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Abstract: Quantitatively analyzing models’ uncertainty is essential for agricultural models due to
the effect of inputs parameters and processes on increasing models’ uncertainties. The main aim of
the current study was to explore the influence of input parameter uncertainty on the output of the
well-known surface irrigation software model of WinSRFR. The generalized likelihood uncertainty
estimation (GLUE) framework was used to explicitly evaluate the uncertainty model of WinSRFR.
The epistemic uncertainties of WinSRFR furrow irrigation simulations, including the advance front
curve, flow depth hydrograph, and runoff hydrograph, were assessed in response to change key input
parameters related to the Kostiakov–Lewis infiltration function, Manning’s roughness coefficient, and
the geometry cross section. Three likelihood measures of Nash–Sutcliffe efficiency (NSE), percentage
bias (PBIAS), and the coefficient of determination (R2) were used in GLUE analysis for selecting
behavioral estimations of the model outputs. The uncertainty of the WinSRFR model was investigated
under two furrow irrigation system conditions, closed end and open end. The results showed the
likelihood measures considerably influence the width of uncertainty bounds. WinSRFR outputs have
high uncertainty for cross section parameters relative to soil infiltration and roughness parameters.
Parameters of soil infiltration and roughness coefficient play an important role in reducing the
uncertainty bound width and number of observations, especially by filtering non-behavioral data
using likelihood measures. The simulation errors of advance front curve and runoff hydrograph
outputs with a PBIAS function were relatively lower and stable compared with other those of the
likelihood functions. The 95% prediction uncertainties (95PPU) of the advance front curve were
calculated to be 87.5% in both close-ended and open-ended conditions whereas, it was 91.18% for
the runoff hydrograph in the open-ended condition. Additionally, the NSE likelihood function more
explicitly determined the uncertainty related to flow depth hydrograph estimations. The outputs
of the model showed more uncertainty and instability in response to variability in soil infiltration
parameters than the roughness coefficient did. Therefore, applying accurate field methods and
equipment and proper measurements of soil infiltration is recommended. The results highlight the
importance of accurately monitoring and determining model input parameters to access a suitable
level of WinSRFR uncertainty. In conclusion, considering and analyzing the uncertainty of input
parameters of WinSRFR models is critical and could provide a reference to obtain realistic and stable
furrow irrigation simulations.

Keywords: furrow irrigation; likelihood function; manning’s roughness; uncertainty analysis; mathematics;
artificial intelligence; hydrology; smart farming; sustainable development goals; big data

Water 2023, 15, 1250. https://doi.org/10.3390/w15061250 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15061250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-4842-0613
https://doi.org/10.3390/w15061250
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15061250?type=check_update&version=2


Water 2023, 15, 1250 2 of 30

1. Introduction

Surface irrigation is the most common irrigation method because it requires less energy
and is less expensive than sprinklers and drip irrigation are. Nowadays, the accurate design
of irrigation systems using soft computing technologies is a common agricultural issue.
The accurate design of surface irrigation can affect water resource management and soil
moisture, which are two important components of Earth system science [1,2]. In this
case, interconnections between irrigation management and Earth system science manifests
through variability in the water use efficiency, irrigation performance indicators [3,4],
evapotranspiration, runoff, soil temperature, carbon balance, etc., [1].

Furrow irrigation is one of the most common surface irrigation techniques among
farmers due to the better aeration in the plant root development zone, in which water is
conveyed over the field surface by gravitational force [5,6]. Furrow irrigation with two
boundary conditions, closed end and open end, is common in agricultural fields. The
unsuitable design, management, and implementation of furrow irrigation systems result in
a poor performance and lead to some problems such as low distribution uniformity and ap-
plication efficiency and deep percolation [7]. Several agricultural models such as WinSRFR
have been developed mathematically to accurately design and improve the performance of
the water flow in furrow irrigation systems [8]. Existing irrigation design models generally
have high accuracy, but suffer from unstable estimations. The WinSRFR model simulates
the water flow of furrow irrigation systems, based on the one-dimensional open channel
flow equation coupled with an infiltration function. Acquiring precise and reliable model
input parameters is always a problem for these types of models with different and large
numbers of input parameters [9]. As stated by Beven and Binley [10], the investigation
of the uncertainty of parameters is necessary for model uncertainty assessment to avoid
instability problems in the model and decrease the number of errors in simulations. Even
though the model’s uncertainty cannot be reduced by an uncertainty analysis in terms of the
model simulation, it determines the risk of the estimation level and evaluates the reliability
of its other results [9]. The literature lacks work on uncertainty assessments associated
with WinSRFR furrow irrigation simulations. Limited research, however, has generally
examined only the error sources and uncertainties for optimally implementing irrigation.
For instance, Mun et al. [11] investigated the uncertainties in relationships and parame-
ters of the Mississippi Irrigation Scheduling Tool (MIST) to calculate the water balance.
For this purpose, they used the recorded data of cultivated maize, cotton, and soybean
(2005–2012) and the Taylor series method. The results showed this model had accept-
able accuracy in simulating management and irrigation strategies. Choliz and Sarasa [12]
studied uncertainty sources in modern technologies to improve irrigation water efficiency
for farming (with emphasis on uncertainty related to the time of the introduction and
take-up of new technology) in the regions with a semi-arid climate using data of the most
extensive irrigation plan in Ebro River Basin (Spain), as well as the Computable General
Equilibrium (CGE) model. Kisekka et al. [13] investigated the uncertainties in leaching
assessment using the water balance approach. They found that factors such as soil hetero-
geneity, non-uniform distribution of irrigation water, changes in canopy size, and plant
root distribution at the time and the preferred path flow could lead to errors in leaching
estimates. Mondaca-Duarte et al. [14] investigated the correlation between the volume of
irrigation water, crop stress, and drainage in order to reduce the amount of water used in
surface irrigation and improve the yield. They presented a two-module model considering
uncertain evapotranspiration and soil properties. In this model, one module was employed
to evaluate the water movement, and another module was used to examine evapotran-
spiration. The Monte Carlo method was applied to assess drainage uncertainties (based
on uncertainties in evaporation and soil properties). The results indicated the volume of
irrigation water and drainage could be reduced to 22% and 88%, respectively, in case of a
crop stress value of less than 1%.

The application of furrow irrigation simulation using the WinSRFR model depends on
accurate estimation or measurement of the most effective input parameters [15,16]. Soil
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infiltration and Manning’s roughness coefficient are considered to be fundamental param-
eters in furrow irrigation design, assessment, and management [17–19]. Soil infiltration
is affected by several factors, including the soil water content, soil texture, soil structure,
and soil organic matter. Additionally, Manning’s roughness coefficient can be significantly
affected by the physical characteristics of furrows, including crop density, filed slope, and
soil texture [4]. Oyonarte et al. [20] and Bai et al. [21] reported that application efficiency
and distribution uniformity of irrigation system is highly influenced by infiltration vari-
ability. Sepaskhah and Bonder [22] evaluated the effect of different inflow rates and slopes
on changes in Manning’s roughness coefficient in furrow irrigation under both cultivated
and uncultivated conditions. The most roughness was observed in the first irrigation
scheme. However, it decreased by 60–70% in the second and third schemes. Finally, the
roughness coefficient increased due to seedling emergence. Mailapalli et al. [23] studied
the temporal and spatial variation in Manning’s roughness coefficient in furrow irrigation
under different inflow conditions. The results showed that the roughness coefficient had
the highest value in the second and last quarters. The roughness coefficient decreased over
time, and the decreasing trend was faster at low inflow rates. Kamali et al. [19] found a
negative correlation between the inflow rate and roughness coefficient. In addition, their
results showed that the roughness coefficient at the downstream segment of the furrows
was greater than the proposed values were due to the soil texture and cultivation type.
This coefficient in the middle part of the furrows was greater than the values recorded
in the upstream segment of the furrows were. Xu et al. [24] indicated that variations in
soil infiltration and Manning’s roughness coefficient significantly influence water advance
and recession curves. Mazarei et al. [4] evaluated the effect of temporal variability and
different inflow rates on the infiltration parameters, roughness coefficient, and furrow
irrigation performance. The results revealed that Manning’s coefficient decreased, and the
final infiltration rate increased with an increasing inflow rate.

As well as soil infiltration and roughness parameters, the geometry cross section of
surface irrigation systems, including the slope, length, and bottom width, can be effective
parameters [25–27]. The furrow cross sections are approximated by fitting a trapezoid or
power law to the experimental data. However, these empirical geometry cross section
relationships are subjected to a significant error [28]. Eldeiry et al. [29] simulated the furrow
irrigation performance in clay soil and indicated that the furrow cross-section varied at
different lengths and its accurate estimation had a significant effect on improving the flow
advance time prediction. Navabian et al. [30] introduced hydraulic parameters of the
furrow cross-section as one of the most influential factors in the performance of cutback fur-
row irrigation and simulated the performance of this system using experimental functions.
The obtained results had desirable accuracy compared to that of the zero-inertia model
(SRFR) and observed values. As reported by Bo et al. [27], the application of appropriate
field geometry properties could enhance the irrigation application efficiency by up to
26.7%. Salahou et al. [31] applied the WinSRFR model to investigate the influence of sev-
eral parameters, such as bottom slopes, surface roughness values, and inflow rates, on the
performance of surface irrigation. However, despite the long history of research studies on
surface irrigation modeling, current furrow irrigation models do not consider uncertainty
in their simulation results. The probability factor and some uncontrollable physical factors
are the main problems in recognizing different phenomena. Therefore, uncertainty analysis
of each phenomenon provides a real and proper understanding of the role of the factors
affecting the phenomenon [32]. Given that simulation models are increasingly being used
to make decisions about management options in various phenomena, the accurate calibra-
tion and analysis of uncertainties have particular importance. These models are generally
affected by large uncertainties, including conceptual models, input data, and parameter
uncertainties. Applying novel uncertainty analysis methods such as generalized likelihood
uncertainty estimation (GLUE) could provide accurate results for decisions about the appli-
cability of models. The GLUE technique applied in this study has been widely used for the
parameter uncertainty analysis of agricultural models, including the soil water assessment
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tool (SWAT) model [33], CERES-Maize model [34], soil–water–atmosphere–plant (SWAP)
model [35], rice growth model ORYZA_V3 [36], CERES-Wheat model [37], DayCent agroe-
cosystem model [38], and HORTSYST model [39]. These studies demonstrate how the
results of the parameter uncertainty affect the model outputs.

The review of available studies reveals that the uncertainty analysis of the output of
surface irrigation simulation models, especially furrow irrigation, has never been addressed.
Therefore, the main aim of the current study is the first attempt to evaluate the effects
of the Kostiakov–Lewis infiltration equation, Manning’s roughness coefficient, and cross-
sectional parameters on the performance and reliability predictions of the WinSRFR model
in open- and closed-ended furrows. For this aim, the GLUE framework is employed to
investigate the uncertainty degree of the output results, including advance curve, flow
depth hydrograph, and runoff hydrograph. The contribution and novelty of this study
relies upon exploring the capability of the WinSRFR model of accurately designing furrow
irrigation and predicting outputs. According to the above explanations, the contribution of
this study are arranged as follows:

1. Evaluating the outputs uncertainty of the WinSRFR model in an innovative way,
including advance curve, flow depth hydrograph, and runoff hydrograph, using the
GLUE framework in response to Kostiakov–Lewis infiltration equation, Manning’s
roughness coefficient, and cross-sectional parameters sets based on the experimental
data of a furrow irrigation system.

2. Assessing the reliability predictions of WinSRFR model for two open- and closed-
ended of furrow irrigating systems.

3. Investigating the effects of three likelihood functions, the coefficient of determination
(R2), Nash–Sutcliffe efficiency (NSE), and percentage bias (PBIAS), on the parameter
set performance and uncertainty analysis of the WinSRFR model.

2. Materials and Methods

It is difficult to model irrigation flow because of numerous uncertainties. Previous
studies about WinSRFR exclusively focused on the calibration model to investigate ir-
rigation processes. The uncertainties associated with modeling the front curve, depth
hydrograph, and runoff hydrograph based on the variations in infiltration, geometry, and
roughness parameters were not considered. Using accurate inputs such as cross-sectional
geometry, infiltration, and roughness contributes to significant uncertainties. As described
in the previous section, the main objective of the current study is investigating the un-
certainty of advance curve, flow depth hydrograph, and runoff hydrograph estimations
as outputs of the WinSRFR model using the GLUE framework in response to variabili-
ties in Kostiakov–Lewis infiltration equation, Manning’s roughness coefficient, and the
cross-sectional input parameters sets.

2.1. Description of WinSRFR Model

Since water flow in surface irrigation is unsteadily non-uniform and depends on the
water infiltration rate into the soil, a pair of partial differential equations called Saint-Venant
equations are used in surface irrigation models. These equations are used for describing
the process of water movement, which include continuity and momentum equations as
follows, as stated in [40].

∂Q
∂x

+
∂A
∂t

+ Ix = 0 (1)

1
g

∂v
∂t

+
v
g

∂v
∂x

+
∂y
∂x

= S0 − S f +
vIx

gA
(2)

where y is the water depth (m), Q is the inflow (m3·s−1), t is the irrigation time (s), v is the
flow velocity (m·s−1), x is distance from the beginning of the furrow (m), Ix is the infiltration
rate (m3·s−1·m−1), g is the acceleration of gravity (m·s−2), S0 is the bed slope (m·m−1),
S f is the energy line slope (m·m−1), and A is the flow cross-section (m2). Saint-Vanant
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equations do not have analytical solutions. Therefore, different software packages have
been presented considering simplified hypotheses and numerical methods to solve these
equations simultaneously and simulate surface irrigation. WinSRFR software 5.1, which
was developed in 2004, is a one-dimensional mathematical model used for analyzing
and simulating surface irrigation. This software has many applications in the design and
management of surface irrigation and consists of four parts for the hydraulic analysis of
surface irrigation, including simulation, event analysis (field evaluation), physical design,
and operation analysis [8]. WinSRFR software performs the necessary calculations using
zero-inertia model (in which inertia has been omitted and is applicable to farms with closed
ends and slopes of less than 0.004), as well as kinematic-wave model (in which flow depth
gradient and inertia have been omitted and are applicable to slopes greater than or equal
to 0.004). WinSRFR software could estimate the amount of infiltrated water by different
equations such as Kostiakov, Kostiakov–Lewis, and Green-Ampt [41]. In the present
study, the Kostiakov–Lewis infiltration equation was used. This model could simulate
furrow irrigation on negative slopes and adapt to variable inflow rates [42]. However,
the simulations obtained by this model may face uncertainties due to a large number of
software input parameters, as well as temporal and spatial variations in the parameters
such as infiltration, surface roughness, and furrow cross-sectional dimensions.

2.2. Description of Important Input Parameters of WinSRFR Model
2.2.1. Geometry Cross Section

The cross section of the furrow irrigation systems may be trapezoidal or parabolic.
The trapezoidal shape of furrow irrigation system consists of two factors, bottom width
(BW) and side slope (SS). The relationship between cross-sectional factors of BW and SS
with flow top width (TW) at a given flow depth (y) can be described using the following
equation adapted from [43].

TW = BW + 2× y× SS (3)

The relationships between wetted perimeter, flow area, and hydraulic radius flow in
the WinSRFR model follow from Equation (3).

2.2.2. Kostiakov–Lewis Infiltration Function

In this study, the Kostiakov–Lewis infiltration function was used to determine soil
infiltration. The following equation calculates the cumulative infiltrated volume as a
function of time, as elaborated on in [4].

Z = kta + f0t (4)

where Z is the cumulative volume of infiltration per furrow length (m3· m−1), t is the time
period of infiltration (min), f 0 is the steady infiltration rate (m3·m−1·min−1), and k and a
are the fitted empirical coefficients. Furthermore, the steady infiltration rate is calculated as
follows based on the equation provided in [25].

f0 =
Qin −Qout

L
(5)

where Qin is the inflow rate (m3·min−1), Qout is the outflow rate (m3·min−1), and L is the
furrow length (m).

2.2.3. Manning’s Roughness Coefficient

One of the main parameters for designing and evaluating a furrow irrigation system
is Manning’s roughness coefficient. The equation for calculating this coefficient can be
written as follows [22].

n =
A

5
3
√

S

QP
2
3

(6)
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where A is the area of the furrow cross section (m2), S is the longitudinal slope of the water
surface (m·m−1), Q is the inflow rate (m3·s−1), and P is the wetted perimeter of the furrow
cross section (m).

2.3. Generalized Likelihood Uncertainty Estimation (GLUE)

The GLUE methodology was initially described by Beven and Binley [10] and has
been widely used for the uncertainty analysis of different models and predictions. In this
study, the GLUE framework was implemented to investigate WinSRFR model’s reliability
and estimate the uncertainty of model outputs. The GLUE analysis process includes
the following three important levels, as stated in [44]. Step 1: Monte Carlo simulation is
implemented to create random sample sets (m = 1000) of input parameters from those of the
prior distribution. The optimal prior distribution of each parameter was determined based
on the evaluation of 65 distribution functions. Step 2: The likelihood value is computed
from WinSRFR model outputs to measure goodness-of-fit and evaluate the model input
parameters. By considering a particular threshold value for the likelihood function, the
model input parameters data are classified into two categories of behavioral (value above
the threshold likelihood) and non-behavioral (value below the threshold likelihood) sets.
Then, the behavioral sets are used to assess the WinSRFR model. In the current study, three
likelihood measures of R2, NSE, and PBIAS were used to assess the performance of each
parameter set. The likelihood functions are as follows.

L1(θi|O) = R2 =
∑N

j=1
(

Pj(θi)−O
)2

∑N
j=1
(
Oj −O

)2 , threshold value : R2 > 0.6 (7)

L2(θi|O) = NSE = 1−
∑N

j=1
(

Pj(θi)−O
)2

∑N
j=1

(
Pj(θi)− Pj(θi)

) , threshold value : NSE > 0.5 (8)

L3(θi|O) = PBIAS =

[
∑N

j=1
(
Oj − Pj(θi)

)
∑N

j=1
(
Oj
) ]

, threshold value : −0.25 < PBIAS < 0.25 (9)

where θi is the ith parameter set, L(θi|O) is the likelihood value for the parameter set of θi,
Pj(θi) is the model estimation using the parameter set, Oj is the jth observation, O is the
mean value of observation, and N is the total number of data.

The ranges of R2, NSE, and PBIAS were from 0 to 1, −∞ to 1, and −1 to 1, respectively.
In this study, simulations that had a likelihood value of NSE that was less than or equal to
0.5 were rejected as non-behavioral, and the others (NSE > 0.5) were retained for further
analyses. Additionally, the threshold values of R2 > 0.6 and−0.25 < PBIAS < 0.25 were used
to identify behavioral simulations. The behavioral parameter sets were applied to extract
the posterior distributions and calibration parameters of the Kostiakov–Lewis infiltration
equation, Manning’s roughness coefficient, and cross section. Step 3: Simulation weights
of the behavioral parameter sets were normalized to unity, and the cumulative weighted
distributions of estimations were used to evaluate the uncertainty associated with the
model simulations.

ϑi =
L(θi)

∑N
k=1 L(θk)

(10)

where ϑi is a likelihood weight.
Normalized behavioral likelihoods were plotted against the simulation values (dotted

plots) defined the cumulative probability and posterior parameter distribution. Addition-
ally, for plotting posterior distributions, the normalized likelihoods for different simulations
were multiplied by the prior probability. These plots provide a basis for understanding
uncertainty adjusted by the observations [45].
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2.4. Data Sets

In this study, the data of four furrows collected by Perea [46] were used. These
data were collected from the Maricopa Agricultural Center (MAC), University of Arizona,
in 2004. Table 1 summarizes some of the geometric and hydraulic characteristics of furrows
adapted from [46]. The studied soil had a homogeneous texture with a slope of zero
degree. The furrow length was 168.6 m. Moreover, one furrow had an open end, and
the other furrow had a closed end. Water flow entered the furrows through the upstream
supply channel using two pumps and was measured using a totalizing meter. Additionally,
an RBC flume was used at the beginning and end of the furrow to measure the total
inflow rate and outflow runoff, respectively. In total, 7 measuring stations were set up
at distances of 3.05, 30.48, 60.96, 91.44, 121.90, 152.40, and 168.50 m from the furrow inlet.
The field elevation, furrow cross-sectional area, advance, and recession time, as well as
depth hydrograph, were recorded and measured per station. The furrow cross-sectional
area was measured using a profilometer and digital photographs.

Table 1. Some geometrical properties of tested furrows.

Geometry and Field Characteristics Furrow 1 Furrow 2

Length (m) 168.60 168.60
Downstream condition Open ended Closed ended
Average slope 2.40 × 10−4 2.60 × 10−4

Bottom width (m) 0.16 0.27
Side slope 2.00 1.56
Manning coefficient 0.05 0.05
Qavg

(
m3·s−1) 1.50 × 10−3 1.70 × 10−3

2.5. Evaluation Criteria

Two criteria of p-factor and r-factor were used to investigate the model’s uncertainty.
The p-factor describes the percentage of bracketed observations between two boundaries
of 2.5% and 97.5% and shows 95% prediction uncertainty (95PPU). If the 95PPU bound
of model outputs cover most of observation data, the uncertainty level is appropriate [47].
The acceptable level of uncertainty in simulations occurs when the 95PPU includes the
80–90% of the observation data in the advance curve, flow depth hydrograph, and runoff
hydrograph. r-factor shows the width of the uncertainty bound and is the mean of the
95PPU range [47]. Achieving less uncertainty is possible if the r-factor value is less than 1.

p = 100× count(P|PL ≤ P ≤ PU)

N
(11)

r =
1

N × σ∑(PL − PU) (12)

where N is the number of observations, σ is the standard deviation of observations, and PL
and PU are the lower and upper boundaries of the 95% prediction uncertainty, respectively.
Additionally, the Taylor diagram was used for comparing the results based on graphical
interpretation. Both estimated and observed data are presented in the Taylor diagram using
three criteria of correlation coefficient (R), the root mean square deviation (RMSD), and the
standard deviation (STD) [48,49]. A simulation’s validity and accuracy will increase when
it is similar to the observation [50].

3. Results and Discussion

This study evaluates the uncertainty of the WinSRFR furrow irrigation model, which
arises from the uncertain calibration input parameters and affects the outputs.
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3.1. Creating Random Sample Sets Using Monte Carlo Simulation

As explained earlier, six simulations were performed, including two close-ended
and open-ended furrow irrigation conditions, and three datasets, including cross section
parameters (SS and BW), Kostiakov–Lewis infiltration function parameters (k, a, f 0), and
Manning’s roughness coefficient (n). To investigate the effect of these six states on Win-
SRFR furrow irrigation simulation model estimations, the probability distribution of each
parameter was derived (Table 2), and 1000 datasets were produced. The models’ simula-
tions mainly focused on the three plots of the advance front, depth hydrograph, and flow
hydrograph. The selection of probability distribution function for each parameter is im-
portant to obtain data samples using the corresponding parameter space because it affects
the quality of the simulation results [49]. Hence, in the first step of the framework, the
probability distribution of geometry cross section, infiltration, and roughness parameters
was investigated and applied to provide information on the parameters, and furthermore,
the simulations. As seen from Table 2, all BW, SS, a, f 0, and n parameters followed the
Wakeby distribution with p-values equal to 0.13, 0.13, 0.12, 0.12, and 0.19, respectively.
Additionally, the results of the K-S test illustrated that the Log-Logistic distribution fitted
the infiltration parameter of k, which was significant at α = 0.05. The finding results shows
that the probability distributions of related irrigation parameters are free from Normal and
Gaussian distributions that str commonly used in order to simplify the procedure [50].

Table 2. Fitting probability distributions of parameters values for producing 1000 datasets.

Parameter Distribution p-Value Coefficients Formulation

BW Wakeby 0.13

α = 1356.70
β = 126.02
γ = 47.50
δ = 0.13
ξ = 0

f (x) = ξ +
(

α
β

)(
1− (1− x)β

)
−
( γ

δ

)(
1− (1− x)−δ

)

SS Wakeby 0.13

α = 54.20
β = 63.10
γ = 0.57
δ = −0.15
ξ = 0

k Log-Logistic 0.12
α = 2.50
β = 24.9

f (x) =

(
α
β

)(
x
β

)α−1

(
1+
(

x
β

)α)2

a Wakeby 0.12

α = 1.50
β = 2.60
γ = 0.01
δ = 0.40
ξ = −0.01

f 0 Wakeby 0.12

α = 16.40
β = 2.40
γ = 6.90
δ = 0.03
ξ = −0.90

n Wakeby 0.19

α = 0.10
β = 5
γ = 0.01
δ = 0.50
ξ = 0.006

3.2. Simulation Using WinSRFR Furrow Irrigation Model and Uncertainty Analysis

The coefficients information and corresponding probability distributions of Wakeby
and Log-Logistic formulations in Table 2 were used to produce random values for each
parameter. The created datasets were used as inputs for running the WinSRFR furrow
irrigation model in a step-by-step simulation process to solve numerical equations, and
then obtain equivalent outputs. This operation was repeated 1000 times by applying the
geometry cross section, Kostiakov–Lewis infiltration function, and Manning’s roughness
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parameters separately until the numerical simulations had completed. Additionally, the
simulations were implemented using two conditions of close-ended and open-ended
furrow irrigation. Based upon the 2.5% and 97.5% levels of prediction uncertainty, 95%
intervals were calculated for the advance front curve, depth hydrograph, and runoff
hydrograph, separately. Thus, 95PPU was used to determine the percentage of values
bracketed by 95 percent prediction uncertainty. In Figures 1–3, the uncertainty bounds are
drawn using 2.5% and 97.5% levels. In the next step, the initial uncertainty analysis of the
WinSRFR furrow irrigation simulations was performed, and p-factor and r-factor criteria
were calculated (Table 2). Figure 1 shows the uncertainty results of the advance front curve
for two conditions of close-ended and open-ended furrow irrigation. Figure 1 indicates that
the WinSRFR model had high uncertainty levels for predicting advance fronts using the
furrow geometry cross section in both conditions. The 95PPU bounds of the close-ended
(SS, BW) furrow were found to be outside of almost all the observation values. Based on
Table 3, only 12.5% and 50% of the observation data for the front curve were bracketed
by the 95PPU uncertainty bound in close-ended and open-ended conditions, respectively.
These results indicate a high level of model uncertainty for predicting the front curve
using geometry cross section parameters. This is due to considering only geometry cross
section parameters, while other infiltration, roughness, soil hydraulic properties, and initial
and boundary conditions are effective for accurately prediction the advance front using
practical irrigation models such as WinSRFR.

Table 3. Uncertainty evaluation using p and r criteria before removing non-behavioral data.

Conditions Uncertainty Criteria Advance Front Depth Hydrograph Flow Hydrograph

Close end (SS, BW)
p-factor 12.50 34.38
r-factor 0.11 4.40

Open end (SS, BW) p-factor 50 52.78 14.71
r-factor 0.11 3.44 0.48

Close end (k, a, f 0) p-factor 100 100
r-factor 1.14 3.99

Open end (k, a, f 0) p-factor 87.50 100 100
r-factor 2.07 2.32 11.49

Close end (n)
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and parameters.

According to the p-factor values and 95PPU bounds, better advance estimations were
obtained by applying infiltration and roughness parameters. As presented, the 95% con-
fidence interval of the close-ended (k, a, f 0), open-ended (k, a, f 0), close-ended (n), and
open-ended (n) ones covers 100%, 87.5%, 87.5%, and 87.5% of the front curve observation
data, respectively. Among the infiltration and roughness parameters, the finding results re-
lated to the r-factor value demonstrate the superiority of the model based on the Manning’s
parameter, especially for the close-ended condition. The calculated r-factor values for the
close-ended (n) one are 44%, 69%, and 15% lower than the close-ended (k, a, f 0), open-ended
(k, a, f 0), and open-ended (n) ones, respectively. Although infiltration and roughness models
create more accurate results than geometry cross section parameters do in estimating front
curve, their use still has high instability and uncertainty. The WinSRFR irrigation model
uses empirical relationships between the Kostiakov–Lewis and Manning’s functions for
representing infiltration and flow processes. Even if physical-based infiltration models
can be applied, their practical applications remain limited. It is partly due to problems in
coupling infiltration calculations to surface flow models and the difficulty in considering
soil hydraulic properties, geometric properties, and other effective parameters [51]. Similar
to the uncertainty results of the front curve, WinSRFR has high instability and uncertainty
when it is used to estimate the flow depth hydrograph based on the geometry cross section
properties of the furrow (Figure 2). Although the results of the p-factor show that all the
observation flow depth data are covered by the 95PPU bound, the uncertainty bounds are
wide, indicating the low accuracy of estimations [52]. However, the estimation ranges of
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flow depth hydrograph for close-ended (SS, BW) and open-ended (SS, BW) ones were wide.
These bounds did not contain the measured values and produced large uncertainties.
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When the geometry cross section parameters were used for simulating the runoff
hydrograph (Figure 3), the uncertainty bound covered a relatively narrow scope in compar-
ison with that of the Kostiakov–Lewis and Manning’s parameters. In the case of geometry
cross section parameters of the furrow irrigation system, the estimation range of WinSRFR
did not match that of the observations. For estimation limits of runoff hydrograph using
(k, a, f 0) and (n) parameters, most of the observations fell within the confidence intervals
of 2.5% and 97.5%. A few observations were higher than those corresponding to the
95PPU limit produced by Manning’s parameter. There is a wide range of estimations in
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response to the geometry cross section, infiltration, and roughness parameters. This result
demonstrates uncertainties in the Kostiakov–Lewis and Manning equations. In addition,
the uncertainties may also lead to severe fluctuations in the estimation results, as well as
the large variations in the hydrographs patterns in some cases. Therefore, the WinSRFR
furrow irrigation model shows some limitations in estimating the advance front curve, flow
depth hydrograph, and runoff hydrograph. Cahoon [53] showed that parameters of the
Kostiakov–Lewis infiltration function have a strong influence on the advance front curve
and flow hydrograph, which is in agreement with the findings of the current study. The
results of the current study are in agreement with those stated by Gillies and Smith [54],
which reported that soil infiltration parameters of the modified Kostiakov equation are
more sensitive to runoff hydrograph than the advance front curve is, indicating the need
for the precise measurement of field data. Khoi and Tom [55] presented that the uncertainty
of the predicted flow hydrograph using the SWAT model is high, and the model is sensitive
to parameters values.
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3.3. Effect of Likelihood Measures on Uncertainty

In this section, it is shown how applying likelihood measures affects the uncertainty
assessment. Three likelihood measures of NSE, R2, and PBIAS are used to investigate their
effects on the uncertainty results in WinSRFR furrow irrigation modeling. The percentage
of behavioral likelihood, which are derived via GLUE, are given in Table 4. Based on
the posterior distribution of geometry cross section parameters, 1000 simulations were
made by WinSRFR furrow irrigation modeling. All the simulations were behavioral for
estimating the front curve based on the geometry cross section properties in both the
open-ended and close-ended conditions (NSE > 0.5, −0.25 < PBIAS < 0.25, R2 > 0.6). The
posterior and prior cumulative distributions of the advance front derived using different
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criteria for T = 134 min at a distance of 168.6 cm in the close-ended furrow irrigation
condition are shown in Figure 4. In simulations of furrow irrigation, the difference between
the prior and posterior distributions demonstrated that the model was most sensitive to
infiltration parameters for front curves. As seen in Figure 4, the difference is greater for
the PBIAS criterion. The dotted points in Figure 4 show the distributions of behavioral
data for each parameter, whose likelihood measures NSE > 0.5, −0.25 < PBIAS < 0.25, and
R2 > 0.6. For the close-ended furrow irrigation condition, the kurtosis in the distribution
of the simulation by using roughness parameter and NSE and PBIAS criteria show that
this parameter has major effects on advance front curve modeling. Additionally, among
the infiltration simulations and dotted plot distribution, the kurtosis of behavioral sets by
applying NSE and PBIAS criteria is a more obvious than the other R2 is. Hence, it seems the
PBIAS and NSE criteria can provide a more efficient way of modeling the front curve based
on roughness and infiltration parameters. The acceptable percentages were 96.61% for the
close-ended one (n)-NSE; 86.64% for close-ended one (n)-PBIAS; 56.35% for close-ended
one (k, a, f 0)-NSE; and 21.54% for close-ended one (k, a, f 0)-PBIAS. Similar results were
obtained for the open-ended furrow irrigation condition by applying WinSRFR modeling
(Figure 5 and Table 4). Based on Figure 6 and Table 4 and considering the kurtosis of
behavioral data, using the roughness parameter and NSE criterion can produce a relatively
stable flow depth hydrograph estimation for close-ended furrow irrigation condition. The
estimations based on the geometry cross section and infiltration properties by applying
the NSE criterion were ranked in second place and can be used after roughness-NSE.
Additionally, for the open-ended furrow irrigation condition, the kurtosis distribution of
behavioral data displays the role of infiltration (NSE and PBIAS) parameters and geometry
cross section (NSE) properties on the estimation stability of WinSRFR (Figure 7). The results
of behavioral data dispersion on the posterior distribution line of runoff hydrograph show
the effect of the Manning equation on WinSRFR estimation, especially after applying the
NSE likelihood function (Figure 8).

It is apparent from the results in Table 4 that many simulations fell within the high
likelihood value region (NSE > 0.5). This indicates a complex correlation between the
evaluated parameters and the advance front curve output of the WinSRFR model, which
can reflect the uncertainty of the model parameters. This result is in agreement with that
reported in [9]. Additionally, as seen from Figure 6 to Figure 8, the likelihood measures
do not have a regular form for estimating the flow depth and runoff hydrographs. On
the other hand, the choices of appropriate likelihood function and simulation criteria are
inherently subjective [9]. It is evident that different likelihood functions highlight the role of
certain geometry cross section (SS, BW), infiltration (k, a, f 0), and roughness (n) parameters
and affect the model’s output uncertainty. Hence, the question is what criterion is useful to
investigate the uncertainty of the WinSRFR model for estimating advance front curves and
depth and runoff hydrographs. To answer this question, the Taylor diagram and 95PPU
bounds were drawn after applying likelihood functions for removing non-behavioral data.
The percentage of covered observation, the width of uncertainty bounds, and statistical
characteristics were evaluated.
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Figure 4. Posterior (red line) and prior (black line) cumulative distributions of the advance front
model from close-ended irrigation conditions.

3.4. Analysis of Accuracy and Uncertainty Associated with Different Parameters

In order to achieve precise uncertainty analysis results and a better selection of geome-
try cross section, infiltration, and roughness parameters, the Taylor diagrams were plotted.
This diagram provides a visual of the models’ estimation accuracy based on the three
criteria: NSE > 0.5, R2 > 0.6, and −0.25 < PBIAS < 0.25. For this aim, those estimations that
satisfied the NSE, PBIAS, and R2 criteria were selected, and the uncertainty and statistical
analyses were performed again.
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Figure 6. Posterior (red line) and prior (black line) cumulative distributions of the flow depth
hydrograph model from close-ended irrigation conditions.

The results of the Taylor diagram for WinSRFR advance front estimations in the close-
ended furrow irrigation condition are shown in Figure 9. Since all the estimations using
geometry cross section parameters based on NSE, PBIAS, and R2 functions were classified
as behavioral data, one Taylor diagram was plotted. The estimations were located between
R lines of 0.99 and 1, STD lines of 42.39 and 51.44, and RMSD lines of 1.80 and 6.29 for
the advance front curve of close-ended condition (SS, BW). For the estimation of advance
front curve using infiltration parameters, the estimations were located between R lines
of 0.96 and 1, STD lines of 23.47 and 59.82, and RMSD lines of 0.96 and 25.16 for the
NSE function; between R lines of 0.96 and 1, STD lines of 32.49 and 59.82, and RMSD
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lines of 0.96 and 16.50 for the PBIAS function; between R lines of 0.96 and 1, STD lines of
15.99 and 59.82, and RMSD lines of 0.96 and 32.47 for the R2 function. Additionally, for
estimation of the advance front curve using the roughness parameter of Manning equation,
the estimations were located between R lines of 0.99 and 1, STD lines of 35.56 and 67.52,
and RMSD lines of 1.68 and 19.37 for the NSE function; between R lines of 0.99 and 1,
STD lines of 38.77 and 60.74, and RMSD lines of 1.68 and 12.44 for the PBIAS function;
between R lines of 0.99 and 1, STD lines of 35.56 and 67.52, and RMSD lines of 1.68 and
19.37 for the R2 function. It is obvious that all estimations in terms of R exhibit high
accuracy in predicting advance front curve in the close-ended condition. Taylor diagrams
show that (SS, BW), (k, a, f 0)-PBIAS, and (n)-PBIAS have high accuracy in recognizing
the complex relationships between the input parameters and advance front curve. For a
better selection of robust parameters, the values of p-factor and r-factor are given in Table 5.
The results show that (k, a, f 0)-PBIAS and (n)-PBIAS can cover 87.5% and 87.5% of the
observation data, and the widths of the uncertainty bound are 0.51 and 0.40, respectively.
By removing non-behavioral data (PBIAS > 0.25 and PBIAS < −0.25), the estimations of
(n)-PBIAS reduced the r-factor value from 0.64 to 0.4, while the p-factor was constant (87.5%).
The results suggest that if proper soil infiltration parameters are selected and accurate
measurements are taken, it is possible to reduce the simulation uncertainty of advance
front curves. Therefore, to minimize the simulations uncertainty of the WinSRFR furrow
irrigation model, it is important to select appropriate parameters prior to modeling advance
front curves. Nie et al. [56] demonstrated that the sensitivity of the advance front curve
in the WinSRFR model to soil infiltration parameters is very high. They presented that
those simulations results were strongly affected when these parameters were changed.
Khorami and Ghahraman [57] solved the Richard equation numerically to simulate soil
moisture distribution and soil water infiltration. They reported that the model’s simulation
uncertainties are relatively high in terms of moisture and infiltration parameters.

Similar results were obtained for estimating the advance front curve in the open-ended
condition. Based on Taylor diagrams (Figure 10), the simulations were grouped into 0.99
and 1 R lines, 53.41 and 61.41 STD lines, 6.85 and 12.87 RMSD lines for (SS, BW); into
0.91 and 1 R lines, 25.22 and 78.29 STD lines, and 1.17 and 31.28 RMSD lines for (k, a,
f 0)-NSE; into 0.91 and 1 R lines, 34.90 and 76.30 STD lines, and 1.17 and 31.28 RMSD lines
for (k, a, f 0)-PBIAS; into 0.91 and 1 R lines, 15.19 and 109.54 STD lines, and 1.17 and 59.85
RMSD lines for (k, a, f 0)-R2; into 0.98 and 1 R lines, 46.69 and 74.95 STD lines, and 7.65
and 25.38 RMSD lines for (n)-NSE; into 0.98 and 1 R lines, 46.69 and 65.60 STD lines, and
7.65 and 16.46 RMSD lines for (n)-PBIAS; into the 0.98 and 1 R lines, 46.69 and 103.37
STD lines, and 7.65 and 53.65 RMSD lines for (n)-R2. It seems that (SS, BW), (k, a, f 0)-NSE
and (n)-PBIAS produced more accurate simulations than the others did. However, from
Table 5, the estimated advance front curve using geometry cross section properties covers
only 50% of observations, while the p-factor is 87.5% for soil infiltration and roughness
parameters. The r-factor of estimations after removing non-behavioral data show that the
uncertainty width of (k, a, f 0)-NSE and (n)-PBIAS reduced from 2.07 to 0.88 and from
0.75 to 0.39, respectively. These results represent that applying the PBIAS function for
the roughness parameter of the Manning equation could efficiently reduce uncertain and
unstable estimations of the open-ended advance front curve. These uncertainty results
indicate an interaction between the accurate measurement of parameters and the output of
the WinSRFR model. Nie et al. [58] represented that the performance of the WinSRFR model
to simulate water advance and recession trajectories processes are affected by variations in
soil infiltration. Moravejalahkamis [59] reported that using a constant value for Manning’s
roughness coefficient, soil infiltration properties, field dimensions, inflow rates, and cut-
off times in furrow irrigation systems can led to significant errors in advanced recession
trajectories assessment. Additionally, several studies suggested that irrigation performance
can be improved by considering the soil spatial–temporal variability in soil infiltration
and Manning’s roughness parameters [24,31,60]. This statement is in agreement with the
results of the current study for the accurate measurement of soil infiltration and Manning’s
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roughness parameters to achieve the high performance and low uncertainty of the WinSRFR
model for simulating the advance front curve.
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Figure 11 shows the uncertainty bounds of advance front curve for close-ended and
open-ended furrow irrigation conditions after removing non-behavioral data.

The results of Taylor diagrams for estimation flow depth hydrograph in the close-
ended furrow irrigation condition are given in Figure 12. From the results of Figure 12,
the estimations related to geometry cross section properties are placed between R lines
of 0.89 and 0.93, STD lines of 12.78 and 14.81, and RMSD lines of 5.92 and 6.90 after
applying the NSE > 0.5 function. The function of −0.25 < PBIAS < 0.25 resulted in
0.89 < R < 0.93, 12.69 < STD < 12.64, and 5.92 < RMSD < 6.95. Additionally, the eliminating
non-behavioral data using R2 > 0.6 resulted in 0.89 < R < 0.94, 12.69 < STD < 27.40, and
5.89 < RMSD < 14.09. The simulation of the flow depth hydrograph using infiltration param-
eters of (k, a, f 0) resulted in 0.76 < R < 0.99, 10.76 < STD < 22.99, and 2.59 < RMSD < 10.50 for
the NSE likelihood function; 0.40 < R < 0.99, 8.56 < STD < 32.84, and 2.59 < RMSD < 22.14 for
the PBIAS likelihood function; 0.78 < R < 0.99, 8.56 < STD < 35.22, and 2.59 < RMSD < 24.90 for
the R2 likelihood function. By simulating the flow depth hydrograph using the roughness
parameter of Manning equation, the minimum and maximum values of R were calculated
to be equal to 0.78 and 0.96 for NSE, 0.7 and 0.97 for PBIAS, and 0.78 and 0.97 for R2

likelihood functions, respectively. STD values were changed in the ranges of 10.56–19.10,
7.64–23.37, and 10.35–60.03 for NSE, PBIAS, and R2 likelihood functions, respectively. The
RMSD values were changed in the ranges of 6.02–9.68, 6.02–11.34, and 6.02–47.49 for NSE,
PBIAS, and R2 likelihood functions, respectively. Based on statistical characteristics, the
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simulation of flow depth hydrograph using (SS, BW)-NSE, (k, a, f 0)-NSE, and (n)-NSE
in the condition of close-ended furrow irrigation are more accurate than the others are.
Consequently, from the results shown in Table 4, among three estimations, (k, a, f 0)-NSE
resulted in the lowest value of 95PPU and highest value of r-factor, which are equal to 62.5%
and 1.06, respectively. Additionally, based on the results in Table 3, it can be concluded
that when measurements are dispersed and involve errors, estimations of the flow depth
hydrograph using (n)-NSE may reduce uncertainties. The remained behavioral data using
NSE > 0.5 for geometry cross section parameters was 4.76%, which shows the instability of
SS and BW data due to the measurement errors.
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Figure 8. Posterior (red line) and prior (black line) cumulative distributions of the runoff hydrograph
model from open-ended irrigation conditions.

Taylor diagram and uncertainty bound results obtained for WinSRFR flow depth
hydrograph simulations in the open-ended furrow irrigation condition are shown in
Figures 13 and 14. The analysis of obtained statistical values demonstrated that (SS, BW)-
NSE, (k, a, f 0)-NSE, and (n)-NSE had more accurate simulations. The estimations were
grouped into R lines of 0.88 and 0.94, STD lines of 15.60 and 19.34, and RMSD lines of
6.66 and 9.21 for (SS, BW)-NSE; into R lines of 0.74 and 0.99, STD lines of 14.33 and 28.82,
and RMSD lines of 3.76 and 13.03 for (k, a, f 0)-NSE; into R lines of 0.71 and 0.94, STD lines
of 14.17 and 20.54, and RMSD lines of 6.88 and 13.33 for (n)-NSE. Although the 95PPU
of (SS, BW)-NSE was 77.8%, which is more than the value related to (n)-NSE, which is
equal to 52.78% (Table 5), from the results of Table 4, only 6.58% of the simulations were
recognized as behavioral ones. (k, a, f 0)-NSE resulted in the highest 95PPU value, and
94.45% of the simulated data were bracketed by the 95% estimation uncertainty. In both
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the open-ended and close-ended conditions, the width of the uncertainty bound reduced
significantly (Figure 14, Tables 3 and 5).
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Table 4. Percentage of behavioral likelihood derived from the likelihood functions.

Conditions Likelihood Criteria Advance Front Depth Hydrograph Flow Hydrograph

Close end (SS, BW)
NSE 100 4.76
R2 100 100

PBIAS 100 7.69

Open end (SS, BW)
NSE 100 6.58 0
R2 100 100 100

PBIAS 100 9.01 100

Close end (k, a, f 0)
NSE 56.35 14.06
R2 76.08 57.37

PBIAS 21.54 48.75

Open end (k, a, f 0)
NSE 53.40 15.76 0.84
R2 81.41 81.41 59.75

PBIAS 23.36 35.71 6.41

Close end (n)
NSE 96.61 50.67
R2 96.61 68.40

PBIAS 86.64 76.10

Open end (n)
NSE 96.20 50.05 7.61
R2 100 64.75 47.58

PBIAS 89.41 72.05 98.56

Table 5. Uncertainty evaluation using p and r criteria after removing non-behavioral data.

Conditions Criteria
Advance Front Depth Hydrograph Flow Hydrograph

NSE PBIAS R2 NSE PBIAS R2 NSE PBIAS R2

Close end (SS, BW) p-factor 12.5 12.5 12.5 87.5 90.6 34.38
r-factor 0.11 0.11 0.11 0.99 1.42 4.40

Open end (SS, BW) p-factor 50 50 50 77.8 80.56 52.78 0 14.71 14.71
r-factor 0.11 0.11 0.11 1.05 1.21 3.44 0 0.48 0.48

Close end (k, a, f 0) p-factor 87.5 87.5 87.5 62.5 100 100
r-factor 0.63 0.51 0.70 1.06 2.09 3.06

Open end (k, a, f 0) p-factor 87.5 87.5 87.5 94.45 100 100 32.37 41.18 44.12
r-factor 0.88 0.66 1.44 1.32 1.85 2.24 0.47 1.89 8.98

Close end (n) p-factor 87.5 87.5 87.5 71.87 90.63 90.63
r-factor 0.51 0.40 0.51 0.93 1.75 3.10

Open end (n) p-factor 87.5 87.5 87.5 52.78 72.22 61.11 29.41 91.18 70.59
r-factor 0.52 0.39 0.75 0.76 1.37 2.69 0.37 2.01 1.06
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Similar results were obtained for simulating the runoff hydrograph, where (k, a, f 0)-NSE
and (n)-NSE showed better performances than the other estimations did. Based on the
Taylor diagram given in Figure 15, the statistical results of (k, a, f 0)-NSE were calculated as
0.83 < R < 0.89, 0.08 < STD < 0.12, and 0.05 < RMSD < 0.07. The results of 0.88 < R < 0.92,
0.141 < STD < 0.148, and 0.06 < RMSD < 0.07 were obtained for (n)-NSE. When considering
the percentage of remained behavioral data (Table 4), it can be seen more than 92% of data
were eliminated due to NSE < 0.6. Therefore, re-evaluating the results shows that (n)-PBIAS
and (n)-R2 reduced the simulating uncertainty of runoff hydrograph while maintaining
the 98.56% and 47.58% of the data, respectively. The statistical results of (n)-PBIAS were
exhibited to be 0.23 < R < 0.92, 0.06 < STD < 0.16, and 0.138 < RMSD < 0.158. Those results
were calculated as 0.77 < R < 0.92, 0.06 < STD < 0.1, and 0.138 < RMSD < 0.153 for (n)-R2.
Using (n)-PBIAS, 91.18% of observation fell inside the estimated runoff hydrograph. This
percentage reduced to 70.59% when (n)-R2 was used. The width of uncertainty bound
reduced by applying likelihood criteria of −0.25 < PBIAS < 0.25 and R2 > 0.6 (Figure 16).
Regarding Figure 16 and Table 5, the majority of runoff hydrograph observations were
bracketed in the estimated bound by using the PBAIS function. It seems the PBAIS function
is able to represent the changes in runoff over time. Some observation points of runoff were
beyond the 95PPU estimated by the R2 function. Thus, R2 was recognized as a modest
likelihood function for the runoff hydrograph.
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The uncertainty analysis of the WinSRFR model illustrated that the width of the uncer-
tainty bound is commonly affected by the data availability before and after filtering using
likelihood functions. This result is in agreement with those presented in [61]. Therefore,
the behavior of a furrow irrigation system cannot be accurately predicted by the WinSRFR
model because of deficiencies in assumptions of the model, errors in the observed data,
monitoring data, model parameters, and the model’s structure error. Large epistemic
uncertainties of the WinSRFR simulations can be reduced by minimizing the systematic
errors of furrow irrigation measurements, improving the measurement techniques, using
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more accurate instruments, reducing the inputs errors of the model, and also, considering
the model structural error due to the model’s simplification assumptions [62]. In addition,
in several previous studies, the WinSRFR model calibrated simulations obtained using
optimum parametric sets. While using the GLUE framework, a range of model inputs
are transformed into reliable simulations [63]. Through GLUE, a range of model inputs
is obtained by identifying the posterior distribution of parameters, and the estimation
uncertainty of model outputs is calculated with corresponding confidence intervals [9].
As a result, more attention should be paid to obtaining precise measurements from field
experiments for reducing the model’s uncertainty. The results obtained from this study
and proposed framework are highly applicable for updating prior knowledge about the
reliability of WinSRFR furrow irrigation model outputs.

4. Conclusions

In this study, geometry cross section (SS, BW), Kostiakov–Lewis infiltration (k, a, f 0),
and Manning’s roughness (n) parameters in different conditions of furrow irrigation system
(close end and open end) were evaluated to analyze the impacts of them on the WinSRFR
model outputs. The GLUE analysis was performed by considering three likelihood func-
tions of NSE > 0.5, −0.25 < PBAIS < 0.25, and R2 > 0.6 to assess the uncertainty degree of
the model outputs response to the input parameters, including advance front curve, flow
depth hydrograph, and runoff hydrograph. The following conclusions were drawn from
the results:

- The initial evaluation without filtering non-behavioral estimations showed that the
model outputs have high uncertainties in regard to the input parameter of geometry
cross section. The value width range of uncertainty bound could be reduced by
employing Kostiakov–Lewis infiltration and Manning’s roughness parameters.

- Likelihood measures greatly affect the uncertainty bounds, especially with respect
to the Kostiakov–Lewis infiltration and Manning’s roughness parameters. The confi-
dence interval and uncertainty bound of the advance front curve and runoff hydro-
graph did not change in response to employing likelihood functions for geometry
cross section parameters.

- There is a higher level of instability in the model outputs related to soil infiltration
parameters than those related to the roughness coefficient. This result is related to
the higher level of sensitivity of the WinSRFR model in inaccurate measurements,
methods, and equipment to monitor the soil infiltration than that which is considering
for the optimum roughness coefficient.

- The PBIAS likelihood function played a critical role in the uncertainty results for the
estimated advance front curve and runoff hydrograph. In contrast, the NSE likelihood
function was more important to implicitly determine the flow depth hydrograph
estimation uncertainty. These functions reduced the uncertainty of model outputs
by avoiding the parameter sets that produced outputs there were very different from
the observations.

According to the current study, it was apparent that likelihood functions affect the
model outputs. In addition, this study has limitations, including: (1) considering constant
threshold values for likelihood functions of NSE, R2, and PBIAS, (2) evaluating limited
input parameters, and (3) investigating one source of model uncertainty, which indicate
a need for further research. Thus, finding a robust likelihood function with different
threshold values is critical because it strongly influences the width of the uncertainty
bounds. Additionally, the influence of the length of furrow, inflow, cut-off time, etc., on
the model output uncertainty is unknown when one is applying GLUE for WinSRFR-
based furrow irrigation applications. Then, future research can consider other epistemic
uncertainties such as model structure and more input parameters. This work can also
be replicated by implementing different confidence intervals instead of 2.5% and 97.5%.
This study provides a conscious understanding of the correlation between the factors
affecting furrow irrigation performance. The methodology of this study can be used for
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complementary studies on the accuracy evaluation of different models of furrow irrigation
system simulation. Then, engineers can make more realistic decisions under uncertainty
based on the confidence interval bound, which can help to avoid decisions based on
incomplete value of models’ prediction.
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