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Abstract: This work presents a comprehensive coupled thermal-hydro-mechanical model to explore
the frost heave mechanism of the concrete-lined canal under a freeze–thaw environment. Unlike
previous models that regard concrete as a homogeneous material, this model considers concrete a
porous medium and considers the effect of the concrete pore structure, as well as the water content,
ice content, and ice-water phase transition, on the mechanical deformation of the canal. Firstly, based
on the theories of unsaturated soil mechanics, thermodynamics, and poroelasticity, the thermal-
hydro-mechanical coupling equations of the soil under the freeze–thaw condition are established.
Then, based on the theories of thermodynamics, poroelasticity, and permeability mechanics of porous
media, the thermal-hydro-mechanical coupling equations of the concrete under the freeze–thaw
condition are established. Finally, the freeze–thaw simulation of a canal is carried out and compared
with the referred indoor model test, in which the evolution behavior of temperature, frost depth,
and frost heave deformation of the canal are studied. The results show that the freezing process of
the soil foundation is a unidirectional process that develops from the surface to the bottom, and the
thawing process of the soil foundation is a bidirectional process that thaws from the surface and
bottom to the center. The frost heave deformation of the soil foundation at the 1/2~1/3 slope height
area is the largest, which may easily lead to frost heave damage to the concrete lining in this area.
The frost heave deformation of the canal obtained by the numerical simulation is consistent with the
experimental results, which illustrates the validity of the established model for predicting the frost
heave deformation of concrete-lined canals.

Keywords: concrete-lined canal; thermal-hydro-mechanical coupling; frost heave deformation

1. Introduction

In cold and arid regions, the concrete-lined canal is widely used in water conveyance
and agricultural irrigation, such as the South-to-North Water Transfer Project in China [1]
and the State Water Project in California [2]. Under the freeze–thaw environment, the
freezing and thawing of the soil usually cause uneven deformation of the soil foundation,
thus causing damage to the canal, such as the lining cracking and surface heaving. Accord-
ing to statistics, in China, 50–60% of the canals in Qinghai Province suffered serious frost
heave damage [3]. Over 90 canals in a large irrigation district in Heilongjiang Province
were damaged by frost heaving, accounting for 83% of the total canals [4]. The frost heave
damage not only limits the water conveyance capacity of the canal but also increases the
maintenance cost. To reduce the damage caused by frost heave deformation, it is important
to conduct in-depth research on the frost heave mechanism of the concrete-lined canal.

Scholars have carried out extensive research on the frost heave mechanism of the soil
by experimental method. Taber [5] experimentally observed the phenomenon of moisture
migration and water freezing during the freeze–thaw process of soil and pointed out that
water migration and ice-water phase transition are the main reasons for the frost heave
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deformation of soil. Through comparative studies, Taber concluded that soil composition,
water content, and freezing rate are the main factors affecting the frost heave deformation
of soil. Everett [6] quantitatively analyzed the frost heave deformation and frost heave
force through experiments and proposed the so-called capillary theory from the point of
view of equilibrium thermodynamics. The migration of unfrozen water in capillary caused
by frost heave force and suction force is the main reason for developing the frost heave
deformation of soil. Although the capillary theory can better describe the evolution of the
frost heave deformation of the soil, the calculated results obtained by this theory are quite
different from the experimental data. Miller [7] explored the reason for this discrepancy
and proposed the so-called frozen fringe theory. During the freezing process of the soil,
there is a non-freezing water area with low moisture content and low thermal conductivity
between the frozen and the unfrozen area. The fluidity and hydraulic pressure of this
non-freezing water play a decisive role in the moisture migration and the frost heave
deformation of the soil. With the continuous development of experimental technology, the
study of soil frost heaves has gradually transformed from a single physical field problem
to a thermal-hydro-mechanical coupled one, reflecting the water migration, heat transfer,
ice-water phase transition, and structural constraints. Scholars have established various
models to predict the frost heave characteristics of soil, such as the rigid ice model and
the hydrodynamic model. Based on the frozen fringe theory, O’Neill [8] established a
thermal-hydro coupled soil model under freeze–thaw conditions (the so-called rigid ice
model). The rigid ice model comprehensively considers various factors (migration velocity
of pore water, pore pressure, ice crystal formation rate, etc.), so the governing equations of
the model are very complex. It is generally necessary to simplify the model in numerical
calculations. Harlan [9] experimentally pointed out that frost heave deformation occurs
only when the ice content of the soil exceeds a certain value during the freezing process.
Based on mass conservation and energy conservation, he established the thermal-hydro
coupled model of soil under freeze–thaw conditions (the so-called hydrodynamic model).
The moisture migration and the frost heave deformation of the soil can be described by
the distribution of the moisture and temperature. Compared with the rigid ice model, the
governing equations of the hydrodynamic model are more concise and intuitive.

Based on the above research, some scholars have researched the frost heave problem
of canals in cold regions. Mo [10] established a thermal-hydro coupled model based on the
balance equations of energy and mass and pointed out that the frost heave deformation
of the soil foundation reached a maximum in the 1/3 slope height area. Liu [11] added
the latent heat of phase transformation to the heat conduction equation in the form of
equivalent heat capacity to explore the influence of ice-water phase transition on the
temperature field and deformation field. The calculation results considering the latent
heat of phase transformation are more accurate than those not considered. Based on Liu’s
research, Wang [12] established a thermal-hydro-mechanical coupled model through the
frozen fringe theory. He used the finite-element method to simulate the displacement and
stress fields of 30 lined canals with different sizes, revealing the size effect of lining frost
heave damage. The aforementioned studies have achieved fruitful results. However, most
current research on the frost heave mechanism of concrete-lined canals regards concrete
as a homogeneous material. It only considers the effect of the freeze–thaw process on the
soil foundation while ignoring that concrete is a porous medium and will be affected by
freeze–thaw cycles.

As a complex porous medium, concrete contains a large amount of pore water. The
freeze–thaw cycle causes the repeated freezing and thawing of the pore water, thus weak-
ening the strength of concrete and making it more prone to damage [13–16]. In addition,
the crack propagation during the concrete failure process is also closely related to the pore
structure of the concrete [17–20]. Therefore, the effect of the freeze–thaw process on concrete
needs to be involved when conducting an in-depth study of the freeze–thaw of concrete-
lined canals. Scholars have carried out a lot of research on the freeze–thaw mechanism
and numerical model. Powers [21] explored the freezing mechanism of concrete from the
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perspective of internal pore microstructure and proposed the so-called hydraulic pressure
theory. The hydraulic pressure is regarded as the main cause of concrete freezing damage,
and it is generated by the water migration driven by the freezing of pore water. Based on
the porosity of cement-based materials, Coussy [22,23] studied the physical process of ice
crystal growth in the concrete pores and derived the poroelastic constitutive equations of
the concrete during the freeze–thaw process, which provided a new perspective on the
computation of the stress and strain during the freeze–thaw process of concrete. Based
on the porosity mechanics, the hydraulic pressure theory, and the local thermodynamic
equilibrium between various phases, Zuber [24,25] established the thermal-hydro coupling
equations of concrete under freeze–thaw conditions, respectively, for mass conservation,
momentum conservation, and energy conservation. Duan [26] developed and established
the thermal-hydro-mechanical coupling model of the concrete under freeze–thaw condi-
tions based on the model developed by Zuber and pointed out that the heat conduction
of the concrete during the freeze–thaw process was related to the frost heave deformation
and the moisture migration. Through finite-element analysis, he obtained the development
of stress and strain of the concrete column specimens. Pan [27] experimentally measured
the pore size distribution curve of concrete and conducted a numerical simulation through
Zuber’s thermal-hydro coupling equation to explore the influence of porosity and pore
size distribution on the freeze–thaw behavior of concrete. The above researches provide
modeling ideas and relatively complete governing equations for the study of concrete
under freeze–thaw conditions, which can greatly support the present modeling of the
concrete lining during the freeze–thaw process of the concrete-lined canal.

This study aims to establish a comprehensive calculation model to explore the frost
heave mechanisms of canals under freeze–thaw conditions. Firstly, based on unsatu-
rated soil mechanics, thermodynamics, and poroelasticity, the thermal-hydro-mechanical
coupling equations of the soil under the freeze–thaw condition are established. Next,
considering the influence of the pore structure of concrete, the thermal-hydro-mechanical
coupling equations of the concrete under the freeze–thaw environment are established
based on the thermodynamics, poroelasticity, and permeability mechanics of porous media.
Then, the evolution of temperature, frost depth, and frost heave deformation of the canal
are analyzed by using the finite element method. Then the simulation results and the
experimental results are compared to demonstrate the established model. Finally, the
development process of frost heave deformation of the soil foundation is summarized, and
the easily frost-damaged zone of the canal is pointed out according to the distribution of
frost heave deformation. Overall, regarding concrete as a porous medium and considering
the influence of the pore structure of concrete, this paper presents a new calculation model
for the concrete-lined canal under a freeze–thaw environment, in which both the thermody-
namic performance of concrete and soil during the freeze–thaw process can be reflected.
As a preliminary study, the numerical model and results in this study can give a reference
for the design and protection of concrete-lined canals and provide a new idea for analyzing
frost heave failure.

2. Multi-Physics Coupling Equations of Soil
2.1. Seepage Field

Based on Richard’s equation and the mass conservation of ice and water under freeze–
thaw conditions, considering the hindering effect of the icing of pore water on the migration
of unfrozen water [28], the migration equation of unfrozen water in the soil during the
freeze–thaw process can be expressed as:

∂θw

∂t
+

ρi
ρw

(
∂θi
∂t

)
= ∇ · [D(θw)∇θw + kg(θw)], (1)

where θw and θi are the volume content of water and ice in the soil, respectively, ρi and ρw
are the mass density of ice and water, respectively, kg(θw) represents the moisture migration



Water 2023, 15, 1412 4 of 14

caused by gravity and is negligible in the freeze–thaw problem. D(θw) represents the
diffusion coefficient of water in the soil, expressed as [28]:

D(θw) =

(
k(θw)

c(θw)

)
I(θw), (2)

where k(θw), c(θw) and I(θw) represent the hydraulic conductivity of soil, the specific
gravity of water, and the ice impedance factor, respectively.

2.2. Temperature Field

The heat conduction of soil during the freeze–thaw process follows Fourier’s law.
Considering the effect of the water content and ice content on the heat conduction of soil
and regarding the soil as a system composed of water, ice, and soil, the thermodynamic
equilibrium equation of soil, including the ice-water phase transition, can be expressed
as [29]:

ρC ∂T
∂t = ∇ · (λ∇T) + Lρi

∂θi
∂t{

ρC = ρwθwCw + ρiθiCi + ρs(1− θs)Cs
λ = θwλw + θiλi + (1− θs)λs

, (3)

where ρ is the mass density of the system, T is the current temperature, L is the latent heat
of water, C, Cw, Ci and Cs are the heat capacities of system, water, ice, and soil, respectively,
θs is the volume content of water at saturation, ρs is the mass density of soil, λ, λw, λi and
λs are the thermal conductivities of system, water, ice, and soil, respectively.

2.3. Dynamic Equilibrium Relationship of Ice-Water Phase Transition

The water begins to freeze when the temperature of the soil is lower than its freezing
point. Through experimental research and considering the mass conservation of the water
and ice in the soil, the dynamic equilibrium relationship between ice content, water con-
tent, and temperature during the freeze–thaw process can be expressed in the following
form [30]:

B(T) = θi
θw

=

 ρw
ρi

(
T
Tf

)A
− 1 T < Tf

0 T ≥ Tf

θi = B(T)θw

, (4)

where B(T) is the solid-liquid ratio, i.e., the ratio between the volume content of ice and
the volume content of water, Tf is the freezing point of water, A is a constant related to soil
properties, e.g., A = 0.56 for the silty clay.

Equation (4) reflects the dynamic equilibrium relationship of ice content, water content,
and temperature during the freeze–thaw process of the soil. Under the given temperature
conditions, the temperature field and seepage field of the soil during the freeze–thaw pro-
cess can be solved by the simultaneous equations composed of Equations (1), (3), and (4),
and then the ice content distribution of the soil can be obtained for stress analysis.

2.4. Stress Field

In this paper, the hydrodynamic model is used to calculate the frost heave deformation
of soil. The hydrodynamic model is believed that when the mass fraction of ice in the soil
exceeds a certain critical value, the frost heave deformation of the soil begins to occur.

Assuming that the frost heave of the soil is an isotropic volume expansion, the corre-
sponding frost heave coefficient can be determined from the ice content distribution during
the frost heave process of soil. For silty clay, the functional relationship between the frost
heave coefficient and the ice content can be taken as [30,31]:

η(ωθi ) =

{
0.089ωθi − 0.0003 ωθi > 0.003
0 ωθi < 0.003

, (5)
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where η(ωθi ) is the frost heave coefficient, ωθi represents the mass fraction of ice, i.e.,
ωθi = ρiθi/ρs.

The frost heave strain tensor of soil can be obtained as:

εf = η(ωθi ) I, (6)

where εf is the frost heave strain tensor of soil and I is the second-order identity tensor.
The general equation of mechanical equilibrium of porous materials under freeze–thaw

conditions can be expressed as:
∇ ·σ+ F = 0, (7)

where σ is the total stress tensor, F is the vector of body force density.
From Equations (5)–(7), the governing equation of the stress field of soil under freeze–

thaw conditions can be expressed as:

∇ ·
[
Hs : (εs − η(ωθi )I)

]
+ Fs = 0, (8)

where Hs is the elastic tensor of soil, εs is the total strain tensor of soil, and Fs is the vector
of body force density of soil.

As stated previously, the thermal-hydro-mechanical coupling equations of the soil
under freeze–thaw conditions are made up of three sorts, i.e., the mass conservation
equation, which contains the influences of water migration and ice formation; the energy
conservation equation of the coupling between ice-water phase transition and heat transfer;
the mechanical equilibrium equation which takes into the effect of frost heave deformation.
The unknowns of the coupled equations are temperature, ice content, and displacement.
The temperature field and seepage field are bidirectionally coupled, and the stress field is
unidirectionally coupled with them through the ice content.

3. Multi-Physics Coupling Equations of Concrete

The thermal-hydro-mechanical coupling equations considering the pore structure of
concrete are established, which can reflect the thermodynamic properties of concrete under
freeze–thaw conditions and lay the foundation for research on the damage and cracking of
concrete lining in the future.

3.1. Stress Field

Regarding concrete as an elastic porous medium, concrete is composed of water,
ice, and skeleton under freeze–thaw conditions. According to the principle of effective
stress, the total stress of concrete is composed of two parts, i.e., skeleton stress and pore
pressure [24]:

σc = σ
′ − bp∗I, (9)

where σc is the total stress tensor of concrete, σ
′

is the effective stress tensor, i.e., the stress
tensor governing the skeleton deformation, I is the second-order identity tensor, p∗ is the
mean pressure exerted on the pore walls. b = 1− Kc/Km is Biot’s coefficient, where Kc and
Km are the compressibility moduli of the concrete and the skeleton, respectively.

During the freeze–thaw process, the total strain of concrete consists of the thermal and
elastic strain. Therefore, the elastic constitutive relationship between effective stress and
strain can be expressed as:

σ
′
= Hc : εe = H : (εc − εt)

εt = 1
3 α(T − Tre f ) I

, (10)

where Hc is the elastic tensor of concrete, εe is the elastic strain tensor, εc is the total strain
tensor of concrete, εt is the thermal strain tensor, T is the current temperature, and Tre f
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is the so-called reference temperature at which the thermal strain is zero εt = 0. α is the
volumetric thermal expansion coefficient of concrete [26]:

α = nϕwαw + nϕiαi + (b− n)αm, (11)

where n is the total porosity of concrete, ϕw and ϕi are the volume content of ice and water
in the concrete, respectively, αw, αi and αm are the volumetric thermal expansion coefficient
of water, ice, and skeleton, respectively.

From Equations (7), (9), and (10), the governing equation of the stress field of concrete
under freeze–thaw conditions can be expressed as:

∇ · [Hc : (εc −
1
3

α(T − Tre f ) I)− bp∗I] + Fc = 0, (12)

where Fc is the vector of the body force density of concrete.

3.2. Seepage Field

Based on Darcy’s law and the mass conservation of ice and water under freeze–thaw
conditions, the governing equation of the seepage field of concrete considering the influence
of ice-water phase transition, ice formation, heat conduction, and water migration can be
derived as [25]

β
.
pw = ∇ ·

(
Dc

η
∇pw

)
+ S− b

.
εv, (13)

where pw is the pressure of pore water, Dc is the permeability coefficient of concrete, η is
the fluid viscosity of water,

.
εv is the volumetric strain of concrete. β is the compressibility

coefficient of concrete, stated in the following form:

β =
nϕw

Kw
+

nϕi
Ki

+
b− n
Km

, (14)

where Kw and Ki are the compressibility moduli of water and ice, respectively.
In Equation (13), S is the source of pressure and can be expressed as:

S =

(
1
ρi
− 1

ρw

)
∂Vw→i

∂T
+ α

∂T
∂t
− b− n

Km

∂X
∂T
− nϕi

Ki

∂κ

∂T
, (15)

where ρi and ρw are the mass density of ice and water, respectively, Vw→i is the volume of
ice in concrete formed at temperature T, κ and X are respectively related to the curvature
of the ice/adsorbed layer interface and the pore pressure of ice in the frozen pores [25].

3.3. Temperature Field

The heat conduction of the porous medium follows Fourier’s law. Considering the
effect of the water content and ice content on the heat conduction of concrete, the heat
conduction equation of concrete, including the ice-water phase transition during the freeze–
thaw conditions, can be expressed as [29]:

ρcCc
∂T
∂t = ∇ · (λc∇T) + Lρi

∂ϕi
∂t λc =

nϕwλw+nϕiλi+λm
nϕw+nϕi+1

Cc =
nϕwCw+nϕiCi+Cm

nϕw+nϕi+1

, (16)

where λc, λw, λi and λm are the thermal conductivities of concrete, water, ice, and skeleton,
respectively, Cc, Cw, Ci and Cm are the heat capacities of concrete, water, ice, and skeleton,
respectively. ρc is the mass density of concrete and L is the latent heat of the water.

Based on the preceding sections, the thermal and mechanical properties of the concrete
under freeze–thaw conditions can be expressed by the thermal-hydro-mechanical coupling
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equations, which consist of three sorts, i.e., the mechanical equilibrium equation containing
the effect of pore pressure and thermal stress; the mass conservation equation including
the influences of water migration, ice formation, heat transfer, and deformation; the energy
conservation equation coupling between ice-water phase transition and heat transfer. The
unknowns of the coupling equations are temperature, displacement, and pore pressure.
Under the given temperature conditions, the displacement and pore pressure can be
obtained by solving the temperature field, stress field, and seepage field. The stress field,
temperature field, and seepage field are fully coupled.

4. Computational Model and Results Analysis
4.1. Computational Model

Taking the canal in the indoor model test [32] as the calculation object, a thermal-
hydro-mechanical coupled calculation model of the concrete-lined canal under freeze–thaw
conditions is established.

4.1.1. Geometry Modeling and Mesh Generation

Considering the symmetry of the trapezoidal canal, one-half of the actual canal is
taken as the computational configuration, as shown in Figure 1. The upper part of the
model is the concrete lining, and the lower part is the soil foundation. The four-node
linear isoparametric element is used to discretize the configuration, and the corresponding
finite element mesh of the canal is shown in Figure 2. The finite element program Comsol
Multi-physics is used for the numerical solution.
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4.1.2. Initial and Boundary Conditions

For the deformation (stress) field, the horizontal displacement of the left and right
boundaries of the model is constrained, and the lower boundary is set as a fixed constraint.

For the temperature field, the left and right boundaries are set as adiabatic boundaries.
According to the temperature setting scheme of the indoor test model, the initial tempera-
ture of the canal is set at 2 ◦C, and the bottom boundary is set at a constant temperature
of 3 ◦C as a stable heat source. The upper boundary (the upper surface of the canal) is set
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as the Dirichlet boundary condition, which changes with time according to the following
formula:

T(t) =


2−

( 26
36.4
)
t 0 < t < 36.4

−24 36.4 < t < 60.8
−24 +

(
44

59.1

)
(t− 60.8) 60.8 < t < 119.9

20 119.9 < t < 160

, (17)

where t is the time with a unit of h. T(t) is the temperature of the upper boundary, ◦C,
it first decreases linearly from 2 ◦C to −24 ◦C, then maintains at −24 ◦C for some time,
then linearly increases to 20 ◦C, and finally keeps constant at 20 ◦C until the end of the
calculation, as is shown in Figure 3.
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For the seepage field, the left, right, and bottom boundaries are set as no-flux bound-
aries. The initial water content of the soil foundation is consistent with the indoor test
model, that is, the initial water content of the soil within the depth of 0~70 cm from the
upper surface is set as 30%, and the initial water content of the soil within the depth of
70~120 cm is linearly reduced from 30% to 10%.

4.1.3. Calculation Parameters

The calculation parameters of the concrete lining are selected according to the values
of the literature [27] and the experiment [33], as shown in Table 1. The soil parameters are
consistent with the parameters of the indoor test model [32], as shown in Table 2. Table 1
also gives the necessary parameters of water and ice in the calculation.

Table 1. Calculation parameters of the concrete lining.

Composition ρ
(kg/m3)

λ
(W/m·k)

C
(J/kg·K)

α
(GPa)

K
(GPa)

E
(GPa)

D
(m2) b n

Concrete 2400 — — — 11.1 35 8.3 × 10−12 0.657 0.155
Skeleton — 1.80 950 2.0 × 10−5 32.4 — — — —

Water 1000 0.54 4200 −9.2 × 10−5 2.0 — — — —
Ice 900 2.22 2100 1.2 × 10−4 8.0 — — — —

Table 2. Calculation parameters of the soil.

Composition ρ
(kg/m3)

C
(J/kg·◦C)

λ
(W/m·k)

Tf
(◦C)

E
(GPa) A

Soil 1940 1680 1.22 −0.15 0.30 0.56
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The pore size distribution curve of concrete is selected from the fitting curve obtained
from experiments in literature [26], that is:

dφ

dr
= a1 +

a2

1 +
(

r
a3

)a4
, (18)

where a1 = 4.9389 × 10−6, a2 = 9.366 × 10−4, a3 = 9.580986 × 10, a4 = 2.27832.

4.2. Calculation Results and Analysis
4.2.1. Evolution of Temperature Distribution

The initial temperature of the canal was 2 ◦C. After the calculation began, the surface
temperature of the canal gradually decreased. Under the drive of the temperature gradient,
the temperature of the canal gradually decreased from top to bottom, and the negative
temperature developed downward continuously. The temperature distributions of the
canal at the calculation time of 50 h and 80 h are given in Figure 4. The results showed that
the temperature of the canal decreased in a unidirectional trend, and the drop rate of the
temperature of the canal was relatively uniform.
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As time progressed, the temperature gradient caused by negative temperature grad-
ually decreased. Since the lower boundary temperature of the canal was a constant tem-
perature of 3 ◦C, when the temperature drop caused by the negative temperature and the
temperature rise caused by the lower boundary could cancel each other, the negative tem-
perature will no longer develop downward. Figure 5 shows the temperature distribution
of the canal at that time (97 h).
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Figure 5. Temperature distributions of the canal at 97 h.

With the temperature increase of the upper surface, the heat transferred from the
upper boundary and lower boundary to the middle of the canal, and the temperature of
the canal increased continuously. Figure 6 shows the temperature distributions of the canal
at the calculation time of 110 h and 146 h. It can be seen that the temperature of the soil
increased in a bidirectional trend.
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4.2.2. Evolution of ice Content and Frost Depth

The water began to freeze when the temperature of the soil was lower than its freezing
point. It can be known from the evolution of the canal temperature distribution that within
the calculation time of 0~97 h, the negative temperature of the canal gradually developed
downward, and the water in the soil froze continuously. The ice content distributions of the
soil at the calculation time of 20 h and 80 h are given in Figure 7. The results showed that the
freezing process of the soil was unidirectional, and the frozen surface was nearly parallel to
the upper boundary of the canal. The freezing characteristic of the soil was consistent with
the distribution and evolution characteristics of temperature and experimental results.
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Figure 7. Ice content distribution of the soil at (a) 20 h and (b) 80 h.

The frost depth of the soil reached the maximum value at the calculation time of 97 h,
which was consistent with the evolution of temperature distribution. Figure 8 shows the
ice content distribution of the canal at 97 h. The frost depth was defined as the vertical
distance from the upper surface of the soil contact with the concrete lining to the lowest
frozen surface.
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When the calculation time exceeded 97 h, the heat transferred from the upper and
lower boundaries to the middle, and the ice in the soil began to melt. The ice content distri-
butions of the canal at the calculation time of 110 h and 120 h are given in Figure 9. It can
be seen that the thawing process of the soil was bidirectional. The evolution characteristic
of the thawing process of the soil obtained in this paper was in line with the experimental
results.
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Figure 10 shows the time-history curves of the frost depth of the soil foundation
obtained from the calculation and indoor test. It can be seen that the evolution of the
calculated frost depth was in good agreement with the experimental results. At the calcula-
tion time of 97 h, the frost depth of the soil foundation reached the maximum value. The
calculated maximum frost depth was about 47.2 cm, which was slightly larger than the
measured value of the test, approximately 44.94 cm.
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4.2.3. Evolution of Frost heave Deformation

Figure 11 shows the time-history curves of the frost heave deformation of the soil
foundation at the top of the canal obtained from the calculation and indoor test. It can
be seen that the frost heave deformation results obtained by calculation were consistent
with the experimental results. The calculated maximum frost heave deformation was
about 23.97 mm, slightly larger than the measured value of the experiment, approximately
22.41 mm.

According to the calculated time-history curve of the frost heave deformation of the soil
foundation under the given external temperature conditions, the frost heave deformation
can be divided into four stages: 1© Compression deformation stage. Within the calculation
time of 0~8 h, the freezing of pore water in the concrete caused the frost heave deformation
of the lining, and the soil foundation was compressed and deformed downward. Therefore,
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the frost heave deformation of the soil foundation within 0~8 h was negative, consistent
with the phenomenon obtained from the experiment; 2© Rapid development stage. Within
the calculation time of 8 h~76 h, the soil temperature gradually decreased, the pore water
in the soil began to freeze, and the frost heave deformation of the soil foundation increased
rapidly; 3© Slow development stage. Within the calculation time of 76~97 h, the temperature
gradient caused by negative temperature decreased, and the freezing rate of pore water in
the soil slowed down. The growth rate of frost heave deformation decreased, and the frost
heave deformation of the soil foundation reached the maximum value in 97 h; 4© Rapid
dissipation stage. Within the calculation time of 97~160 h, the soil temperature gradually
rose, the ice in the soil melted from the inside to the surface and bottom, and the frost heave
deformation of the soil foundation dissipated rapidly.

The time-history curves of the frost heave deformation at different positions of the soil
foundation are shown in Figure 12. It can be seen that the frost heave deformation values
at different positions of the soil foundation were different. At the calculation time of 97 h,
the frost heave deformation at different soil foundation positions reached the maximum
value in the order of 1/2 slope height > 1/3 slope height > 1/4 slope height > 1/7 slope
height > the top of the canal > the bottom of the canal, which was consistent with the ex-
perimental results. The frost heave deformation of the soil foundation at the 1/2~1/3 slope
height area was the largest, which can easily lead to cracking and damage to the concrete
lining in this area.
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5. Conclusions

Regarding concrete as a porous medium, a thermal-hydro-mechanical coupling analy-
sis model for concrete-lined canals under freeze–thaw conditions is established, in which
the effects of the pore structure of concrete, the water content, ice content, and ice-water
phase transition are taken into account. The temperature distribution, frost depth devel-
opment, and frost heave deformation of the canal during the freeze–thaw process are
calculated, which agrees with the experimental results. The proposed model can effectively
predict the frost heave deformation of the concrete-lined canals and provide a reference for
the design and disaster prevention of concrete-lined canals in cold regions.

The distribution characteristics of the frost heave deformation of a canal are affected
by many factors. When the external temperature decreases first and then increases, the frost
heave deformation of the soil foundation of the canal can be divided into four stages, i.e.,
the compression deformation stage, the rapid development stage, the slow development
stage, and the rapid dissipation stage. The frost heave deformation of the soil foundation
at the 1/2~1/3 slope height area is the largest, and the concrete lining is more prone to
cracking and damage in this area.

The subsequent research can further consider the failure characteristics of concrete,
study the cracking of concrete lining under a freeze–thaw environment, analyze the de-
velopment of cracks based on concrete pore structure, and put forward corresponding
prevention and control measures. In addition, the freeze–thaw problem of the canal under
normal water transport conditions can be studied, and the influence of ice cover on the
frost heave deformation of the canal can be modeled as well. Research on the above issues
is in progress.
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