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Abstract: Rapid urbanization has caused an increase in the discharge of inorganic elements into the
environment; however, the knowledge about the fate and annual variations of multiple elements
in wastewater treatment plants (WWTPs) is limited. To understand the distribution and change of
those elements, we collected and analyzed wastewater and sludge samples from seven WWTPs in a
southeast city of China. Results revealed the elemental concentration ranging from 0.06 µg·L−1 (Tl)
to 221.90 µg·L−1 (Mn) in the influent, below the detection limit (Er), to 206.40 µg·L−1 (Mn) in the
effluent, and 0.58 mg·kg−1 (Tl) to 309.30 mg·kg−1 (Zn) in the sludge. The removal analysis revealed
that rare earth elements (REEs) were removed well from the wastewater with removal efficiencies
ranging from 88.03% (Tm) to 97.37% (Sm), while heavy metals were poor, with removal efficiencies
ranging from 10.71% (Mn) to 89.17% (Pb). The elemental flux analysis highlighted that activated
sludge served as a major temporary storage site for 23 elements, while excess sludge acted as the
major sink for REEs. Significant spatial variations were detected among different WWTPs. On the
contrary, the temporal variations were insignificant based on the monitoring data from 2010 to 2020,
indicating the satisfactory implementation of current environmental regulations.

Keywords: WWTPs; inorganic element; removal efficiency; elemental fluxes; spatial variations;
annual variations

1. Introduction

The hazardous inorganic elements derived from industries and consumer products are
increasingly deposited into the environment with increasing urbanization and population
growth. These inorganic pollutants pose serious threats, such as functional impairment of
vital organs and cancer, when they enter the food chain [1]. As the recipient of municipal
wastewater, wastewater treatment plants (WWTPs) are central to preventing inorganic
pollutants from being released into the environment. Therefore, detailed research on the
pollution levels and behavior of multiple inorganic elements in WWTPs is necessary.

The occurrence and fate of heavy metals in WWTPs have been investigated around the
world, such as in Greece [2], Italy [3], France [4], China [5], Turkey [6], and South Africa [7].
However, most reports focused on the heavy metals in the priority monitoring list [8], and
information on the nonpriority pollutants, including critical elements such as rare earth
elements (REEs), is limited. In recent years, due to their large exploitation and usage in
new technology industries [9], REEs have been continuously discharged into wastewater
treatment systems, raising concerns about their potential environmental impacts, including
their bioaccumulation in aquatic organisms and their potential toxicity to humans and other
organisms [10]. Hence, fully investigating REEs in WWTPs could help improve existing
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management to reduce the release of pollutants. A few studies have focused on the REEs in
sludge [11,12] and effluent samples [13], but without information on influents, evaluating
their removal efficiency or their element flux values is difficult. Therefore, a simultaneous
investigation of multiple elements in influent, effluent, and sludge is needed.

Removal efficiencies are calculated to evaluate the removal of inorganic elements
from the aqueous phase [14]. However, evaluating elements’ fate in wastewater treatment
processes on the basis of the removal percentage of the dissolved phase is incomplete,
because sludge adsorption is the major way to remove inorganic elements from water. As
an alternative, determining elemental fluxes via material flow analysis, which considers
both aqueous and solid phases, is an effective way to elucidate the fate of inorganic
elements in WWTPs. Previous studies have quantified the flux of inorganic elements into
WWTPs, focusing on the inflow and outflow fluxes and their mass loads in the receiving
environment [15,16]. Given that adsorption is the primary means of elemental removal,
evaluating the storage of elements and elucidating the complete picture of elemental
fate in the wastewater treatment system without information on the activated sludge
and excess sludge are difficult. Therefore, obtaining a collection of input, storage, and
output information is beneficial for a clearer understanding of the distribution of inorganic
elements in sewage plants.

Understanding the temporal variation of inorganic elements in WWTPs, as a long-
term recipient of inorganic elements in a city, is helpful for effective control of sewage
management, as confirmed by different studies. For instance, Sadiq et al. reported that
the heavy metal level in the influent and sludge was mostly higher in the dry season than
in the wet season; however, the opposite trends were observed for metal concentrations
in the effluent [17]. In addition, our previous work revealed an insignificant temporal
variation among the four sampling seasons for 52 inorganic elements in sewage sludge [18].
The information was helpful for understanding the seasonal variation of elements, but the
time scale of the investigation needs to be expanded because the short-term monitoring
results still had a bias in judging the temporal variation. Therefore, to obtain more accurate
information about the temporal variation of elements, continuous monitoring in the same
region over decades needs to be conducted to provide a detailed pollution trend of elements,
facilitating pollution management, especially for areas under rapid development.

To study the fate and variation of multiple elements in a municipal wastewater system
with rapid urbanization development, we collected influent, effluent, and active sludge
samples from seven WWTPs in a southeastern city of China. The purpose of this study was
to (1) investigate the current range of concentration for 23 inorganic elements, including
heavy metals and REEs, (2) study the spatial variation of selected elements among seven
WWTPs, (3) reveal the removal efficiency of each element, (4) evaluate the distribution and
mass load of selected elements for a wastewater treatment system by calculating element
flux, (5) understand the annual variation for elements considered in this study over 10 years.
These results will provide a useful reference for urban development and sewage disposal.

2. Materials and Methods
2.1. Study Area and Sampling

Wastewater and sludge samples were collected from seven WWTPs in a southeast
city, China. W1, W2, and W6 use the oxidation ditch process; W3, W4, and W5 use the
anaerobic/anoxic/oxic process; while W7 uses a biological aerated filtration process. The
details on treatment processes, daily processing capacity, and daily sludge production
of each WWTP over six sampling days are shown in Table S1. Grab samples of influent,
effluent, and sludge were collected using individual glass bottles from W1 to W7 in June
2020 (3rd, 5th, and 8th) and January 2021 (4th, 6th, and 8th).

2.2. Analytical Methods

The influent and effluent samples were stored at 4 ◦C after being acidified to pH < 2 by
using HNO3 (65%, analytical grade, Merck, Germany). The sludge samples were dewatered
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via centrifugation (Heraeus Multifuge X1R, Thermo, Waltham, MA, USA) for 5.0 min at
8000 rpm (4 ◦C), then freeze-dried using a lyophilizer (FD-1A-50, Boyikang, Beijing, China).
The dried sludge samples were sieved using a screen cloth (mesh size < 100 nm) and
preserved at −20 ◦C.

Wastewater samples were prepared following the USEPA 3015A method [19]. An
aliquot (9.00 mL) of influent or effluent and 1.00 mL of nitric acid (65%, analytical grade;
Merck, Darmstadt, Germany) were added into a polytetrafluoroethylene digestion vessel
and placed in a microwave (MASTER 40A021, CEM Corporation, Charlotte, NC, USA).
During the digestion procedure, the temperature was increased to 180 ± 5 ◦C in 10.0 min
and remained at this level for 30.0 min. Subsequently, the digested samples were filtered
through a 0.45 µm Millipore filter after cooling and diluted to 20 mL with ultrapure water.
The digestion of sludge samples was completed following the USEPA 3051A method [20].
Sludge sample (0.100 g) and freshly prepared reverse aqua regia (9.00 mL, analytical grade,
65% HNO3 and 37% HCl, Merck, 3:1 mixture ratio; Merck, Germany) were mixed in a
digestion tube and maintained overnight at room temperature. In a microwave system,
this mixture was heated to 180 ± 5 ◦C for 10.0 min and maintained at that temperature for
60.0 min. Lastly, the cooled digestion solution was filtered through a 0.45 µm Millipore
filter and diluted to 40 mL with ultrapure water.

Elements with relatively high concentrations in sludge, including Mn, Zn, La, and Ce,
were detected by ICP-OES (PerkinElmer Optima 7000DV, Waltham, MA, USA). All elements
in effluent and influent and those with relatively low concentrations in sludge (V, Co, Ga,
Cr, Cd, Sb, Tl, Pb, Y, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Yb) were detected by ICP-
MS (Agilent 7500CX, Santa Clara, CA, USA). The external standard method was used to
quantify each element, and a standard curve was prepared using a multielement standard
solution (Guobiao Beijing Testing & Certification Co., Ltd., Beijing, China).

2.3. Quality Assurance and Quality Control

The instrumental blank, procedural blank, sample repetition, and elemental recovery
for each sampling batch were evaluated. The elemental recovery from sludge was evaluated
using a standard reference material (GBW07309, GSD-9) with the known concentration
of elements under the same analytical method mentioned above. The elemental recovery
from wastewater was evaluated using a matrix spike of a multielement standard solution
(Guobiao Beijing Testing & Certification Co., Ltd., Beijing, China).

All the instrumental blanks were below the instrumental detection limits. All the
procedural blanks were below the method detection limits, indicating the absence of con-
tamination during the sample pretreatment and determination. Elemental recovery ranged
from 80% to 120% for wastewater samples, while this was 60–130% for sludge samples
(Table S2), which met the requirement of simultaneous analysis of inorganic elements in
a complex matrix [21,22]. The relative standard deviation (RSD) of triplicate analysis of
standard materials or spiked wastewater was in the range of 0.66–4.82% and 0.08–7.66%.

2.4. Data Processing

The removal efficiency (RE, %) for individual elements from the aqueous phase was
calculated as follows:

RE(%) =
C influent − C effluent

C influent
× 100 (1)

where C influent and C effluent are the concentrations of each element in the influent and
effluent (µg·L−1), respectively.

The daily mass flux of elements in WWTPs was calculated using the following equation:

M influent = C influent × Q influent (2)

M effluent= C effluent × Q effluent (3)

M excess sludge = C activated sludge × Q excess sludge (4)
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M storage in WWTPs= C activated sludge× Q activated sludge (5)

where M influent, M effluent, M excess sludge, and M storage in WWTPs are the daily mass load of
each inorganic element (kg·d−1) in influent, effluent, excess sludge, and storage in WWTPs,
respectively. C activated sludge is the elemental concentration of each element in activated
sludge (mg·kg−1). Q influent, Q effluent, Q excess sludge, and Q activated sludge are the daily
capacity of each inorganic element for influent (m3·d−1), effluent (m3·d−1), flux of excess
sludge (t·d−1), and flux of activated sludge (t·d−1) in each WWTP, respectively. The values
of Q influent, Q effluent, Q excess sludge, and Q activated sludge are shown in Table S1.

2.5. Statistical Analysis

R Studio Desktop version 1.3.959 and PAST v 3.20 were applied for the statistical
analysis of data. Significance level was considered when p < 0.01 and p < 0.05. Correlation
analysis was applied to evaluate the correlation between removal efficiency for inorganic
elements and sludge retention time (SRT), as well as the correlation among the concentra-
tions in the influent, effluent, and sludge. Principal component analysis [23] was conducted
to investigate the spatial variations of inorganic elements in the 7 WWTPs. Kruskal–Wallis
one-way analysis of variance and Dunn’s multiple comparisons tests [24] were used to ana-
lyze the differences in element removal efficiency, the elemental concentration of 7 WWTPs,
and the annual variation of elements in 10 years.

3. Results and Discussions
3.1. Concentration of Elements in WWTPs

The inorganic elements considered in this study were classified into two groups: heavy
metals (Zn, Cr, Cd, Sb, Tl, Pb, Mn, Co, Ga, and V) and REEs (Y, La, Ce, Pr, Nd, Sm, Eu, Gd,
Dy, Ho, Er, Tm, and Yb). The heavy metals were a group of widely studied elements whose
concentrations fluctuate considerably in WWTPs, while the REEs were a group of trace
elements with similar characteristics that are often used as indicators to observe pollution
in new technology industries. The concentrations of each element in the influent, effluent,
and sludge are presented in Figure 1.

The influent samples demonstrated concentration differences of over three orders
of magnitude between the most abundant elements (e.g., Mn and Zn, <250 µg·L−1) and
the least abundant elements (e.g., Tl, Cd, Tm, Ho, Eu, and Yb, <0.05–0.5 µg·L−1). Mn
(221.90 µg·L−1) exhibited the highest concentration among the heavy metals, followed by
Zn (142.20 µg·L−1), Cr (22.00 µg·L−1), Ga (20.52 µg·L−1), V (7.85 µg·L−1), Pb (7.52 µg·L−1),
Co (5.35 µg·L−1), Sb (1.14 µg·L−1), Cd (0.29 µg·L−1), and Tl (0.06 µg·L−1). According to
Table S3, the influent concentrations of the priority substances for monitoring, including Cd,
Pb, Cr, and Zn, were comparable with those in other Chinese cities (Shanghai, Chongqing)
and other countries (Norway, the Czech Republic, and Italy). The most abundant ele-
ments among the REEs were Ce (16.21 µg·L−1), La (14.88 µg·L−1), Nd (4.89 µg·L−1), and
Y (4.23 µg·L−1), while the concentrations of the other REEs ranged from 0.11 µg·L−1 (Tm)
to 2.73 µg·L−1 (Pr).

In the effluent, the elemental median concentration was 0.89 µg·L−1 (Nd)–206.40 µg·L−1

(Mn), excluding Er, which was below the detection limit (0.005 µg·L−1), and the concentra-
tion difference was about two orders of magnitude. For heavy metals, Mn and Zn showed
the highest quantities, just as they did in the influent. The median concentrations of the
priority monitored heavy metals, namely, Zn, Cr, Pb, and Cd, were 72.40, 7.91, 0.99, and
0.15 µg·L−1, respectively, in discharge water (Table S3), which did not exceed the discharge
standard of pollutants for municipal WWTP (GB 18918-2002) [25]. For REEs, Nd had the
highest concentration, followed by Y (0.83 µg·L−1), Ce (0.59 µg·L−1), La (0.29 µg·L−1), and
Gd (0.17 µg·L−1), with the rest falling below 0.1 µg·L−1.
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Figure 1. Element concentrations in influent and effluent (a) and in sludge (b) at 7 WWTPs (box plots
show the upper extreme, lower extreme, 25th and 75th percentile, mean and median values).

The concentration span in sludge samples differed by over two orders of magnitude,
in which the elements with the highest quantities were Zn, Cr, and Mn (<310 mg·kg−1)
and those with the lowest quantities were Yb, Eu, Ho, Tm, and Tl (0.5–5 mg·kg−1). Among
the heavy metals, Zn (309.30 mg·kg−1), Cr (296.40 mg·kg−1), Pb (56.90 mg·kg−1), and
Cd (1.69 mg·kg−1) were comparable with, or lower in the present study than, studies
conducted in 48 other cities in China [26], as shown in Table S3. Meanwhile, the concen-
trations of the REEs in sludge were in the range of 1.38 mg·kg−1 (Tm) to 237.6 mg·kg−1

(Ce) and were significantly higher (Dunn’s test, p < 0.05) than those found in Switzer-
land (0.07–19.0 mg·kg−1) [16] and USA (0.02–7.35 mg·kg−1) [27]. The massive storage and
extensive use of REEs in China lead to abundant REEs in sludge [28].

3.2. Spatial Variation of Elements in Seven WWTPs

In influent (Figures 2a and S1a–c), a spatial variation of elemental concentrations was
observed in W1 and W5 compared with the other WWTPs. The spatial variation in W1
could be attributed to the high concentrations of REEs (Dunn’s test, p < 0.05), while that in
W5 might be due to the high concentrations of heavy metals, including V, Sb, and Cd. For
example, the concentrations of V and Sb in W5 were 98.41 and 179.1 µg·L−1, respectively,
whereas these were only in the range of 4.78–11.05 and 31.49–114.20 µg·L−1, respectively,
in the other WWTPs. The concentrations of Y and Er in W1 were 40.32 and 4.07 µg·L−1,
respectively, whereas they were only in the range of 4.46–9.82 and 0.30–0.71 µg·L−1, respec-
tively, in the other WWTPs. In addition, a strong correlation was observed among the REEs
(R2 = 0.5–1.0, Figure S2a). The similar usage and source might lead to their co-occurrence
and their high concentrations in W1.

Significant spatial variations in elemental concentrations were also observed in sludge
(Figures 2b and S1d–f). W7 was separated from the other WWTPs because of the low
concentrations of REEs and heavy metals. W1 was separated because of the high REE
content (Dunn’s test, p < 0.05). The high concentrations of REEs in the influent, together
with the high adsorption tendency of REEs in the sludge [28], led to the significantly high
concentrations in the sludge in W1.

In the effluent, the spatial variations in elemental concentrations were observed
(Figures 2c and S1g–i). W5 was separated from the other WWTPs because of the high
concentration of heavy metals, while W4 formed an independent group given the low pro-
portions of elements. Notably, the proportion of REEs in the effluent was lower than that in
the influent and sludge. Moreover, REEs had a positive correlation in sludge (R2 = 0.9–1.0,
Figure S2b) and a weak correlation in effluent (R2 = 0.1–0.5, Figure S2b), indicating that
REEs were preferred for adsorption by sludge in W1.
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Figure 2. Principal component analysis for 23 elements in influent (a), sludge (b), and effluent (c)
at 7 WWTPs. Arrows indicate 23 elements. Dots indicate WWTP: red—W1, blue—W2, green—W3,
purple—W4, goldenrod—W5, cyan—W6, and brown—W7. Letters with a yellow background are
heavy metals, whereas those with a green background are REEs.

3.3. Removal Efficiency for Elements

The removal efficiencies for 23 elements from the aqueous phase in the seven WWTPs
are shown in Figure 3 and Table S4. REEs were efficiently removed from the wastewater
with removal efficiency rates in the range of 88.03% (Tm) to 97.37% (Sm). Among the heavy
metals, V and Pb were efficiently removed, with median removal efficiencies of 83.96% and
89.17%, respectively. The removal efficiencies for Cr, Ga, Cd, Zn, Tl, and Sb were 65.75%,
64.93%, 53.00%, 51.75%, 46.24%, and 31.61%, respectively. On the contrary, limited removal
of Co (27.66%) and Mn (10.71%) was achieved. A previous study showed that Cd, Zn, Tl,
Sb, Co, and Mn were mainly present in the soluble fraction; thus, these elements were
hardly removed by precipitation in the primary sedimentation treatment [29,30]. In our
previous study, Cd, Zn, Tl, Co, and Mn mainly existed in the water-soluble, exchangeable,
and carbonate phases in the sludge [28]. Therefore, these elements might be released as
dissolved ions to the aquatic phase after adsorption in sludge. Moreover, the addition of
flocculant (such as FeCl3), which remained one of the key treatment processes for removing
impurities (primarily suspended particles) in WWTPs [31], might increase the concentration
of inorganic elements (Co) in effluent [32], consequently causing low removal efficiencies.
When focusing on each sewage treatment plant, the median values of removal efficiencies
for 23 elements were 96.61% (W1), 80.43% (W2), 86.72% (W3), 87.24% (W4), 90.27% (W5),
90.49% (W6), and 79.59% (W7). Significantly high efficiencies were observed in W1, while
significantly low efficiencies were observed in W7 (Dunn’s test, p < 0.05, Table S4). SRT,
which is the average residence time of microorganisms in aeration pools [33], might be
related to the difference in the removal efficiency rates of the seven WWTPs. Figure S3
shows a negative correlation (r = −0.36, p < 0.01) between removal efficiencies and SRTs.
The SRTs of W1–W7 were 11.10, 16.50, 13.03, 20.95, 17.00, 15.70, and ~30 d, respectively.
Sterritt et al. showed similar results; the removal rate for heavy metals decreased with
increasing sludge age [34]. The long SRT in W7 indicated the slow growth of biomass,
which could reduce the elemental adsorption and increase the elemental concentrations in
the wastewater [34]. The long SRT might also decrease extracellular polymer substances
(EPS) [35], thereby decreasing elemental adsorption on the EPS or biomass. By contrast, the
short SRT in W1 indicated the fast growth of biomass and, consequently, the high removal
of inorganic elements via adsorption. In addition, a bio-absorption study indicated that
the adsorption capacity of sludge increased with increasing concentration of inorganic
elements because the concentration gradient is an important driving force for the transfer
of elements between the aqueous and solid phases; that is, the concentration is proportional
to the mass transfer effect [36]. For example, the concentration of Y (with a concentration
percentage of 60% and a removal rate of 97.51%) in W1 was higher than that in other
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WWTPs (with a concentration percentage below 10% and a removal rate of 75.37–97.03%),
so the high concentration of Y in W1 was more likely to be adsorbed by sludge.
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Figure 3. Overall removal efficiency of 23 elements at 7 WWTPs (box plots show the upper extreme,
lower extreme, 25th and 75th percentile, mean and median values).

3.4. Elemental Flux

The element fluxes (total mass loads of inorganic elements) of the seven WWTPs
were calculated and extrapolated to the elemental fluxes of the whole municipal sewage
treatment system, as shown in Figure 4. The total inflow flux value of inorganic elements
was 570 kg·d−1, of which the inflow flux values of W1–W7 were 104, 36, 45, 47, 126, 104, and
108 kg·d−1, respectively. Industrial production was the main source of inorganic elements
of wastewater in W1 and W5, which promoted the increase in inorganic pollution concen-
tration in raw wastewater. Therefore, the high element flux in W1 and W5 was attributed
to a high mass load per cubic meter of water in the influent, which was 11.6 kg·m−3 (W1)
and 10.0 kg·m−3 (W5), respectively. Although the mass load per ton of water for W6
(4.3 kg·m−3) and W7 (4.1 kg·m−3) was low, the inflow flux was comparable with or higher
than other WWTPs, which was mainly caused by the large volume of wastewater. In
addition, the heavy metals flux was 7–9 times the REE flux, which might be related to the
extensive use of heavy metals and the presence of elements with high abundance in the
crust, such as Mn [37]. Regarding heavy metals, the flux of W5 was 126 kg·d−1 higher than
those in other WWTPs (37–104 kg·d−1). Meanwhile the highest REE flux was found in W1
(20 kg·d−1), which had values in the range of 3–15 kg·d−1.

In terms of outflow, the total inorganic element flux value was 563 kg·d−1, of which the
element flux values via the excess sludge and effluent were 268 and 295 kg·d−1, respectively.
Heavy metals were comparable in effluent and excess sludge, with daily loads of 292 and
188 kg, respectively. REEs were mostly adsorbed in excess sludge with a daily load of 80 kg;
this was higher than that in the effluent (3 kg·d−1). Hence, excess sludge was an essential
sink for REEs in WWTPs. REEs are critical metals with high value, and recycling them
from sludge had become a hot topic; for example, PCDP-M-SHM performed well in the
extraction of REEs from industrial sludge [38]. Therefore, further development of recycling
technology might be an excellent solution to reduce the pollution of REEs in solid waste.
Moreover, the total inorganic element flux value of storage was 1852 kg·d−1, which was
higher than the inflow and outflow. This finding indicated that the sludge in the sewage
treatment plant was a sink for storing inorganic elements and was the main temporary
storage site for inorganic elements in urban areas. Ensuring the operation and management
of WWTPs is essential to prevent inorganic element contamination and promote urban
sustainability. The development of a dynamic cost model to optimize operation technology
and economy [39], the use of a machine learning model to complete pollutant process
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analysis [40], and the construction of a wireless sensor network to synchronize water
quality monitoring and management [41] are some useful tools reported for optimizing
the management of WWTPs. In the future, we can utilize modeling methods, intelligent
management techniques, and other tools to strengthen the management of inorganic
elements in WWTPs to avoid unnecessary environmental impacts.

Water 2023, 15, x FOR PEER REVIEW 8 of 12 
 

 

the crust, such as Mn [37]. Regarding heavy metals, the flux of W5 was 126 kg·d−1 higher 
than those in other WWTPs (37–104 kg·d−1). Meanwhile the highest REE flux was found 
in W1 (20 kg·d−1), which had values in the range of 3–15 kg·d−1. 

In terms of outflow, the total inorganic element flux value was 563 kg·d−1, of which 
the element flux values via the excess sludge and effluent were 268 and 295 kg·d−1, re-
spectively. Heavy metals were comparable in effluent and excess sludge, with daily loads 
of 292 and 188 kg, respectively. REEs were mostly adsorbed in excess sludge with a daily 
load of 80 kg; this was higher than that in the effluent (3 kg·d−1). Hence, excess sludge was 
an essential sink for REEs in WWTPs. REEs are critical metals with high value, and recy-
cling them from sludge had become a hot topic; for example, PCDP-M-SHM performed 
well in the extraction of REEs from industrial sludge [38]. Therefore, further development 
of recycling technology might be an excellent solution to reduce the pollution of REEs in 
solid waste. Moreover, the total inorganic element flux value of storage was 1852 kg·d−1, 
which was higher than the inflow and outflow. This finding indicated that the sludge in 
the sewage treatment plant was a sink for storing inorganic elements and was the main 
temporary storage site for inorganic elements in urban areas. Ensuring the operation and 
management of WWTPs is essential to prevent inorganic element contamination and 
promote urban sustainability. The development of a dynamic cost model to optimize 
operation technology and economy [39], the use of a machine learning model to complete 
pollutant process analysis [40], and the construction of a wireless sensor network to 
synchronize water quality monitoring and management [41] are some useful tools re-
ported for optimizing the management of WWTPs. In the future, we can utilize modeling 
methods, intelligent management techniques, and other tools to strengthen the man-
agement of inorganic elements in WWTPs to avoid unnecessary environmental impacts. 

 

 
Figure 4. Elemental flux at 7 WWTPs (unit was kg·d−1). The flow from sewer to WWTP represents 
inflow of elements, while the flow discharged from WWTP represents the output of elements from 
effluent and excess sludge. Storage gives an indication on elemental flow saved in WWTP. The 23 
elements are classified as heavy metals and REEs. Heavy metals (light coral) including Zn, Cr, Cd, 
Sb, Tl, Pb, Mn, Co, Ga, and V; REEs (aquamarine) including Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, 
Er, Tm, and Yb. 

3.5. Annual Variations of Elements in Sludge 
Annual variations of elemental concentrations were investigated by revisiting the 

information on the sludge samples from W3, W4, and W7 in 2010, 2014, and 2016 based 
on previous studies. There was no significant difference in the elemental concentrations 
in the sewage sludge over the period of 2010–2020 (Kruskal–Wallis test; Dunn’s test, p > 
0.05, as shown in Figure 5). A low annual variation was observed for Ga, Mn, and Cd, 
with RSD in the range of 10–22%. Similarly, a stable trend was observed in heavy metals, 
such as Cr, Pb, and Zn. This phenomenon was possibly the result of balancing the heavy 
metal concentration of sludge by increasing biomass because the concentration of heavy 

Figure 4. Elemental flux at 7 WWTPs (unit was kg·d−1). The flow from sewer to WWTP represents
inflow of elements, while the flow discharged from WWTP represents the output of elements from
effluent and excess sludge. Storage gives an indication on elemental flow saved in WWTP. The
23 elements are classified as heavy metals and REEs. Heavy metals (light coral) including Zn, Cr, Cd,
Sb, Tl, Pb, Mn, Co, Ga, and V; REEs (aquamarine) including Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er,
Tm, and Yb.

3.5. Annual Variations of Elements in Sludge

Annual variations of elemental concentrations were investigated by revisiting the
information on the sludge samples from W3, W4, and W7 in 2010, 2014, and 2016 based on
previous studies. There was no significant difference in the elemental concentrations in the
sewage sludge over the period of 2010–2020 (Kruskal–Wallis test; Dunn’s test, p > 0.05, as
shown in Figure 5). A low annual variation was observed for Ga, Mn, and Cd, with RSD
in the range of 10–22%. Similarly, a stable trend was observed in heavy metals, such as
Cr, Pb, and Zn. This phenomenon was possibly the result of balancing the heavy metal
concentration of sludge by increasing biomass because the concentration of heavy metals
per unit weight of activated sludge will be diluted by the growing biomass, regardless of
whether heavy metals were continually accumulated by the expanding activated sludge [42].
In the case of REEs in the sewage sludge, no significant difference was found from 2010
to 2020 (Kruskal–Wallis test; Dunn’s test, p > 0.05). Although the REEs’ related industrial
production grows fast in China, the stable trend over the past 10 years indicated the proper
control of REEs released via wastewater discharge in the southeast city of China. The
“Emission Standards of Pollutants from Rare Earths Industry” (GB 26451-2011) issued
by the Ministry of Ecology and Environment of the People’s Republic of China in 2011
regulated the amount of industrial wastewater containing REEs. The government had
also introduced a sufficient policy to promote cleaner production in the REE industry [43].
REEs in discharged wastewater have been effectively controlled since then, which has
prevented the increase in REE concentrations in sewage sludge. A similar situation was
demonstrated by the findings of the Norwegian WWTP that the heavy metal content in
sludge was controlled by introducing policies [44]. The above results indicated that the
current management policies of the southeastern city in China could effectively control the
emissions of inorganic elements, and further management should be strengthened in the
future to reduce the environmental hazards caused by the sludge disposal process.
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Figure 5. Annual variation of inorganic elements concentration between 2010 and 2020 in sewage
sludge. The same letter indicates no statistical difference (Kruskal–Wallis test; Dunn’s test, p > 0.05).

4. Conclusions

This study investigated the fate and spatial–temporal variations of 23 elements in
seven WWTPs in a southeast city of China. Strong concentration differences of 2–3 orders
of magnitude were detected for the 23 elements in the influent, effluent, and sludge,
with a heavy metal content that was generally higher than the REE content. Mn and Zn
dominated among the heavy metals, while Ce, La, Nd, and Y were the most abundant
elements among the REEs. Significant spatial differences were also observed, in which
W1 showed significantly high concentrations of REEs, and W5 showed significantly high
concentrations of heavy metals. The element flux analysis demonstrated the fate of the
23 elements in the sewage treatment system of the southeast city. REEs were mainly
distributed in sludge and discharged in the way of excess sludge, while heavy metals
were unstable and equally discharged from effluent and residual sludge. The removal
efficiency analysis also proved that the removal efficiencies for REEs from the wastewater
were good, whereas those for heavy metals were poor. Activated sludge was the major
temporary storage site for inorganic elements in the southeast city in China, which had
the largest storage of inorganic elements and was a non-negligible unit. Based on the data
from 2010, 2014, 2016, and 2020, there was no significant annual variation in the elemental
concentration of sludge in the past 10 years, indicating that the current environmental
protection policy was effective and that inorganic elements were controllable. In the future,
for the sustainable development of the environment and economy, effective control of
WWTPs, removal of harmful elements, and recovery of valuable elements are necessary
before inorganic elements go beyond the range controllable by WWTPs.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/w15061226/s1, Figure S1: Relative percentage of inor-
ganic elements in influent (a–c), sludge (d–f), and effluent (g–i) in 7 WWTPs. Different letters indicate
statistically different (Kruskal-Wallis test; Dunn’s test, p < 0.05); Figure S2: Correlation analysis
among elements in influent (a), effluent (upper triangular) and sludge (lower triangular) (b). Figure
S3: Relationship of sludge retention time and elemental removal efficiency in seven WWTPs. Table
S1: Performance of each WWTP during the sampling days. Table S2: Elemental recoveries and
analytical standard deviations in aqueous and sludge (n = 3). Table S3: Median concentrations of
target elements, unit: µg·L−1. Table S4: Median value of removal efficiency of target elements,
unit: µg·L−1.
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