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Abstract: In hydrological practice, individual elements of the hydrological cycle are most often
estimated and evaluated separately. Uncertainty in the size estimation of extrema discharges and
their return period can affect the statistical assessment of the significance of floods. One example is
the simultaneous occurrence and joining of extremes at the confluence of rivers. The paper dealt with
the statistical evaluation of the occurrence of two independent variables and their joint probabilities
of occurrence. Bivariate joint analysis is a statistical approach for the assessment of flood threats at
the confluence of rivers. In our study, the annual maximum discharges monitored on four selected
Slovak rivers and their tributaries represent the analyzed variables. The Archimedean class of copula
functions was used as a set of mathematical tools for the determination and evaluation of the joint
probability of annual maximal discharges at river confluences. The results of such analysis can
contribute to a more reliable assessment of flood threats, especially in cases where extreme discharges
occur simultaneously, increasing the risk of devastating effects. Finally, the designed discharges of
the different return periods calculated by using the univariate approach and the bivariate approach
for the gauging station below the confluence of the rivers was evaluated and compared.

Keywords: flood threat; hydrological extremes; river confluence; bivariate analysis; joint return
period; copula function

1. Introduction

To assess the significance of extreme events, various statistical methods are used. The
theory of probability is one of the most widely used mathematical tools in hydrological
practice for the evaluation of event extremity. In hydrological practice, individual ele-
ments that characterize the hydrological cycle are most often estimated and evaluated
separately, which means that univariate statistical analysis is used. This approach gives
satisfactory results when applied to simple systems, for example, where the mainstream
does not capture major tributaries [1]. A different situation can arise if rivers with simi-
larly significant overflows form a confluence and extreme events meet at the confluence
simultaneously, which can increase the significance of the event or cause a catastrophic
situation in the area below the confluence. Artificial interventions in river basins affect or
disturb their natural water circulation. Regulations or anthropogenic interventions in river
basins often cause changes in their runoff conditions or cause changes in the transformation
of flow waves in the riverbed. Such interventions can result in the joint occurrence of
flood waves at river confluences. In addition, climate changes also affect the behavior of
hydrological extremes along rivers and the interdependent structures between hydrological
characteristics. In order to obtain this information, multivariate statistical analysis with a
combined cumulative distribution function and a probability density function can be used.
A Gaussian probability distribution was used as the first joint distribution function, but
the marginal probability distributions had to be normally distributed [2,3]. The limitation
of this approach in hydrology is that all variables have the same probability distribution,
while the analyzed elements have different marginal distributions. Copula functions are
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mathematical tools that can be used to solve the above-mentioned limitation regarding
marginal functions in the two-dimensional analysis of hydrological elements. Copula func-
tions express the structure of dependence between random variables, regardless of their
marginal distribution. In the context of mentioned factors (climate change, anthropogenic
activities), a multivariate statistical approach seems to be a suitable mathematical tool for
analyzing changes in the mutual dependence of the natural variables or joint occurrence
of extremes. The joint probability of two random variables in contrast to the conditional
probability reflects the probability with which the two random variables occur simultane-
ously [4]. The monograph on the Danube by [5] dealt with the coincidence between flood
waves in the Danube River and its selected tributaries. The bivariate analysis confirmed
that flood wave genesis in the Danube River basin is very complex. The coincidence of
waves caused a flood with a return period of 100 years in 2000 on the Tisa and the Bodrog
Rivers. The coincidence of the individual flood waves in the profiles of the Vltava and
the Dyje Rivers (Czech Republic) significantly increased the flow return period in basin
areas, causing extreme floods in August 2002 [6]. Espinoza et al. [7] dealt with the bivariate
analysis of the great flood that occurred in 2012 in the Amazonas River, which was caused
by two large simultaneous flood waves. Li et al. [8] studied the effects of the coinciding
flood peaks and the impact of the high precipitation for the Dongting Lake region on flood
vulnerability.

The Archimedean class of copula functions is very popular in hydrological applica-
tions for studying the relations between the individual elements of a hydrological cycle.
This class of copulas is popular in empirical applications due to their flexibility, easy con-
struction, and whole suite of closed-form copulas that cover a wide range of dependency
structures including comprehensive and non-comprehensive copulas, radial symmetry and
asymmetry, and asymptotic tail dependence and independence. Their applications in flood
frequency analyses are very often focused on interdependence analyses between flood char-
acteristics such as peak discharge, volume, and duration. The choice of a specific copula
depends on the nature of the dataset. De Michele et al. [9] used the Gumbel–Hougaard
copula to model the joint distribution of flood peak and volume to check the adequacy
of the dam spillway. Zhang and Singh [10,11] applied the bivariate selected copulas and
trivariate Gumbel–Hougaard to obtain conditional return periods of flood peak, volume,
and duration. Reddy and Ganguli [12] concluded that the Frank copula better fit the joint
and conditional return periods of the mentioned flood characteristics compared to the
Ali-Mikhail-Haq, Clayton, Gumbel–Hougaard copulas. The Clayton and Gumel–Hougaard
copulas were selected as appropriate tools for bivariate analysis of the flood characteristics
at the Bratislava Gauging Station on the Danube River in Slovakia [13]. The Clayton and
Student-t copulas were selected as appropriate tools for the bivariate analysis of the flood
characteristics at the Litija Gauging Station on the Sava River in Slovenia [14]. The Galam-
bos, Gumbel, and Hüsler–Reiss copulas showed the best performance for synoptic and flash
floods, while the Frank copula showed the best performance for snowmelt floods for the
bivariate modeling of the relationship between the flood peaks and volumes with a focus on
flood generation processes [15]. The bivariate analysis of the peak discharge and volumes
with the use of various copula families (11 copula functions) on the Danube River showed
that most favored the Frank copula rather than the Clayton and Normal copulas [16]. The
study of the bivariate dependences and joint probabilities of various hydrological variables
of the Morava River (Slovakia) using Archimedean, extreme value (EV), and Archimax
copulas was published in Matúš [17]. The Frank or Gumbel copulas were selected for
bivariate drought frequency analysis because these copulas well reproduce the upper tail
dependence structure between drought duration and severity [18]. Bezak et al. [19] pre-
sented the method of determination of rainfall IDF (intensity–duration–frequency) curves
using Frank copula and evaluated the results with empirical rainfall thresholds for selected
extreme events that occurred in Slovenia.

Chen et al. [20] applied multidimensional copulas to a flood risk analysis of the
corresponding peak discharges at selected river confluences and evaluated the X-Gumbel
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copula function as an appropriate tool for assessing the joint conditional distribution
function and for return periods of joint discharges. Some Archimedean copulas were
applied to assess the combined flood occurrence at the confluence of the rivers Rhine and
Sieg (Germany) [21]. In Peng et al. [22], the joint probabilities of the annual maximum
discharges were investigated using Archimedean and elliptical copulas and compared with
the monthly maximum discharges between the mainstream and its tributaries. Fischer
et al. [23] determined long synthetic samples of peak–volume pairs using copulas, which
were then applied in a multivariate statistical flood frequency analysis considering flood
types and impact of the tributary. Joint frequency analysis at the confluences of the Sava
River showed the potential risk of underestimating the design discharges estimated by
using the traditional one-dimensional analysis of extremes [24]. The analysis of the joint
probabilities of flood occurrences at the Danube and Drava confluence showed that the
joint probability of an extreme situation is relatively low (0.79%) [25]. The authors of [25]
concluded that such a situation occurred in 1966, and it was one of the biggest floods on
record.

Therefore, the objective of this study was to apply a bivariate Archimedean copula
to analyze the joint probabilities of flood hazard at the Slovak River confluences. The
four mainstreams and their tributaries of the Slovak part of the Danube River basin were
selected for analysis. Annual maximum discharges from the upper parts of the selected
rivers were chosen, and the Gumbel–Hougard copula function was applied to construct
the joint distribution. The results of the analysis allow for a comparison and evaluation of
the annual maximum discharges with specific return periods T calculated by the univariate
flood frequency approach and by the copula approach under the confluences.

2. Materials and Methods
2.1. Materials

Around 96% of the Slovak territory belongs to the Black Sea drainage area. The Black
Sea drainage area represents a part of the basin of the European waterway—the Danube—
on the territory of Slovakia and its tributaries: Morava, Váh, Hron, and Ipel’. The basins
of Slaná, Bodva, Hornád, and Bodrog belong to the drainage area of Tisa. The Baltic Sea
drainage area (4%) represents the basins of the Poprad and Dunajec Rivers. We selected the
four mainstreams of the Slovak Danube River basin and their tributaries in the sections with
the least anthropogenic influence (the upper sections of the river) for analysis in the present
study. The longest possible data series of the annual maximum discharges were analyzed.
Table 1 lists the selected mainstreams, tributaries, gauging stations, and monitored periods.
The scheme of the selected rivers and their tributaries is illustrated in Figure 1.

The courses of the selected and analyzed maximum annual discharge pairs are pre-
sented in Figure 2. In bivariate flood analysis at the river confluences, the data from gauge
stations located on the mainstream immediately above and below the confluence and the
gauge station located on the tributary above the confluence were used. We investigated
the maximum annual discharge pairs Qmaxup–Qmaxtr, where Qmaxup is the maximum an-
nual discharge of the mainstream above the confluence, Qmaxtr is the maximum annual
discharge of the tributary above the confluence, and Qmaxdwn represents the maximum
annual discharge of the mainstream below the confluence. The Váh River and its tributary,
the Belá River, showed the highest differences in the dates when the annual maximum
discharges occur (Figure 3a). In addition, the Nitra River and its tributary, the Bebrava
River, showed the lowest difference in the dates when the annual maximum discharges
occurred (Figure 3b).

The date when the annual maximum discharges between the Váh River and their
tributary the Belá River occurs indicates a partly different flood regime between the upper
part of the Váh and its tributary, the Belá. Authors of the monograph [26] assumed that
the orientations of the various mountains in its path and the depression position of the
catchment as well as the different spatial distributions of precipitation might cause the
partially different flood regime of the upper part of the Váh and its tributary.
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Figure 2. Maximum annual discharges for the mainstreams and their tributaries during the analyzed
periods: Morava–Myjava, Váh–Belá, Nitra–Bebrava, Hron–Slatina.
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Figure 3. Occurrence of the annual maximum discharges in Julian days for (a) Váh: Liptovský
Hádok (1950–2011) and Belá: Podbanské (1950–2011); (b) Nitra: Chynorany (1940–2011) and Bebrava:
Nadlice (1940–2011).

Table 1. Selected mainstreams and their tributaries, stations, analyzed periods, annual maximum
discharge, river kilometer, and basin area.

River Gauging Station Period
[Year]

Qmax
[m3 s−1]

River Kilometer
[rkm]

Area
[km2]

Morava Strážnica (up) 1968–2019 901 134.3 9146.92
Moravský Svätý Ján (dwn) 1968–2019 1400 67.15 24,129.30

Myjava Šaštín Stráže (tr) 1968–2019 82 15.15 644.89
Váh Liptovský Hrádok (up) 1950–2019 240 359.3 638.38

Liptovský Mikuláš (dwn) 1950–2019 540 343.6 1107.21
Belá Podbanské (tr) 1950–2019 170 21.35 93.49
Nitra Chynorany (up) 1951–2019 279 106 1134.28

Nitrianska Streda (dwn) 1951–2019 324 91.1 2093.71
Bebrava Nadlice (tr) 1951–2019 128 6.2 598.8

Hron Banská Bystrica (up) 1972–2019 260 175.2 1766.48
Žiar nad Hronom (dwn) 1972–2019 636 131.5 3310.69

Slatina Zvolen (tr) 1972–2019 220 12.1 790.16

2.2. Method

In our study, we used the Gumbel–Hougaard copula function to perform the statistical
bivariate analysis of flood hazards at the selected Slovak River confluences. The Gumbel–
Hougaard copula belongs to the Archimedean class of copulas. The relationships between
Kendall’s coefficient and the generating function show that only the positive dependence
structure of the data can be analyzed (e.g., peak–volume or duration–volume) [27–32]. This
copula function does not allow for negative dependence and exhibits a strong upper-tail
dependence and a relatively weak lower-tail dependence. The Gumbel–Hougard copula
may therefore be a suitable choice for dependencies where there is a strong correlation at
high values but a weaker correlation at low values. The first step of the bivariate analysis is
to identify the marginal distribution. Hydrological variables can have different properties,
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so it is necessary to scale the data to variables in the interval [0, 1]. Next, we can separate
the marginal behavior and the dependence structure. The joint distribution obtained from
the marginal distributions of the uniform variables completely describes the dependence
structure of the variables. The mathematical description of the Gumbel–Hougaard copula
is listed in Table 2. The copula parameter θ was calculated according a mathematical
relationship between Kendall’s rank correlation and the generating function ϕ(t) [33].

Table 2. Mathematical description of the applied Gumbel–Hougaard copula.

Copula Function C (u, v, θ) Parameter θ Kendall’s τ Generator ϕ(t)

Gumbel–Hougaard exp
[
−((− ln u)θ + (− ln v)θ)

1/θ
]

[1, ∞) θ−1
θ (− ln t)θ

The possibilities of statistically testing how well a copula function fits a set of empirical
data have been studied in many publications (e.g., [34–38]). Meylan et al. [39] divided
the testing into three groups: (1) Based on probability integral transformation; (2) based
on the kernel estimation of the copula density; and (3) based on the empirical processes
of copulas. There exist several goodness-of-fit tests for comparing the empirical joint
probability population and the probability population derived by parametric copulas
(e.g., Kolmogorov–Smirnov, Chi-square, Anderson–Darling or Cramér–von Mises). The
empirical probability [40–42] is represented in Equation (1):

F(x,y) =
∑i

m=1 ∑i
l=1 nml − 0.44

N + 0.12
(1)

where N is the number of the variables; j and i are ascending ranks of xi and yi; and nml is
the number of occurrences of the combinations of xi and yj.

In the hydrological frequency analysis, the return period of the hydrological variable
that occurs once in a year can be defined as

T =
µ(

1− F(x)

) (2)

where T is the return period; F(x) is the marginal cumulative distribution function; and µ is
an average arrival interval between events. In the frequency analysis of the annual values,
µ = 1.

In bivariate statistical analysis, we can use two formulas to calculate the joint return
period, depending on whether only one or both of the monitored values exceed or are equal
to a certain threshold value that defines the extremity. The joint return period equations of
two variables are defined and described in many publications in the following form [43–45]:

Tand
(x,y) =

µ(
1− F(x) − F(y) + C

(
F(x), F(y)

)) (3)

Tor
(x,y) =

µ(
1− C

(
F(x), F(y)

)) (4)

Tor
(x,y) ≤ min

[
Tx, Ty

]
≤ max

[
Tx, Ty

]
≤ Tand

(x,y) (5)

where C(F(x), F(y)) is the bivariate joint distribution function expressed as a copula function
and F(x) and F(y) are the marginal distribution functions of the variable X and Y. The
operator of the penetration (X ≥ x and Y ≥ y) is used in Equation (3), and therefore,
this formula was used to calculate the joint return period if both investigated quantities
exceeded a certain threshold value. Equation (4), on the other hand, works with the
operator of the unification (X ≥ x or Y ≥ y). For this reason, it was used to calculate the
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joint return period if only one of the monitored values exceeded the given threshold value.
These relationships indicate that different combinations of the numbers x and y can cover
the same return period.

The conditional return period for Y, given X ≥ x, may be expressed as [44]:

T(y|X≥x) =
µ(

1− F(x)

)(
1− F(y) − F(x) + C

(
F(x), F(y)

)) (6)

The conditional cumulative distribution function of Y, given X ≥ x, can be expressed as

F(y|X≥x) =
F(y) − C

(
F(x), F(y)

)
(

1− F(x)

) (7)

where C(F(x), F(y)) is the copula function of the random variables X and Y. An equivalent
formula for the conditional return period of Y ≤ y, given X ≤ x, can thus be obtained.

The bivariate return period for variables are illustrated using contour lines called
isolines. The isolines of the joint “or” return period are the level curves of the G–H copula
of interest, while the isolines of the joint “and” return period are the level curves of the
survival copula of interest.

3. Results
3.1. Univariate Statistical Analysis of Flood Hazards

First, the univariate parametric marginal distributions of the annual maximum dis-
charges were identified. In our study, the Johnson SB distribution was evaluated as the
most acceptable marginal distribution from the various tested distributions, except for
station Nitrianska Streda, where the Weibull probability distribution most acceptable fitted
the data. The Johnson SB distribution is a continuous four-parametric distribution defined
on a bounded range, and the distribution can be symmetric or asymmetric (Equation (8)).
Svanidze and Grigolia [46] recommended this probability distribution as being suitable for
annual discharges. This parametric distribution has flexibility in comparison to commonly
used distributions such as the Log-normal and the Gamma distributions [47]. The PDF for
a variable X that follows an SB PDF can be expressed as [48]:

f (x) =
δλ√

2π(x− ξ)(ξ + λ− x)
exp(−1

2
[λ + δ ln

(
x− ξ

ξ + λ− x

)
]2) (8)

where ξ < x < ξ + λ, λ, and σ are >0, −∞ < ξ < ∞, and −∞ < γ < ∞, respectively.
The parameter λ gives the rang;, ξ is the location parameter (lower bound); δ and γ

are the shape parameters, and γ = 0 indicates symmetry.
The Kolmogorov–Smirnov (K–S) test was used to test the assumption that a theoretical

distribution follows the empirical discharge magnitudes. A p-value at a 5% significance
level was used as the criterion for the acceptance of the proposed distribution hypothesis.
Empiric distributions, evaluated with the Cunnane [41] formula, were fitted with the se-
lected parametrical cumulative distribution function. Based on the goodness-of-fit test, the
calculated RMSE, and a graphical comparison between the monitored data and generated
data, the selected parametrical distribution functions were used as the marginal distribution
functions for bivariate frequency analysis (Figure 4). The annual maximum discharges
estimated using a marginal probability distribution for the selected return period T are
listed in Table 3. The selected parametrical distribution function was also used as the
marginal distribution function in the joint frequency analysis of flood hazards at selected
Slovak River confluences using copulas.
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Figure 4. Comparison of the empirical exceedance probabilities (points) and the theoretical ex-
ceedance probability curves (line) of the maximum annual discharges for the selected mainstreams
and tributaries during the analyzed periods.

Table 3. Estimated univariate designed discharge Qmax for various return periods T and p-values of
the Kolmogorov–Smirnov test.

Confluence
Q

[m3 s−1] Distr. p Value

Estimated QT
[m3 s−1]

Monitored Qmax
[m3 s−1]

Q50 Q100 Q200 Q500 Q1000 Qmax
T

[year]

Morava–Myjava
Qmaxup JSB 0.932 815 892 966 1059 1127 901 145
Qmaxtr JSB 0.812 80 85 90 95 98 82 70

Qmaxdwn JSB 0.911 1221 1351 1473 1621 1723 1400 160

Váh–Belá
Qmaxup JSB 0.24 200 232 259 290 313 240 160
Qmaxtr JSB 0.95 136 160 185 213 234 170 160

Qmaxdwn JSB 0.87 372 435 499 587 652 540 310

Nitra–Bebrava
Qmaxup JSB 0.92 225 247 268 295 314 279 220
Qmaxtr JSB 0.91 119 125 130 134 137 128 140

Qmaxdwn Weib. 0.76 322 346 368 386 400 324 60

Hron–Slatina
Qmaxup JSB 0.97 266 277 285 294 299 268 50
Qmaxtr JSB 0.83 206 221 234 247 256 220 100

Qmaxdwn JSB 0.86 590 643 692 756 806 636 90

3.2. Bivariate Statistical Analysis of Flood Hazards at River Confluences Using
Gumbel–Hougaard Copula

The Gumbel–Hougaard copula, which is one of the Archimedean copulas, was used
as a mathematical tool to calculate the joint probability of the two hydrologic variables
at the river confluences. In Feng et al. [49], the authors used three types of time-varying
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copula functions to analyze the risk of coinciding, nonstationary floods. The authors of [49]
recommended the Gumbel copula rather than the Frank and Clayton copulas.

Correlation analysis showed a strong positive dependence between the monitored
annual maximum discharges at the confluences of all rivers. Kendall’s rank correlation
coefficient ranged between 0.23 and 0.48 (Figure 5a,b). The correlation of the selected
combination of hydrological variables showed a statistically significant correlation. The
combination of the variables Qmaxup−Qmaxtr between the Váh River and the Belá River
reached the lowest value of the Kendall rank correlation (Figure 5). The created com-
binations of the hydrological variables were used in the bivariate frequency analysis to
investigate how the relationship of the hydrological characteristics may affect the size of
extreme hydrological situations.
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Figure 5. (a) Pearson correlation R of the maximum annual discharges and (b) Kendall’s rank
correlation τ of the maximum annual discharges.

The Gumbel–Hougaard copula’s parameters are listed in Table 4. The K–S nonpara-
metric goodness-of-fit test was used to assess whether the selected copula function followed
the joint empirical distribution. The results show that we cannot reject the hypothesis that
the selected copula fits well with the empirical data at a 5% significance level (Table 4).
Second, the mean absolute errors (MAE) were used as statistical criteria to determine the
level of agreement between the discharges simulated by the copula function and the actual
monitored discharges (Table 4). Graphical comparisons of the joint empirical and fitted
Gumbel–Hougaard copula of the selected rivers and their tributaries for selected pairs
Qmaxup−Qmaxtr are illustrated in Figure 6a–d. According the above-mentioned criteria, the
Gumbel–Hougaard copula was deemed to be a suitable statistical tool to calculate the joint
probability distribution of the discharges in our study.

Table 4. The Gumbel–Hougaard copula parameters for the selected variable combinations, mean
absolute errors (MAE) values, and K–S test.

Confluence Pair Kendall’s τ Parameter Copula MAE [%] p-Value

Morava–Myjava Qmaxup–Qmaxtr 0.366 1.577 4.02 0.73
Váh–Belá Qmaxup−Qmaxtr 0.225 1.290 2.27 0.96

Nitra–Bebrava Qmaxup−Qmaxtr 0.476 1.908 5.94 0.052
Hron–Slatina Qmaxup−Qmaxtr 0.366 1.567 4.94 0.78

Subsequently, the selected copula function was used to generate 9000 pairs of selected
combinations of hydrological variables on the monitored river confluences. The generated
pairs were used to determine the joint probability distribution using copulas. Subse-
quently, the joint return periods of the analyzed pairs of the annual maximum discharges
Qmaxup−Qmaxtr were estimated. Figure 7 illustrates the scatter plot of the monitored annual
maximum discharges and values generated by using the Gumbel–Hougard copula. Figure 7
also illustrates the isolines of the joint return periods “or” and “and”, which are the level
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curves of the Gumbel–Hougaard copula of interest if the variables exceeded the outward
bounds and inward bounds, respectively.

The extreme values of the combined discharges’ joint return periods were calculated,
(i.e., the maximum discharge resulting from combinations of discharges of the mainstreams
and their tributaries). These extreme values represent the worst case scenario for flood
hazards at these confluences. Table 5 presents a comparison of the estimated T-year
designed discharges (Q50, Q100, Q200, Q500, and Q1000) based on the univariate approach and
the copula approach for gauging stations below the selected mainstream river confluences.
For the traditional univariate method, the resulting discharge for the selected return period
was calculated as a reciprocal of the probability of exceedance.

Table 5. Comparison of design discharges (Q50, Q100, Q500, Q1000) based on univariate (Uni.) and
based on the copula method at the mainstream stations below the confluences Qmaxdwn.

Confluence
(Station on Mainstream below

the Confluence)
Method/Differences

Estimated QT
[m3 s−1]

Q50 Q100 Q200 Q500 Q1000

Morava–Myjava
(Morava: Moravský Sv. Ján)

Uni−SB distr. 1221 1351 1473 1621 1723
copula G–H 1369 1500 1623 1722 1878

Difference [%] 12 11 10 6 9

Váh–Belá
(Váh: Liptovský Mikuláš)

Uni−JSB distr. 372 435 499 587 652
copula G–H 446 508 570 651 712

Difference [%] 20 17 14 11 9

Nitra–Bebrava
(Nitra: Nitrianska Streda)

Uni−weib. distr. 322 346 368 386 400
copula G–H 336 354 369 388 401

Difference [%] 4 2 0 1 0

Hron–Slatina
(Hron: Žiar nad Hronom)

Uni−JSB distr. 590 643 692 756 806
copula G–H 649 699 747 808 853

Difference [%] 10 9 8 7 6
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Figure 6. The joint empirical probability (points) and Gumbel–Hougaard copula at selected rivers
and their tributaries (Qmaxup−Qmaxtr).
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Figure 7. Scatter plots of 9000 data pairs generated from Gumbel–Hougaard copula and monitored
data of the selected pairs Qmaxup−Qmaxtr. The contours in the return periods (a) in the case of “or”
(X ≥ x or Y ≥ y, only one investigated variables exceeded a certain threshold value) and (b) in the
case of “and” (X ≥ x and Y ≥ y, both investigated variables exceeded a certain threshold value).
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4. Discussion

In the submitted study, the long-term annual maximum discharges at four main-
streams in the Slovak part of the Danube River basin (Morava, Váh, Nitra, and Hron) and
their tributaries (Morava, Belá, Nitra, and Slatina) were analyzed. The calculated joint
probabilities indicate that coincident flood events are more likely to occur for medium-scale
or small-scale flood events. The calculated joint probabilities for large flood events was
nearly equal to zero. In following, the extreme values of the joint return periods of the
combined discharges were calculated (i.e., the maximum discharge resulting from the com-
binations of the discharges of the mainstreams and their tributaries). These extreme values
represent the worst case scenarios for flood hazards at these confluences. The results of the
copula application for analysis of the flood threat at the Slovak River confluences showed
that the discharges estimated by a copula in the station below the confluence achieved
higher values than the discharges estimated by a univariate approach. The results of the
analysis also showed that differences between the discharges estimated by a copula and
univariate approach below the confluence decreased with an increase in the return period.
For the Váh–Belá River confluence, the differences in annual maximum discharges below
the confluence calculated by a copula in comparison to the traditional approach ranged
from 20% for 50-year return periods to 11% for a 500-year return period. These relatively
high differences between discharges estimated using the copula and univariate approach
could indicate different hydrological regimes of the Váh and Belá Rivers for floods with
high values of the return period. On the other hand, the relatively low differences between
the discharges estimated using the univariate and copula approaches indicate a similar
hydrological regime in the mainstream and its tributary.

Catastrophic floods have had and continue to have an important impact on the envi-
ronment and the economy. Identifying flood risk is very important and difficult, and we are
still looking for answers on a huge number of key issues. The natural variability in streams
and flows is related to natural cycles, but also to anthropogenic activities. For the Central
European region, an increase in the frequency, duration, and severity of extreme hydro me-
teorological phenomena is expected in the future as a direct consequence of climate change.
Climate change alters the interdependence structures of the hydrological variables. On
the other hand, urbanization, channel regulation, dams, and many other interventions can
influence the behavior of the basin during extreme hydrological events or affect the travel
times of floods. The monitoring and evaluation of extreme hydrological phenomena using
various models and methods is still necessary as a result of anthropogenic activities and
climatic changes, which can negatively affect the application of frequency analysis. The sta-
tistical approach to hydrological analyses based on variables that occur only once per year
represents the most frequently used approach in probabilistic hydrology. This approach has
three limitations. The first is the length of the data series, which can frequently be less than
100 years. The second is the non-complete time-series data. Because they are incomplete,
they may not provide comprehensive information about the conditions in the basin before
the extreme flooding event occurs. The last one is the choice of suitable probability distri-
bution functions, parameter estimation methods, and study period. An important factor in
the correct estimation of extremes is the uncertainty of the applied statistical method. The
estimation of the uncertainty in the designed discharges was investigated in [50] and [51].
For example, in our analysis, the four parametric JSB distribution fit the empirical data the
best and increased the number of model parameters to nine. Stedinger et al. [52] preferred
the generalized extreme value (GEV) distribution for estimating hydrological extremes.
Millington et al. [53] examined the suitability of several types of probability distributions
(GEV, LPIII, and Gumbel) for estimating the T-year discharges. We must not forget the fact
that discharges with longer return periods (usually up 200 years) are extrapolated values
burdened by systematic estimation errors as well as the choice of statistical methodology.
A flood bivariate hydrological analysis of extremes plays an important role in flood risk
analysis. Such analyses provide an overview of the flood event as a whole and can enable a
more reliable assessment of flood risks and subsequent flood protection. The time variance
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and asymmetry of copulas make them suitable tools for such analyses. The applications of
the copulas in the frequency analysis of the hydrological extremes are very often focused on
the interdependence analyses between hydrological variables such as discharge–volume,
volume–duration, and discharge–duration. The copula function used as a mathematical
tool in the frequency analysis of confluence flood waves was introduced in the work of
Wang [54]. He applied four often-used Archimedean copulas to confluence floods and
concluded that the Frank copula and the Gumbel–Hougaard copula are suitable statistical
tools. The results of the bivariate analysis in Poyang Lake and the Yangtze River also
showed that the coincidence probabilities were higher for flood events with shorter return
periods [55]. However, the authors of [55] selected the Clayton copula as the better choice.
In recent years, the use of the copula functions in the bivariate analysis of the flood risk at
the river confluences has been increasing. Various authors (e.g., see [5,56–58]) dealt with
the effect of synchronous extreme events on the mainstream and its tributaries. As we
previously mentioned, the natural transformation of flood waves is also being increasingly
affected and disturbs the artificial interventions in river basins and climate change. This
can result in the synchronous occurrence of flood waves at the confluence of the rivers.

5. Conclusions

The paper presents an evaluation of the bivariate joint probability approach that
may provide a practical method for performing the frequency analysis of floods at river
confluences using a copula function. We focused on the statistical bivariate analysis of
flood hazards at selected confluences of Slovak rivers.

The presented research showed the following:

- The copula-based joint probability approach for the confluence flood estimation per-
formed well for the selected river basins;

- The copula-based joint probability approach provides a way to estimate the confluence
flood without the discharge records needed for the mainstream below the confluence
and without difficult computations such as flow routing;

- The copula functions for the multivariate analyses enable the use of various types
of marginal distributions and thus release the limitation of the others in the case of
multivariate approaches where the margins follow the same type of distributions. In
our study, based on the selected criterions and the tests, the same type of probability
distribution fit the analyzed data, except for Nitrianska Streda Station, situated below
the Nitra–Bebrava confluence;

- The joint return periods calculated using copulas could be used to determine the
severity of floods based on the desired relations between the mainstreams and their
tributaries, looking for the exceedance of both variables.

Although this work was carried out in the basins of Slovakia, the methodology, de-
spite its limitations, is also applicable for hydrological analyses in other localities. In our
work, we used the longest possible series of input data, the availability of which in other
(foreign) locations can be problematic. For this reason, we cooperate very closely with the
countries of the Danube River region.
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