)
T = [1, xi1, xi,2, . . . , xiM, x2

i,1, xi,1xi,2, xi,1xi,3, . . . , x2
i,2, xi,2xi,3, . . . , xi,M−1xi,M, x2

i,M] (18)

2.7. M5Tree Model

The M5 tree model is a machine learning method. It is applicable for data mining
and prediction purposes by using its tree-based structure to capture the relationship be-
tween the input and output datasets [98,99]. The M5 tree model works with tree-based
decision and dominance-based approaches to substitute linear regression equations at each
node. The substitution of linear regression equations into the model is used to predict the
numerical variables.

Figure 6 shows the structure of an M5 tree model with tree-like roots, leaves, nodes
and branches for database splitting and prediction. The algorithm first splits the datasets
into a decision tree using a data split criterion. The M5 tree model using the split criterion
reduces the standard deviations (SDs) at the model offspring node. Thereafter, the parent
node does not split further and the model end node or leaf is attained using the following
standard deviation formula:

SD = sd(S)−
N

∑
i=1

Si
S

sd(Si) (19)

where S is the sample set of each node; Si is the samples subset with the ith potential test
result; and sd is the standard deviation, which is given below as

SD(S) =

√√√√ 1
M

(
M

∑
i=1

(xi)
2− 1

M
(

M

∑
i=1

xi)2 (20)

where M is the number of datasets and xi is the numerical targeted value of the ith
attribute sample.

During the M5 tree model classification process, offspring nodes have better accuracy
and homogeneity with lower standard deviations compared with their parent nodes. At
the end of the classification process, M5 tree models undertake an examination of all the
possible classifications and choose the one classification that has the lowest errors. In the
second step, the M5 tree model further shrinks the overgrown and overfitted branches of
the model tree by replacing them with a linear regression function [100].
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2.8. Radial M5Tree Model

In this research, the radial basis M5 tree approach was introduced to enhance the
accuracy of sediment predictions. The radial basis function (RBF) is used for the input
datasets to transfer the original values of input variables into radial map base feature
space [74,102] according to

Kij = ϕ(
∥∥Ni −Cj

∥∥, ε) = exp(−ε
∥∥Ni −Cj

∥∥2
) i = 1, . . . , NV j = 1, . . . , nRF (21)

where nRF is the number of radial basis sets; ε is the shape factor; C is the center of the
radial basis function (RBF); and N is the normalized map [103], which can be calculated
as follows:

N =
X− µx
σx

(22)

where µx is the mean of the input datasets x and σx is the standard deviation of the dataset x.
Figure 7 shows the radial basis function transformation (K) using Equation (21) for

non-linear processes. In this way, new training phase datasets of the RM5 tree model are
used to transfer actual datasets from the x-space to nRF radial basis sets (using a radial basis
map). In the RBF, two parameters, i.e., the location of the center ε = 0.5 and the shape of the
center points C = [Xmin Xmax], are randomly selected based on the domain of datasets.

Figure 7. Schematic diagram of a radial basis function transformation (K) for C = 0 and ε = 0.5.

Figure 8 represents the schematic diagram of an RM5 tree model with three layers,
namely, input, transfer and calibration. In the input layer, input datasets are normalized
using Equation (21). The following steps are involved in transferring RBF datasets to the
second layer:

a. Creation of a randomly selected center point of RBF datasets.
b. Transformation of input datasets of layer 1 into a radial space using Equation (21) on

the basis of the RBF center point as follows:

Z =


z1,1 z1,2 · · · z1,NV
z2,1 z2,2 · · · z2,NV

...
...

. . .
...

zN,1 zN,2 · · · zN,NV

 → K =


K1,1 K1,2 · · · K1,RF
K2,1 K2,2 · · · K2,RF

...
...

. . .
...

KN,1 KN,2 · · · KN,RF

 (23)

where N is the no. of training datasets; in Kij, i = 1, 2, . . . , N and j = 1, 2, . . . , RF represent
the number of input variables and the number of radial input datasets, respectively. In M5
tree models, radial input datasets are used in the training of datasets. However, M5 tree
models improve the prediction accuracy by using several center points with a Gaussian
function applied in non-linear mapping [104].
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2.9. Sediment Rating Curve (SRC)

The SRC provides an empirical relationship between the sediment load and water
flows through the following relationship:

SSL(t) = a×Qb
(t) (24)

where SSL (tons/day) is the sediment load and Q is the river/water discharge (m3/day),
where both are log-transformed, and a and b are constants that depend on the river and
catchment characteristics.

2.10. Performance Metrics for Model Evaluation

The models’ performances were assessed using the following statistical metrics:
Root-mean-square error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

((Sio)− (Sis)) 2 (25)

Pearson’s correlation coefficient (R2):

R2 =

 ∑N
i=1
(
Si0 − Sio

)(
Sis − Sis

)√
∑N

i=1
(
Si0 − Sio

)2
∑N

i=1
(
Sis − Sis

)2

2

(26)

Mean absolute percentage error (MAPE):

MAPE (%age) =
1
N

N

∑
i=1

∣∣∣∣Sio − Sis
Sio

∣∣∣∣× 100 (27)

where N is the number of data points, Sio is the actual sediment load, Sis is the model-
predicted sediment and Sis is the average estimated sediment load.

Relative accuracy (%):
The relative accuracy or percentage accuracy was calculated using the following

expression:

R.A =

(
1−

∣∣∣∣Spo − Sps

Spo

∣∣∣∣)× 100 (28)

where Spo is the actual peak SSY value and Sps is the model-simulated peak SSY value.
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2.11. Application of the ANN, MARS, SVR, M5Tree, RM5Tree and RSM Models

For the application of the ANN, MARS, SVR, M5Tree, RM5Tree and RSM models,
many input variable combinations with daily lag times were analyzed by testing the model
accuracy through the highest R2 and minimum RMSE and MAPE values as performance
criteria. Out of various input combinations, the following best input scenarios (S1–S8)
developed for predictions of sediment yields in this study are listed below:

(a) Flows:

S1 = SSCt = f (β1, β2, β3, β4, β5, Qt, Qt−1, Qt−2, Qt−3, Qt−4,) + ei

(b) Snow cover area and flows:

S2 = SSCt = f (β1, β6, β7, β8, SCAt, SCAt−1, SCAt−2, Qt,) + ei

(c) Flow, snow cover area and effective rainfall:

S3 = SSCt = f (β1, β9, β6, β10, Rt−1, SCAt, SCAt−4, Qt,) + ei

(d) Flow, snow cover area, temperature and evapotranspiration:

S4 = SSCt = f (β1, β11, β12, β6, β10, Tt−1, Evapt−1, SCAt, SCAt−4, Qt) + ei

S5 = SSCt = f (β1, β2, β11, β12, β6, Tt−1, Evapt−1, SCAt, Qt, Qt−1) + ei

(e) Mean basin air temperature:

S6 = SSCt = f (β13, β11, β14, β15, β16, Tt, Tt−1, Tt−2, Tt−3, Tt−4) + ei

(f) Flow, snow cover area, temperature, rainfall and evapotranspiration:

S7 = SSCt = f (β1, β13, β12, β6, β9, Tt, Evapt−1, SCAt, Rt−1, Qt) + ei

S8 = SSCt = f (Tt−1, Evapt−1, SCAt, Rt−1, β1, β11, β12, β6, β9, Qt,) + ei

In the combinations above, β1–β16 represent the membership functions of layers in
the ANN, MARS, SVR, M5Tree, RM5Tree and RSM models.

3. Results and Discussions
3.1. Simulation Results of Snow Melting and Snow Cover Area

Table 3 shows the results of the temperature index snowmelt model during the
training (2000–2007) and testing (2008–2010) periods. The model simulated the snow
cover using the degree day factor ksnow = 4.2 mm/day/◦C [4] of the snowmelt model
for the Gilgit Basin. The previous case studies in the regions of the Upper Indus Basin
(UIB) [57,58,105–108] found that the value of Ksnow ranged from 3 to 7 mm/day/◦C. Thus,
the value of ksnow = 4.2 mm/day/◦C of the current study lay within the range of past
studies carried out for the calibrations and validations of the snowmelt runoff model. The
difference between the Ksnow values found during different case studies was due to the use
of different periods and grid resolutions of input and output datasets, threshold tempera-
tures for separation of rainfall and snowmelts, and Gilgit River basin characteristics.
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Table 3. Statistical measurements for the accuracy of the temperature index snow model’s results
that predicted snowmelt and snow fractions during the calibration (2000–2007) and validation
(2008) periods.

ksnow = 4.2 mm/Day/◦C

Calibration Period (2000–2007) Validation Period (2008–2010)

R2 0.90 0.90
MAPE 0.12 0.10
RMSE 0.15 0.15

Performance measurement statistics during the training and testing periods of the
snowmelt model are shown in Table 3. Table 3 shows an R2 value of 0.90 between the
MODIS-extracted snow cover fraction and simulated snow cover fraction during calibra-
tions and testing. A greater than 70% goodness of fit for the snowmelt model was obtained
using three performance criteria of R2, MAPE and RMSE for satisfactory estimations of
the snow cover area and snowmelt. The time series plot between MODIS-observed snow
cover and snow-model-simulated snow cover area during model calibration (2000–2007)
and validation (2008–2010) period is shown in the Figure 9.
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3.2. Comparison of the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC Models

Tables 4–9 show the results of the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and
SRC models for the prediction of sediment yields of the Gilgit Basin during the training
and testing periods by using different input scenarios. Table 4 shows that the ANN model
performed the best using input scenario S2 (SCAt − SCAt−2, Qt). The ANN model with
input combination S2 had the lowest RMSE value of 0.40 and the highest R2 value of 0.67
during the testing period compared with the other input combinations for sediment load
predictions. Similarly, Table 5 shows the results of different input scenarios when using the
MARS algorithm for the Gilgit Basin during the training and testing phases. The MARS
model performed the best using input scenario S3 (SCAt, SCAt−4, Qt, Rt−1). During the
testing period, the best MARS model with scenario S3 produced the lowest RMSE value of
0.53 and the highest R2 value of 0.68.
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Table 4. Training and testing statistics of the ANN algorithm using various input combinations for
the Gilgit River basin.

Scenarios Model Inputs
R2 RMSE MAPE (%)

Training Testing Training Testing Training Testing

S1 Qt, Qt−1 − Qt−4 0.86 0.62 0.40 0.61 9.89 12.90
S2 SCAt, SCAt−2, Qt 0.86 0.67 0.40 0.54 9.94 12.45
S3 SCAt, SCAt−4, Qt, Rt−1 0.86 0.64 0.40 0.58 9.83 12.74
S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.85 0.64 0.40 0.57 9.93 13.17
S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1 0.86 0.64 0.40 0.60 9.68 14.21
S6 Tt − Tt−4 0.81 0.60 0.46 0.61 11.49 14.14
S7 SCAt, Evapt−1, Qt, Rt−1, Tt 0.86 0.64 0.40 0.60 13.17 9.83
S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.86 0.65 0.40 0.57 9.80 12.71

Table 5. Training and testing statistics of the MARS algorithm using various input combinations for
the Gilgit River basin.

Scenarios Model Inputs
R2 RMSE MAPE (%)

Training Testing Training Testing Training Testing

S1 Qt, Qt−1 − Qt−4 0.84 0.64 0.42 0.58 10.69 12.97
S2 SCAt, SCAt−2, Qt 0.82 0.67 0.44 0.54 10.65 12.03
S3 SCAt, SCAt−4, Qt, Rt−1 0.83 0.68 0.44 0.53 10.79 11.71
S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.85 0.64 0.40 0.55 10.03 12.21
S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1 0.84 0.66 0.42 0.55 10.38 12.24
S6 Tt − Tt−4 0.77 0.56 0.51 0.60 12.64 13.74
S7 SCAt, Evapt−1, Qt, Rt−1, Tt 0.86 0.64 0.40 0.57 9.91 12.49
S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.84 0.65 0.42 0.54 10.33 12.04

Table 6. Training and testing statistics of the SVR algorithm using various input combinations for the
Gilgit River basin.

Scenarios Model Inputs
R2 RMSE MAPE (%)

Training Testing Training Testing Training Testing

S1 Qt, Qt−1 − Qt−4 0.82 0.69 0.45 0.53 10.79 11.94
S2 SCAt, SCAt−2, Qt 0.86 0.69 0.40 0.57 9.37 11.80
S3 SCAt, SCAt−4, Qt, Rt−1 0.83 0.69 0.43 0.51 10.35 11.30
S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.84 0.70 0.42 0.51 9.81 10.92
S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1 0.85 0.62 0.41 0.60 9.76 12.38
S6 Tt − Tt-4 0.84 0.53 0.42 0.67 8.93 13.54
S7 SCAt, Evapt−1, Qt, Rt−1, Tt 0.85 0.69 0.41 0.55 9.81 11.93
S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.85 0.68 0.41 0.53 9.72 11.16

Table 7. Training and testing statistics of the M5Tree algorithm using various input combinations for
the Gilgit River basin.

Scenarios Model Inputs
R2 RMSE MAPE (%)

Training Testing Training Testing Training Testing

S1 Qt, Qt−1 − Qt−4 0.94 0.62 0.25 0.64 5.02 15.13
S2 SCAt, SCAt−2, Qt 0.95 0.63 0.24 0.59 4.71 14.07
S3 SCAt, SCAt−4, Qt, Rt−1 0.95 0.52 0.24 0.72 5.08 16.06
S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.95 0.56 0.23 0.65 5.11 15.64
S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1 0.96 0.59 0.21 0.63 4.66 15.14
S6 Tt − Tt−4 0.96 0.50 0.21 0.72 4.73 17.16
S7 SCAt, Evapt−1, Qt, Rt−1, Tt 0.95 0.57 0.23 0.67 4.90 16.36
S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.95 0.59 0.22 0.65 4.81 15.08
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Table 8. Training and testing statistics of the RM5Tree algorithm using various input combinations
for the Gilgit River basin.

Scenarios Model Inputs
R2 RMSE MAPE (%)

Training Testing Training Testing Training Testing

S1 Qt, Qt−1 − Qt−4 0.81 0.71 0.46 0.53 11.08 11.85
S2 SCAt, SCAt−2, Qt 0.83 0.70 0.44 0.52 10.73 11.70
S3 SCAt, SCAt−4, Qt, Rt−1 0.81 0.70 0.47 0.52 11.47 12.00
S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.83 0.71 0.44 0.51 10.75 11.76
S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1 0.82 0.72 0.44 0.52 10.69 12.03
S6 Tt − Tt−4 0.76 0.60 0.51 0.58 12.92 13.67
S7 SCAt, Evapt−1, Qt, Rt−1, Tt 0.83 0.71 0.44 0.54 10.66 12.36
S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.83 0.72 0.44 0.51 10.76 11.99

Table 9. Training and testing statistics of the RSM algorithm using various input combinations for
the Gilgit River basin.

Scenarios Model Inputs
R2 RMSE MAPE (%)

Training Testing Training Testing Training Testing

S1 Qt, Qt−1 − Qt−4 0.82 0.66 0.45 0.59 10.90 13.07
S2 SCAt, SCAt−2, Qt 0.83 0.66 0.43 0.55 10.56 12.36
S3 SCAt, SCAt−4, Qt, Rt−1, 0.83 0.65 0.44 0.55 10.68 12.10
S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.83 0.66 0.43 0.54 10.46 12.22
S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1 0.84 0.67 0.42 0.53 10.46 11.75
S6 Tt − Tt−4 0.77 0.58 0.50 0.60 12.54 14.08
S7 SCAt, Evapt−1, Qt, Rt−1, Tt 0.84 0.68 0.42 0.53 10.38 12.00
S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.84 0.68 0.42 0.51 10.42 11.72

Table 6 shows that the SVR model performed the best with its input combination
of S4 (SCAt, SCAt−4, Qt, Evapt−1, Tt−1). The best SVR algorithm with the S4 scenario
had the lowest value of RMSE (0.51) and the highest R2 (0.70) during the testing period.
As is apparent from Table 7, the input scenario of S2 (SCAt, SCAt−2, Qt) gave the best
performance of the M5Tree model for the prediction of sediment yields. The best M5Tree
model provided the lowest RMSE value of 0.59 and the highest R2 value of 0.63 during the
testing period.

The results of the RM5Tree algorithm are shown in Table 8. The input combinations
of S8 (SCAt, Qt, Evapt−1, Rt−1, Tt−1) performed the best compared with the other input
scenarios during the testing period for the RM5Tree algorithm for predictions of suspended
sediments for the Gilgit River basin. The RM5Tree model provided the lowest RMSE value
of 0.44 and the highest R2 value of 0.72.

Table 9 shows the results of the RSM models for the prediction of sediment loads
in the Gilgit River basin by using various input combinations. As seen from Table 9, the
RSM model also performed the best with the input scenario of S8 (SCAt, Qt, Evapt−1, Rt−1,
Tt−1) compared with the other input scenarios for the estimation of sediments. The best
RSM model had the lowest RMSE value of 0.51 and the highest R2 value of 0.68 during the
testing phase.

The SRC model was also selected to predict the sediment load in the Gilgit River in
this study. Initially, the flow and sediment yield datasets were converted to logarithm
datasets for the twenty-three-year (1981–2003) training period (1–537 days) and seven-year
(2003–2010) testing period (538–6767 days). Figure 10 showns the plotting of sediment
rating curve. A power law function was selected and used for the SRC training. After the
SRC training with 70% of the dataset containing twenty-three years (1981–2003) of data,
the remaining 30% of the dataset with seven years (2003–2010) of data was used for testing
of the model.
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The results presented in Table 8 show that the RM5Tree model increased the accuracy
of the SSY model for the sediment load prediction of the Gilgit River basin. The selected
inputs for the prediction model included the flow, area under snow cover, effective rainfall
in the basin, mean air temperature in the basin area and mean evapotranspiration in the
basin area. The sediment load prediction accuracy of the RM5Tree model was improved
(R2 = 0.72) after the introduction of snow cover and effective mean rainfall combination;
additional input parameters included the flows, mean evapotranspiration and average air
temperature of the Gilgit River basin.

The entire model’s performance with the inputs scenarios of the mean basin average
temperature T alone was worse than the input scenarios consisting of discharges, effective
rainfalls, snow cover and evapotranspiration. Moreover, the performance of all the algo-
rithms with the input scenarios consisting of the average basin temperature T was also
worse than the traditional SRC model.

Table 10 presents an overall comparison of the performance measurements of the SRC,
MARS, ANN, SVR, M5Tree, RM5Tree and RSM models for the Gilgit River basin for the
sediment yield estimation. Table 10 shows that the RM5Tree algorithm performed better
than all the other algorithms, with the least RMSE value of 0.51 and the highest R2 value of
0.72 when testing the calibrated models.

Table 10. Performance accuracy comparison between the SRC, ANN, MARS, SVR, M5Tree, RM5Tree,
RSM and SVR model results in the predictions of sediment yields in the Gilgit River basin.

Models
Results for Training Period Results for Testing Period

R2 RMSE MAPE (%) R2 RMSE MAPE (%)

SRC 0.80 0.49 13.29 0.71 0.60 13.82
ANN 0.86 0.40 9.94 0.67 0.54 12.45
MARS 0.83 0.44 10.79 0.68 0.53 11.71

SVR 0.84 0.42 9.81 0.70 0.51 10.92
M5Tree 0.95 0.24 4.71 0.63 0.59 14.07

RM5Tree 0.83 0.44 10.76 0.72 0.51 11.99
RSM 0.84 0.42 10.42 0.68 0.51 11.72

The data in scatter plots between the noted and model-predicted suspended sediment
yields (SSYs) during the testing period that were found using the ANN, MARS, SVR, SVR,
M5Tree, RM5Tree, RSM and SRC models are shown in Figure 11. It can be clearly observed
that the RM5Tree model had the highest R2 value of 0.72 during testing, while M5Tree
seemed to have the most scattered estimates.

Similarly, Figure 12 shows the comparison between observed and estimated SSYs
found using the best models via annual time series plotting. It is clear from the figure that
the RM5Tree model offered better accuracy when predicting the annual observed sediment
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yields than the ANN, MARS, SVR, M5Tree, RSM and SRC models, while the results of SVR
models were the second best in terms of prediction accuracy.
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MARS, SVR, M5Tree, RM5Tree, RSM and SRC models.

Figure 13 shows the detailed graphs of the peak annual sediment yields. For the
flood period of the year 2005, the predictions of the RM5Tree and SVR were relatively
closer to the annual measured sediment yields in comparison to the ANN, MARS, M5Tee
and RSM models. However, sediment yields were highly overestimated by the SRC and
underestimated by the MARS and RSM models. The ANN and M5Tree models significantly
underestimated the annual sediment loads.
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Figure 13. Time series plots of the best performance measures for the predictions of SSYs during high
and low flow periods that were found using the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC
models in predictions of sediment yields for the Gilgit Rive basin.
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Similarly, from Figure 13, it is also seen that the ANN and M5Tree models predicted
better results for the annual measured SSY during the low flow period of the year 1984 com-
pared with the RM5Tree, MARS and RSM models. Moreover, the SRC again overestimated
the sediment yields relative to the ANN, MARS, SVR, M5Tree, RM5Tree and RSM models.

Table 11 shows a comparison between the mean SSY result values of the Gilgit River
basin using the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC models. The data
shows that the RM5Tree model predicted the mean peak sediment fluxes of 6613 (tons/day)
as 6177 (tons/day), whereas the ANN, MARS, SVR, M5Tree, RSM and SRC models pro-
duced smaller predicted values than RM5Tree. The table data also shows that the RM5Tree
model results were more accurate (84.10%) as compared with the ANN (80.62%), MARS
(77.86%), SVR (81.90%), M5Tree (80.20%), RSM (74.58%), and SRC (62.49%) models in
predicting the peak values of the sediment load in the Gilgit River basin.

Table 11. Comparison of the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC models’ abso-
lute sediment fluxes and relative accuracies (%) for the peak estimations of the SSY for the Gilgit
gauging station.

Year Peaks > 3200
[tons/Day]

ANN
[tons/Day]

MARS
[tons/Day]

SVR
[tons/Day]

M5Tree
[tons/Day]

RM5Tree
[tons/Day]

RSM
[tons/Day]

SRC
[tons/Day]

1983 3901 4092
(95.09)

3603
(89.81)

4376
(93.07)

3432
(87.99)

3861
(98.99)

4163
(93.28)

5008
(71.62)

1984 4955 3945
(79.61)

3960
(79.93)

2937
(74.46)

4410
(89.01)

3135
(63.28)

3428
(69.19)

4704
(94.93)

1991 3256 3013
(92.52)

2917
(89.57)

2916
(96.80)

3140
(96.43)

3024
(92.87)

3022
(92.80)

4806
(52.40)

2003 4057 3085
(76.03)

2741
(67.57)

2516
(81.56)

3332
(82.12)

2904
(71.57)

2568
(63.29)

4732
(83.38)

2005 16,898 10,113
(59.85)

10,585
(62.4)

13,794
(63.60)

7678
(45.44)

17,961
(93.71)

9184
(54.35)

35,507
(10.12)

Mean
(Relative Accuracy %) 6613 4849

(80.62)
4741

(77.86)
5308

(81.90)
4398

(80.20)
6177

(84.10)
4473

(74.58)
10,951
(62.49)

3.3. Discussions

The main aim of the present research work was to present a new modeling strategy
using the new soft computing models, such as RM5Tree, with inputs of flow, snow cover,
effective rainfall, temperature and evapotranspiration datasets to estimate the SSY. Based
on the performance of the evaluation criteria and graphical presentations, it was found
that the RM5Tree model had superior capability compared with the ANN, MARS, SVR,
M5Tree, RSM and SRC models to predict the SSY. The scatter plot results during the testing
phase revealed that the performance of the M5Tree model was the worst due to the fact that
the model structure was linear in nature and unable to capture the complex seasonal flow
processes, such as snowmelts, glacier melts, rainfall, snow cover depletions, and erosion of
sediments and its transports in the Gilgit Basin to estimate the SSY.

The RM5Tree model had an advantage over the rest of the models because its model
capability was based on its use of the radial basis function, which may capture non-linear
phenomena of sediment erosions and the flow process of nature using a black box modeling
approach. In the present study, the previous SSY values were not considered as inputs even
though this was the case in most of the studies in the literature. The measurement of SSY
is very difficult in practice, especially in the case of extreme events. The other important
issue is that SSY data are not continuously available in developing countries and the use of
lagged SSY data as inputs is not possible in such cases [109].

Ul Hussan et al. [4] used an artificial neural network (ANN), artificial neuro-fuzzy
logic inference system (ANFIS), multiple adaptive regression splines (MARS) and sediment
rating curve (SRC) for the prediction of sediments using random data sampling in MATLAB.
They found that the value of R2 ranged from 0.78 to 0.82 during the testing period. The
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accuracy of the ANN model was superior to the other models. Moreover, for the prediction
of the peak sediment, the relative accuracy of models ranged from 66.33 to 81.31%.

Kisi et al. [110] also used the RM5Tree, M5Tree, ANN, MARS and SVR models to
predict non-linear processes, such as daily flows in cold regions of Ljungan River, Sweden.
They found that RM5Tree offers superior accuracy compared with the M5Tree, ANN and
MARS algorithms. In the present study, the values of R2 ranges from 0.68 to 0.72 during
the testing period using the ANN, MARS, SVR, M5 Tree, RM5 Tree, RSM and SRC models
with a non-random sampling of the datasets. Moreover, during the prediction of the peak
sediment, the relative accuracies also ranged from 62.49 to 84.10%. It was also found
that the RM5Tree model performed superior compared with the M5Tree, ANN, MARS,
SVR, RSM and SRC models for the prediction of sediment yields in the complex sediment
generation processes in cold regions. Therefore, this suggests that soft computing models
can be successfully used for the prediction of non-linear processes, such as sediment yields.

4. Conclusions

In this study, the capability of the RM5Tree model was checked regarding the predic-
tion of the SSY using inputs of flow, snow cover, air temperature, effective rainfall and
evapotranspiration datasets. The results of the RM5Tree model were compared with ANN,
MARS, SVR, M5Tree, SRM and SRC models for the accurate estimation of the SSY in the
Gilgit River. The objective of the applicability of this new black box modeling approach for
predictions of the SSY was checked by knowing the background of physical processes of
hydrology involved in snow and glacier melts, which are triggered by air temperature and
snow cover depletion as the dominant factors. The channel erosion starts when the channel
flow starts. With an increase in basin air temperature, the process of snow melting increases
abruptly, which directly affects hill slope erosion. Rainfall causes mass wastage, rill and
sheet erosion. Evapotranspiration indirectly affects the catchment erosion phenomenon
due to basin vegetative cover.

After data analysis through different sediment load prediction models, this study
reached the conclusion that the performance of the RM5Tree model was satisfactory and
superior compared with other models regarding the prediction of the SSY in the catchment
of the Gilgit River. The model results helped to conclude that the study scenarios consisting
of temperature, effective rainfall, evapotranspiration and snow cover in combination with
river flows improved the sediment load prediction accuracy of the RM5Tree model in the
Gilgit Basin due to the influence of complex catchment processes of snow glacier melting,
land cover, gully and sheet erosions, etc.

It was also concluded that the predictions of the RM5Tree and SVR models for the flood
year of 2005 were closer to the measured one compared with the ANN, MARS, M5Tree,
RSM and SRC models. The RM5Tree and SVR models predicted the peak SSY with relative
accuracies of 84.10% and 81.10%, respectively. The SRC model highly overestimated the
annual sediment yields due to its sole relationship between the river discharges.

Overall, the RM5Tree model was superior and more successful at predicting sus-
pended sediment loads in the Gilgit Basin, with values of R2, RMSE and MAPE of 0.72,
0.51 tons/day and 11.99%, respectively. The limitation of the present research was the
availability of scarce datasets, especially the lower frequency of sediment measurements.
However, soft computing models can also help to bridge these data gaps with the selection
of a suitable soft computing modeling approach. In future studies, predictions of flows
should also be carried out using input parameters of the hydroclimate, snow cover and
evapotranspiration to check the applicability of the RM5Tree model.
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