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Abstract: This study compares the performance of three different neural network models to estimate
daily streamflow in a watershed under a natural flow regime. Based on existing and public tools,
different types of NN models were developed, namely, multi-layer perceptron, long short-term
memory, and convolutional neural network. Precipitation was either considered an input variable on
its own or combined with air temperature as another input variable. Different periods of accumulation,
average, and/or delay were considered. The models’ structures were optimized and automatically
showed that CNN performed best, reaching, for example, a Nash–Sutcliffe efficiency of 0.86 and
a root mean square error of 4.2 m3 s−1. This solution considers a 1D convolutional layer and a
dense layer as the input and output layers, respectively. Between those layers, two 1D convolutional
layers are considered. As input variables, the best performance was reached when the accumulated
precipitation values were 1 to 5, and 10 days and delayed by 1 to 7 days.

Keywords: neural networks; MLP; LSTM; CNN; streamflow estimation

1. Introduction

Accurate knowledge of streamflow is essential in a wide range of applications and
studies, including the development of flood warning systems, hydroelectric reservoir
operation, hydraulic structure design, fish production and survival, nutrient transport and
water quality assessment, evaluation of long-term climate or land use change impacts,
and the definition of water management policies [1,2]. Humphrey et al. [3] also state that
an accurate and reliable streamflow forecast is crucial for the proper management and
allocation of water resources, especially in areas with highly variable climate conditions
and where there is not enough available data to adequately support decision-making.

According to Besaw et al. [4], streamflow estimation in gauged and/or ungauged
areas can be performed based on conceptual, metric, physics-based, and data-driven meth-
ods. Conceptual methods only consider simplified conceptualizations of hydrological
processes [5]. Methods classified as metric are based on the unit hydrograph theory, with-
out considering hydrological features or processes [6]. Physically based models, also
known as process-based models, rely on physical principles and, consequently, are suitable
to provide insights into physical processes. However, these models often incorporate
many simplifying assumptions and have requirements for large sets of data, with their
calibration and validation processes being particularly laborious [7,8]. Finally, data-driven
methods are empirical, are developed based on historical observations, and do not require
information on physical processes [9]. Multiple linear regression (MLR) variations of autore-
gressive moving average (ARMA) or artificial neural networks (ANN) are examples of data-
driven models.

Artificial neural networks are special types of machine-learning methods, which have
been extensively used in streamflow estimation with promising results in the last decades
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because of the nonlinear nature of the rainfall–runoff relationship and the availability of
long historical records [10]. In the review written by Maier et al. [11] of 210 published papers
using ANN in the field of hydrology between 1999 and 2007, 90% were related to studies
where the main goal was flow prediction (the other 10% were related to water quality
variables). In the last few years, hydrologists have continued to investigate the ability of
neural networks (NN) to predict river flow. For instance, Pham et al. [12] used a multilayer
perceptron (MLP) neural network combined with the intelligent water drop algorithm, an
advanced optimization algorithm for searching the global optima, to predict the streamflow
in two stations on Vu Gia Thu Bon watershed, Vietnam. Hussain and Khan [13] tested
a MLP, a support vector regression model, and a random forest model in forecasting the
monthly streamflow in the Hunza river watershed, Pakistan. Sahoo et al. [14], Le et al. [15],
Hauswirth et al. [16], and Althoff et al. [17] presented the application of recurrent neural
networks (RNN) for streamflow forecasting. Sahoo et al. [14] assessed the applicability of
RNN and the radial basis function network to forecast the daily streamflow in a hydrometric
station placed in Mahanadi River watershed, India, while Le et al. [15] used a RNN model
for flood peak discharge forecasting one, two, and three days ahead at Hoa Binh station in
the Da River basin, Vietnam. Hauswirth et al. [16] tested five different data-driven models
(multi-linear regression, lasso regression, decision trees, random forests, and RNN) on
forecasting several hydrological variables, including observations on discharge and surface
water levels, at a national scale and with consideration of a daily time step. Finally, Althoff
et al. [17] applied a single regional hydrological RNN model to 411 watersheds in the
Brazilian Cerrado biome to predict daily streamflow, assessing the model’s performance
with consideration of different input configurations.

Differently, Shu et al. [18] stated that convolutional neural networks (CNN) are also
being gradually applied in hydrological forecasting in the past few years. For example,
Wang et al. [19] predicted water level values in the Yilan River, Taiwan. Hussain and
Khan [13] applied CNN to predict daily, weekly, and monthly values of the streamflow in
the Gilgit River, Pakistan. Barino et al. [20] used CNN to forecast river flow values several
days ahead in the Madeira River, the Amazon’s largest and most important tributary. With
all those authors making use of one-dimensional CNN models to predict streamflow, Shu
et al. [18] presented a different approach based on a two-dimensional CNN model to
forecast the inflow to the Huanren Reservoir and Xiangjiaba hydropower station, China.

There are also examples of the usage of model combinations, such as in the case of
Anderson and Radić [21], who developed a convolutional long short-term memory (a type
of RNN) model to predict the daily streamflow in 226 watersheds across southwestern
Canada, with the main goal being to learn both spatial and temporal patterns.

Thus, the vast number of studies that can be found in the literature allow us to infer
that these types of models are being increasingly used in the hydrological sciences, and
represent promising tools for to be applied under the most varied conditions. However, the
vast number of studies, the existence of different solutions, the often vague descriptions
of the solutions in the literature, and the dispersion of the information, make the learning
curve difficult and time-consuming. Consequently, the present study aims to develop,
optimize, and compare the performance of different neural network models to predict
the daily streamflow values in a natural watershed while focusing on all the essential
information needed for their easy implementation.

The studied area contains a natural small watershed (665 km2) in southern Portugal.
This watershed drains to Ponte Vila Formosa hydrometric station and represents 30% of
the Maranhão reservoir watershed, which is one of the two reservoirs included in the
collective irrigation system of the Sorraia Valley. With its high runoff variability throughout
the year (45% of the total runoff occurs in December and January and 14% of that occurs
between April and September [22]), and with it being responsible for supplying 54% of the
irrigation needs to the system, tools that can help to optimize the amount of water used
in irrigation [23] or that can predict water availability are essential for improving water
management and supporting decision-makers.
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The procedure adopted to create, develop, optimize, and tune the neural network
that best fits the observed values of the modeled watershed is explored in this work. Due
to the innumerous solutions found in the bibliography, the application of three different
types of neural networks was tested: (i) the multi-layer perceptron (MLP) model; (ii) long
short-term memory (LSTM) network, which is a type of recurrent neural network (RNN);
(iii) convolutional neural network (CNN). The methodology presented here is based on a
simplified approach that makes use of the potentialities of the Keras [24] package, on top
of those of the TensorFlow [25] and KerasTuner [26] packages, to construct and optimize
the models’ structures. The optimization was performed for the three different types of
NN models, independently, and focused on several parameters and characteristics of these
structures (e.g., number of nodes, number of hidden layers, etc.). Additionally, the use of
accumulated daily precipitation solely as an input variable or combined with the average
daily temperature as another input variable was also tested, as well as the length of the
period (i.e., the number of days) to accumulate or average those meteorological properties.
The models’ structures, parameters, and input variable combinations were optimized and
tuned using training and validation datasets. However, to make a more reliable evaluation,
neural networks were also tested with consideration of a test dataset, which was never
presented to the models during the training and validation processes. Among the set
of models developed, the one with the best performance was selected to represent the
watershed dynamics.

Thus, this study compares the ability of different NN models to estimate the daily
streamflow in a watershed under a natural flow regime. An easy-to-use approach using
several tools that are already publicly available and require a regular level of programming
skills is presented to encourage the development and implementation of NN models in
other situations. The results of this study will undoubtedly contribute to improving the
estimation of inflows to a reservoir used for the storage and supply of water to a collective
irrigation district in southern Portugal, where scarcity issues prevail.

2. Materials and Methods
2.1. Description of the Study Area

The study area contains the watershed (665 km2) draining to Ponte Vila Formosa
hydrometric station (39◦12′57.6′′ N, 7◦47′02.4′′ W), located in Raia River, Alter do Chão,
southern Portugal (Figure 1).
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The most representative weather stations in the study area are Aldeia da Mata
(18K/01C); Alegrete (18N/02G); Alpalhão (17L/03UG); Alter do Chão (18L/01UG); Cabeço
de Vide (19L/01UG); Campo Experimental Crato (Chança) (18K/01C); Castelo de Vide
(17M/01G), Monforte (19M/01UG); Ribeira de Nisa (17M/04U); Vale do Peso (17L/02UG)
(Figure 2) [22].
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The set of stations presents an average annual precipitation of 385 mm, with Castelo de
Vide and Monforte showing the maximum (824 mm) and the minimum (516 mm) average
annual precipitation, respectively (Table 1).

Table 1. Average, minimum and maximum values, and number of completed years (total
of daily values equals the number of days in the year) of annual precipitation registered in
meteorological stations.

Station Period

Annual Precipitation

Average
(mm)

Minimum
(mm)

Maximum
(mm)

Number of
Completed Years

Aldeia da Mata 1979–2021 621 374 1056 26
Alegrete 1980–2021 794 457 1269 17
Alpalhão 1979–2021 717 365 1224 26

Alter do Chão 2011–2021 614 101 1081 90
Cabeço de Vide 1931–2021 668 352 1184 68

Campo Experimental
Crato (Chança) 1971–2021 662 323 973 29

Castelo de Vide 1931–2021 824 46 1555 76
Monforte 1911–2020 516 256 1030 88

Ribeira de Nisa 1979–1985 673 452 962 5
Vale do Peso 1931–2021 757 401 1324 77

Daily average air temperature values were available from Campo Experimental Crato
(Chança) station only, with a sample of 3995 values between 21 February 2001 and 14 July
2021. This dataset presents minimum and maximum air temperature values of −0.1 ◦C
and 36.1 ◦C, respectively, and an average daily air temperature of 15.3 ◦C. Thus, according
to the Köppen–Geiger climate classification, the studied area is identified as having a
Mediterranean hot summer climate (Csa) [27].

Based on the delineation preformed with QGIS tools and the Digital Elevation Model
provided by the European Environment Agency (EU-DEM) [28], the watershed is char-
acterized by minimum, average, and maximum altitudes of 140 m, 235 m, and 723 m,
respectively. According to European Soil Data Centre [29], the main soil mapping units are



Water 2023, 15, 947 5 of 27

regosols (60%) and luvisols (40%). The main land uses are in areas of agro-forestry (30%),
broad-leaved forest (25%), and non-irrigated arable land (19%) [30].

Ponte Vila Formosa hydrometric station (18K/01H), placed on the outlet of the studied
watershed, has records dating between 1 November 1979 and 30 May 2011. However, only
the data in the period from 25 July 2001 until 31 December 2008 was considered because
they cover the most recent period with enough continuous daily streamflow values to
perform the model analysis. Table 2 shows the streamflow dataset characterization for both
periods, including the minimum and maximum streamflow values as well as the average
of those and the number of records.

Table 2. Characterization of the streamflow dataset (average, minimum, maximum, and standard
deviation values, and number of records) of Ponte Vila Formosa hydrometric station between 1
January 1979 and 30 May 2011 (entire dataset) and 25 July 2001 and 31 December 2008 (studied
period) (source: SNIRH [22]).

Period

Streamflow

Average
(m3 s−1)

Minimum
(m3 s−1)

Maximum
(m3 s−1)

Std. Deviation
(m3 s−1)

Number of
Records

1 November
1979–6 March 2019 3.8 0 272.8 12.7 7703

25 July 2001–31
December 2008 3.8 0 160.1 9.0 2645

The studied area is part of the watershed that drains to Maranhão reservoir, represent-
ing 30% of it. Together with Montargil reservoir, both were responsible for irrigating an area
of 18,753.7 ha in Sorraia Irrigation District, in 2021 [31]. Additionally, this reservoir is one
of the main recreative areas in the rural part of the Tagus River Basin District, where tourist
and leisure activities have been growing in number [32]. Because of its relevance, and with
some predictions pointing to an increase in the frequency and the severity of low flows in
Southern Europe [33] and specifically in this area [34], tools that demonstrate a good ability
and capacity to estimate streamflow are essential for improving water management.

2.2. Neural Network Models
2.2.1. Artificial Neural Networks

Artificial neural networks (ANNs) were born from the attempt of scientists to mimic, in
a computational environment, the capacity of the human brain to identify complex patterns
and perform difficult operations, even in situations where those patterns are distorted
or have a high degree of noise [10]. Thus, ANNs are based on simplified models of the
biological neuron system, making use of the parallel distributed processing computational
capacity to store knowledge and make it available for use [35]. This capacity to identify
given complex patterns makes ANNs able to solve large scale complex problems such as
those of nonlinear modeling, classification, and control.

The attempt to reproduce the biological neuron system in ANNs models makes their
structure composed of single elements, called nodes, units, cells, or neurons, where the
information is processed. In each node, continuous linear or nonlinear transformation is
applied as its net input. This transformation is called the activation function, and its result
is the output signal of the node. The nodes are arranged in different layers, with each layer
having the possibility to include a different number of neurons. The first layer of the ANN
structure is named the input layer, while the last one is known as the output layer and
consists of the model’s predicted values. Between them, there can be one or more layers
called hidden layers (Figure 3) [10,36].
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All the nodes in a layer are connected to all the nodes in the previous and following
layers through connection links which are responsible for passing signals between them,
except for the input layer that receives the input variables instead of the output values of
other neurons. Thus, the input layer only pretends to provide information to the network,
which means that it can be considered a transparent layer. Each connection link is associated
with a weight that represents its connection strength and modifies the activation function
result, modifying, also, the output signal of each node that reaches the following neuron.
Thus, after the ANN structure is defined, the output of the model can only be modified by
changing the weights, which are adapted to correctly represent the desired output. The
process of correcting or adapting the weights, to better represent the model’s output, is
called the training process [10,36].

A detailed illustration of the general mth node is presented in Figure 4. The scheme
considers an input vector I = (i1, i2, i3, . . . , in) where the subscript number indicates the
node of the previous layer with which the connection is made. Each connection from
the previous layer to the mth node has an associated weight, with this set of weights
being represented by vector Wm = (w1m, w2m, w3m, . . . , wnm), where wnm represents the
connection weight from the nth node in the preceding layer to the present node.
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In each node, an activation function is applied. This function is generically represented
by Equation (1):

om = fa(I·Wm − bm) (1)

where om is the output value of the mth node, fa is the activation function, and bm represents
the threshold value for this node, also known as bias. The activation function applied to a
node determines its response to the total input signal it receives [10]. In the Keras package,
the user can define his own activation function, however, in the present work, the activation
functions to be tested were selected from those already available in the package. Thus,
the linear, exponential linear unit, rectified linear unit, softsign, and hyperbolic tangent
functions were considered. Table 3 presents a summary of the characteristics of those
functions according to the Keras webpage [37].

Table 3. Summary of Keras activation functions considered in the study.

Long Name Activation Name Equation

Linear linear f (x) = x

Exponential linear unit elu f (x) =

{
α(e x − 1

)
,x < 0 and α > 0

x,x ≥ 0
Rectified linear unit relu f (x) = max (x, 0)

Softsign softsign f (x) = x
|x|+1

Hyperbolic tangent tanh f (x) = sin (x)
cosh (x) =

ex−e−x

ex+e−x

An ANN can be classified as single (Hopfield nets), bilayer (Carpenter/Grossberg
adaptive resonance networks), or multilayer (mostly backpropagation networks) as a
function of the number of layers present in its structure [10]. According to Dolling and
Varas [36], a single-layer network is adequate for representing a linear model, while
multiple-layer networks are more suitable for nonlinear models. On the other hand,
the classification of an ANN can be based on the information and the processes’ flow
direction. Thus, an ANN can be classified as a feedforward or a recurrent network. In the
first case, the information and the processes’ flows only occur in one direction, starting
from the first layer, the input layer, passing through one or more hidden layers, and
ending in the final layer, the output layer. Here, the output of a node only depends on
the received inputs and respective weights from previous layers. A recurrent network
distinguishes itself from a feedforward network by having at least one feedback loop [38],
i.e., the information passes through the nodes from the input layer to the output layer and
vice versa. This process, with the information flowing in both directions, consists of the
usage of the previous network outputs as current inputs [10]. According to Haykin [38],
the feedback loops have a significative impact on the learning capacity and performance
of these networks. Recurrent networks also involve the presence of unit delay elements
which result in nonlinear dynamical behavior.

Multi-layer perceptron models. Multi-layer perceptron (MLP) models are a type of
feedforward artificial neural network. Usually, MLP models have a back-propagation
algorithm associated with the training process, which implies a feedforward phase and a
backward phase [39]. During the first phase, the input data flows forward in the network
structure to estimate the output values, while in the second phase the differences between
the output values estimated by the network and the respective observed values force the
adaptation of the connection weights [40]. Based on the architecture described before, MLP
models are composed of three or more layers of artificial neurons, meaning that these types
of models have one or more hidden layers [11].

Considering the terminology of the Keras package, MLP models are composed of
dense layers, also known as fully connected layers. The implementation of one dense layer
implies the definition of the number of neurons on that layer. Besides that, the layers’
activation functions are also defined by the user. However, more arguments can be set,
such as bias (true by default) and its initial value (zero by default). Thus, in this study, an
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input layer and an output layer were considered, with the number of hidden layers being 0
(no hidden layer), 1, 2, 3, or 4. For the input layer, the number of neurons and the activation
function were optimized, with the number of neurons tested varying between 1 and 6 or
assuming the size of the number of input–output pairs of the set used to train the model
(i.e., the training dataset, which will be elaborated further). The activation function for
this layer was selected by taking into account the linear, exponential linear, and rectified
linear unit functions. The option of adding a dropout layer, with a rate of 0.1 or 0.2, after
the input dense layer was tested. The dropout layer is used to randomly set the input
units with a frequency related to the defined rate [41]. This dropout layer only has an
impact during the training process. For the hidden layers, the activation function was
selected from a set including the softsign, linear, elu, and relu functions, and the number of
neurons was defined with consideration of the same values presented for the input layer
but independently of those. For these layers also, the existence (or not) of a dropout layer
for each hidden layer in the structure was tested considering the same rate values. Finally,
the output layer, with only one neuron, could assume a softsign or a linear function as an
activation function. Table 4 presents a summary of the structure’s characteristics which
were considered to optimize the MLP model.

Table 4. Structure characteristics tested for MLP model.

Layers Number of Layers Number of
Neurons

Activation
Function

Dropout after
Dense Dropout Rate

Input dense 1 1, 2, 3, 4, 5, 6 or
training set size Linear, elu or relu Yes/No 0.1 or 0.2

Hidden dense 0, 1, 2, 3 or 4 1, 2, 3, 4, 5, 6 or
training set size

Softsign, linear, elu
or relu

Yes/No (one by
each hidden layer) 0.1 or 0.2

Output dense 1 1 Softsign or linear - -

Long short-term models. Long short-term models (LSTMs) are types of recurrent
neural network (RNN) models. Although they are structurally similar to ANNs, i.e.,
they are composed of layers connected between them with cells representing neurons,
RNNs have a recurrent hidden unit that allows the model to implicitly maintain historical
information about all the past events of a sequence [42–44]. In each instance, the recurrent
hidden unit receives as input the information corresponding to that instance but also to the
previous instance [2]. This makes RNN very suitable for time-series data modelling [45–47],
though a problem has already been identified which is related to the vanishing/exploding
gradient during the learning process, which results in the loss of the ability of RNN to learn
long-distance information. LSTM structure, proposed by Hochreiter et al. [46], emerged
from the necessity to solve the vanishing/exploding gradient problem, and it has the
capacity to learn long-term dependencies [48]. As described by Ni et al. [2], who cite
LeCun et al. [43], the LSTM solution makes use of a memory cell working as a gated leaky
neuron, since “it has a connection to itself at the next step that has a weight of one, but this
self-connection is multiplicatively gated by another unit that learns to decide when to clear
the content of the memory”. As referred to by Xu et al. [48], there are several applications
demonstrating the potential of LSTM in watershed hydrological modeling, namely, in river
flow prediction [49,50].

Using the Keras package, the structure of LSTM models is based on LSTM layers.
Thus, in this study, the LSTM solution is composed of at least one input layer of the LSTM
type and one output dense layer. For the input layer, the number of neurons was optimized
with 4, 8, 16, or 32 units, while in the output layer the number of neurons was set to 1
and the activation function was defined as linear. The model’s structure was optimized
with consideration of the existence of 0, 2, or 4 hidden LSTM layers between the input and
output layers. If no hidden layer is added, the model is composed only of the input and the
output layers, but when two hidden LSTM layers are considered, the number of neurons in
the first hidden layer is double that in the input layer and the second hidden layer is equal
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to the input layer (e.g., input layer: 4 neurons; 1st hidden layer: 8 neurons; 2nd hidden
layer: 4 neurons). When four hidden LSTM layers are considered, after the input layer, a
LSTM layer with twice the number of neurons of the input layer is considered, followed by
another LSTM layer composed by the triple of the number of neurons considered in the
input layer. The third and the fourth hidden layers are composed of twice the number of
neurons and the same number of neurons of the input layer, respectively (e.g., input layer:
4 neurons; 1st hidden layer: 8 neurons; 2nd hidden layer: 12 neurons; 3rd hidden layer:
8 neurons; 4th hidden layer: 4 neurons). All these LSTM layers were implemented with
consideration of the activation function defined by the default for this type of layer in the
Keras package, which is the hyperbolic tangent (tanh) function. Table 5 shows a summary
of the characteristics optimized for the LSTM model.

Table 5. Structure characteristics tested for the LSTM model, with ninput representing the number of
neurons in the input layer.

Layers Number of Layers Number of Neurons Activation Function

Input LSTM 1 4, 8, 16 or 32 tanh (by default)

Hidden LSTM 0, 2 or 4

If hidden layers = 2:
1st layer: 2 × ninput

2nd layer: ninput
If hidden layers = 4:
1st layer: 2 × ninput
2nd layer: 3 × ninput
3rd layer: 2 × ninput

4th layer: ninput

tanh (by default)

Output dense 1 1 linear

2.2.2. Convolutional Neural Networks

Developed by LeCun et al. [51] to automatically identify handwritten digits, convolu-
tional neural networks (CNNs) have origins in artificial neural networks but, instead of
fully connected layers, CNNs have local connections, lending more importance to high
correlations with nearby data [19]. This correlation with nearby data is achieved using
convolutional filtering, which means that these networks work based on shared weights
with filter coefficients being shared for all input positions [19,20,52]. As Chong et al. [52]
state, knowing the number of filters and their values are essential for capturing the pat-
terns present in the data. These characteristics make CNNs more suitable for identifying
local patterns in images but also in time series data [53,54], in which a certain identified
pattern in a time frame can be recognized in another one independently of the time when
both happened [55]. On the other hand, one of the weaknesses of CNNs is the high time
consumption needed for training [56].

According to Huang et al. [56] and Shu et al. [18], a CNN is usually composed of five
layers, namely, the input, convolution, pooling, fully connected, and output layers. As
the names suggest, and as in ANNs models, the input layer receives the input data, in a
vector or matrix shape, while the output layer is responsible for generating the model’s
outputs. After the input layer, there is a convolutional layer which is responsible for the
convolutional operation which considers the weights of convolutional neurons (filter) and
local regions. Following the convolutional operation, a linear or nonlinear transfer can
be applied. The output of the convolutional layer is, after, sent to the pooling layer. This
layer will divide the data received from the convolutional layer into sub-regions where
a maximizing or an averaging operation is applied, followed by a size reduction and an
improvement of the translation invariance. The pooling layer’s result is then passed to a
fully connected layer that is the same as those described in ANNs models, and its output is
sent to the output layer, which is also fully connected with the actual layer [56].

Since in the present study the predictions were made based on time series data, the
CNN model was developed based on one-dimensional (1D) convolutional layers, also
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known as temporal convolutional layers. In this kind of layer, the user must set the number
of filters and the kernel size, with filters being defined as the dimensionality of the output
space, i.e., the number of output filters in the convolutional layer, and the kernel size being
the value that specifies the length of the 1D convolutional window. The structure of the
CNN model developed here has one input convolutional layer and one output dense layer.
The output layer has just one neuron, and softsign, linear, elu, and relu functions were
tested as activation functions. For the convolutional input layer, 8, 16, and 32 were the
numbers of filters tested, and they were combined with a kernel size of 1, 5, or 10. The
padding was defined as causal, which is usually applied in 1D convolutional layers and
allows the addition of zeros at the start of the dataset. The activation function was not
defined, which means that no activation function was considered. After the convolutional
input layer, a pooling layer for one-dimensional data (MaxPooling1D layer) was added with
a pool size of 1 or 2, according to the number of input variables. After the convolutional
input layers, the model was tested to have none or 1 more convolutional layer followed
by none, 1 or 2 dense layers. If the convolutional hidden layer existed, both the number
of filters and the kernel size were tested as 8, 16, and 32. The padding was also set to
causal, and no activation function was applied. After this layer, a MaxPooling1D layer
was added with a pool size of 1 or 2, following the same criteria as in the input layer.
Following the convolutional layers, a flatten layer was added. Thus, for each hidden dense
layer, a dropout layer could be considered, with a rate of 0.1 or 0.2. The number of nodes
in hidden dense layers was elected from the sets 3, 5, and 10, while softsign, linear, elu,
and relu functions were tested as activation functions. Table 6 presents a summary of the
optimization of the convolutional model’s structure.

Table 6. Structure characteristics tested for the convolutional model.

Layers N. of Layers N. of Filters Kernel Size Pooling
Size

N. of
Neurons

Activation
Function

Dropout
after Dense

Dropout
Rate

Input
convolutional 1 8, 16, or 32 1, 5, or 10 - - None (by

default) - -

MaxPooling1D 1 - - 1 or 2 - - - -
Hidden

convolutional 0 or 1 8, 16, or 32 8, 16, or 32 - - None (by
default) - -

MaxPooling1D 1 - - 1 or 2 - - - -
Flatten 1 - - - - - - -

Hidden dense 0, 1, or 2 - - - 3, 5, or 10
softsign,

linear, elu, or
relu

Yes/No (one
by each
hidden
layer)

0.1 or 0.2

Output dense 1 - - - 1
softsign,

linear, elu, or
relu

- -

2.2.3. Training Process

The training, or learning, process of a neural network aims to find the optimal values
of the weights in artificial and recurrent neural networks and of the filters in convolutional
neural networks [10,52]. This goal is reached by changing and adapting those values to
optimize the model’s performance, minimizing the error function adopted in the study [10].

The adaptation of the weights and the filters is made with consideration of a continu-
ous process, during which these values are changed by the stimulation of the environment
in which the network is embedded. In Keras, and by default, the weights of all the types
of layers used in this study erre initialized with the Glorot uniform initializer [57], while
the bias values were initialized as zero. According to Haykin [38] and ASCE [10], the
training process can be made by following different algorithms, with most of them being
classified as supervised or unsupervised training. Unsupervised training is also known as
learning without a teacher and is based on adapting the connection weights of the neural
network using only an input dataset in a way that ensure that the neural network will
group those input patterns into classes with similar properties. However, in this study, only
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supervised training, also known as learning with a teacher, was employed. The learning-
with-a-teacher algorithm implies the existence of a teacher that knows the environment
and is responsible for the training process guidance [10]. To perform this process, a set
of input–output examples must exist, where the inputs are the forcing variables, and the
outputs are the effect variables. The basis of this method is to expose the neural network
to the input variables and to adapt weights and threshold values in each node to better
mimic the output variables belonging to the teacher. Thus, the main goal relies on the
minimization of an error function selected by the user, which represents the difference
between the values generated by the neural network and the target values, represented by
the output variables of the teacher. When the training process ends, the neural network
should be able to generate good-quality results given the new sets of inputs.

In the present study, training algorithms were selected from the set made available
by the Keras package, and their optimizers were named. Thus, six different optimizers
were considered and tested: stochastic gradient descent (SGD), AdaGrad, RMSprop, Adam,
AdaMax, and Nadam. All of them are based on the gradient descent algorithm, which has
the main goals of minimizing an objective function (J(θ)) dependent on the parameters of a
model (θ ∈ Rd) and adapting those parameters in the opposite direction of the gradient of
the objective function (∇θJ(θ)) [58]. The changes in the parameters’ values are estimated
according to a learning rate which determines the size of the steps to reach the minimum
value of the objective function. A detailed description of the optimizers is given below.

To perform the training process with the Keras package, the constructed model needs
to be compiled. It is in the compilation function where the arguments of the optimizer are
set. Besides the optimizer parameters, the user must select the loss function and the metrics
for model evaluation purposes. The loss function is responsible for describing what the
user wants to minimize through the learning algorithms [59]. Thus, the choice of the loss
function is extremely important for the good performance of the model during the training
process. The metrics’ main goal is the follow-up of the selected criteria during and after the
training process, which allows the user to prematurely detect the model’s problems and
weaknesses [59]. In the present study, the mean square error was selected to be both the
loss function and the metric.

The training process of a neural network, which includes a validation of the model,
is followed by the testing process. For training, validation and testing tasks, a dataset
should be defined, namely the training, validation, and test datasets [60]. Thus, as the
name indicates, the training dataset is used to train the neural network during the training
process, i.e., to optimize the model parameters. According to Wu et al. [61], the test set is
also used during the training process to avoid over-fitting the model, while the validation
set aims to assess the performance of the trained model independently. However, for Chong
et al. [52] and in the documentation available on the Keras webpage for “Model training
APIs” [62], the fit method considers an argument named “validation_data”, which is the
data with which the trained model will be evaluated at the end of each epoch, allowing
the over-fitting analysis. Thus, in this case, the test dataset is the one with which the
user can assess the model’s performance after the training and validation processes are
carried out. Consequently, the input dataset for the present study was divided into three
different datasets following Keras website information, with the training set corresponding
to 70% of the data, the validation set being 20% of the data, and the test set being the
remaining 10%.

Stochastic gradient descent (SGD). The stochastic gradient descent (SGD) performs
a parameter update for each training input–output example. Thus, the mathematical
formulation for this method is:

θ = θ − η·∇θ J
(

θ; x(i); y(i)
)

(2)
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where η is the learning rate and the x(i) and y(i) pair represents the input–output example.
The SGD can be used to learn online. However, when its frequent updates occur with a
high variance, it can cause the objective function to fluctuate drastically.

This method can present some difficulties in searching the exact minimum, jump-
ing between local minima, but when the learning rate decreases slowly, this algorithm
tends to find the local and global minimum for non-convex and convex optimization,
respectively [58].

The mode of implementation available in the Keras package [24] allows the definition
of three different arguments that can influence the algorithm’s behavior, namely, the
learning rate and momentum values and the activation of the Nesterov momentum. As
Ruder [58] describes, the momentum method helps the convergence of the SGD algorithm
in areas where the surface curves of the objective function are more steeply in one dimension
than in another, giving the algorithm the capacity to predict the next step of optimization
and to avoid jumps that are too big between iterations, indicating a significant improvement
in the algorithm’s performance. In the Keras package, the default value for momentum is
0.0, however, in this study, it was set to 0.9 [58]. Additionally, the Nesterov option is not
used in Keras by default, but it was used in this study. Finally, the algorithm’s learning rate
was tested as 1 × 10−4, 1 × 10−3, and 1 × 10−2.

AdaGrad. The AdaGrad algorithm [63], i.e., the adaptive gradient algorithm, has as its
main strength the capacity to adapt the learning rate to the parameters using larger updates
for infrequent parameters and smaller updates for frequent parameters [58]. Thus, this
algorithm does not require the manual tuning of the learning rate, with the most common
value for this parameter being 0.01 according to Ruder [58]. However, the main limitation
of this algorithm is the fact that the learning rate can become infinitesimally small to a point
where the algorithm cannot improve the results, since that value is shrunk according to the
accumulation of squared gradients.

In the implementation available in the Keras package, three main arguments can be
defined for the AdaGrad algorithm, namely, the learning rate, the initial accumulator value,
which is the starting value for the accumulators, and the epsilon, which is used to maintain
numerical stability. Although the default values for those parameters are, respectively,
0.001, 0.1, and 1 × 10−7, in the present study, the learning rate was set to 0.01, while the
epsilon was tested as 1 × 10−7 or 1 × 10−8.

RMSprop. The RMSprop algorithm was developed to overcome AdaGrad’s problem,
which is related to the extremely rapid decrease in the learning rate. Thus, this algorithm
divides the learning rate by an exponentially decaying average of squared gradients [58].
In the Keras package, the implementation of this algorithm involves five arguments: the
learning rate, with a default value of 0.001; the discounting factor for the history/coming
gradient, which is by default 0.9; the momentum value, set to 0.0; the epsilon, already
defined in AdaGrad and with a default value of 1 × 10−7; the centered option, which
allows the normalization of the gradients by the estimated variance of the gradient if it is
activated. By default, this last option is deactivated, which makes the gradients normalized
by the uncentered second moment. In the present study, the learning rate for RMSprop was
set as 0.01, and the epsilon value was tested as 1 × 10−7 or 1 × 10−8.

Adam. The Adam optimizer, the name of which comes from adaptive moment esti-
mation, adapts the learning rate value for each parameter, like the RMSprop optimizer.
However, the Adam optimizer considers an exponentially decaying average of past gra-
dients, similarly to the momentum method described for the SGD optimizer. According
to Kingma and Ba [64], the Adam method is simple to implement, it is computationally
efficient, its memory requirements are low, it is invariant to the diagonal rescaling of the
gradients, and it has a good performance for noisy problems with large amounts of data. In
the Keras package, the implementation of the optimizer referred to implies the definition
of five arguments, namely, the learning rate, beta_1, beta_2, epsilon, and amsgrad, with
default values of 0.001, 0.9, 0.999, 1 × 10−7, and deactivated, respectively. With the learning
rate and the epsilon arguments already defined, beta_1 represents the decay rate for the
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1st moment estimates, beta_2 represents the decay rate for the 2nd moment estimates, and
the amsgrad option allows the user to use the AMSGrad variant of the Adam algorithm
(more information can be found in Reddi et al. [65]). For Ruder [58], the beta_1, beta_2, and
epsilon values should take the values 0.9, 0.999, and 1 × 10−8, respectively. Thus, in this
study, the learning rate was optimized, taking into account the values 1 × 10−4, 1 × 10−3,
and 1 × 10−2, while the epsilon parameter took the value 1 × 10−7 or 1 × 10−8.

AdaMax. The AdaMax algorithm is an extension of Adam [64]. Thus, AdaMax
improves the stability of the Adam optimizer based on the infinity norm. In the Keras
package, the implementation of AdaMax involves the same arguments as that of Adam,
and both the learning rate and epsilon were tested for the values already presented for the
Adam algorithm.

Nadam. The Nesterov-accelerated adaptive moment estimation (Nadam) algorithm is
the result of the combination of Adam and the Nesterov accelerate gradient (NAG) [58].
Nadam was developed due to the fact that Adam uses the regular momentum component,
which has a lower performance than the NAG. Thus, Dozat [66] developed the Nadam
optimizer and demonstrated that this optimizer can improve the speed of convergence and
the quality of the learned models when compared to the Adam algorithm. In the Keras
package, Nadam has the same arguments as the Adam optimizer. Thus, the learning rate
and the epsilon were tested considering the same values presented for the Adam algorithm.

2.2.4. Input Variables

The dataset considered in this study is composed of the output variable and the forcing
variables. As referred to before, the main goal of the neural network being developed
was to estimate the daily streamflow in a cross-section of a river where the hydrometric
station is located, so the output variable would be the daily streamflow at this point. On the
other hand, it is necessary to define the input variables, with this task being referred to by
several authors as crucial to reach in a successful model [10,11,36,61,67]. However, Maier
and Dandy [60] indicate that most of the authors with studies in the field of prediction
and forecasting water resources variables with ANN models give little attention to the
former task, with input variables being determined on an ad hoc basis or by using a
priori system knowledge. For predictions with a daily timestep, Cigizoglu [39], Nacar
et al. [68], and Huang et al. [56] only used observed streamflow values from days previous
to their study while considering different time lags. Besides the streamflow, Riad et al. [69]
predicted the streamflow of a specific day considering daily precipitation values from
previous. On the other hand, Besaw et al. [4] used only meteorological data, namely,
total precipitation and average temperature, to predict streamflow. Ni et al. [2], Dolling
and Varas [36], and Yang et al. [70] also considered runoff and/or different meteorological
variables, such as precipitation, temperature, sunshine hours, snow water, relative humidity,
potential evapotranspiration, and so on, as the forcing data to predict streamflow values
with monthly or annual timesteps. In the present study, daily total precipitation data
or the combined use of daily total precipitation and daily average temperature were
considered forcing variables. The meteorological data were obtained from the ERA5-
Reanalysis dataset [71], which is a gridded product with a resolution of 31 km and an
hourly timestep. Thus, the date values belonging to the cells in which the center is within
the watershed delineation were considered. The hourly total precipitation and the hourly
average air temperature were collected, and both were averaged with consideration of the
number of cells within the watershed. The watershed’s hourly total precipitation and hourly
air temperature were then accumulated and averaged, respectively, considering a daily
timestep. The meteorological data collected cover the same period as the one selected for the
streamflow data, which corresponds to the period between 25 July 2001 and 31 December
2008. Since a meteorological model was input, no gaps existed in the precipitation and air
temperature time series, with records totalizing 2718 values for each meteorological variable.
Table 7 presents the time series statistical characterization for both variables. In contrast
to other studies, in this work, the dependence of the forecasted streamflow on previous
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streamflow values was avoided. This decision was related to the fact that, if the neural
network produced in this study was used to estimate streamflow values in periods without
observed data, such as in climate change scenarios, or implemented as an operational
tool to predict the streamflow a few days in advance, the input streamflow values would
have been those values already estimated by the neural network itself, which would have
contained a certain level of error and uncertainty and could have led to the exacerbation
of errors and uncertainty in the estimations. Additionally, the use of forcing variables
derived from observed data was avoided because it would have been impracticable to feed
the trained neural network with that kind of data to predict future events. However, this
did not invalidate the fact that an analysis of the controlling factors of the hydrological
response could be performed to investigate if there were other factors that could have had
a significant impact on the streamflow estimations.

Table 7. Meteorological input data characterization (precipitation and air temperature, period 25 July
2001–31 December 2008).

Meteorological Variable Average Minimum Maximum Std. Deviation

Daily total precipitation (mm) 1.59 0 45.50 4.24
Daily air temperature (◦C) 16.09 1.77 34.74 6.46

The daily total precipitation and air temperature values were here aggregated with
consideration of different periods (2, 3, 4, 5, and 10 days or 10, 30, and 60 days), with
precipitation being accumulated and air temperature being averaged in those periods.
The periods elected here were considered to better understand the impact of short and
long-term intervals on the results. On the other hand, the delay (1, 2, 3, 4, 5, 6, and
7 days) of total precipitation and air temperature values was considered. Thus, the impact
of the aggregation periods or the time lags, and the combination of both, was tested in this
study, resulting in 6 different scenarios that were established for the usage of only the total
precipitation or of the pair total precipitation plus air temperature. Table 8 presents the
summary of the tested scenarios.

Table 8. Tested scenarios and dataset dimensions (Acc. TP—accumulated days of total precipitation;
Ave. AT—averaged days of air temperature).

Scenario
Total Precipitation (TP) or Total Precipitation + Air Temperature (TP&AT)

Time Lag
(Days)

Acc. TP
(Days)

Ave. AT
(Days)

Training
Set Size

Validation
Set Size

Test Set
Size

TP1 - 1 - 1851 529 265
TP2 - 1,2,3,4,5,10 - 1845 527 264
TP3 - 10,30,60 - 1810 517 259
TP4 1,2,3,4,5,6,7 - - 1846 527 265
TP5 1,2,3,4,5,6,7 1,2,3,4,5,10 - 1810 517 259
TP6 1,2,3,4,5,6,7 10,30,60 - 1845 527 264

TP&AT1 - 1 1 1851 529 265
TP&AT2 - 1,2,3,4,5,10 1,2,3,4,5,10 1845 527 264
TP&AT3 - 10,30,60 10,30,60 1810 517 259
TP&AT4 1,2,3,4,5,6,7 - - 1846 527 265
TP&AT5 1,2,3,4,5,6,7 1,2,3,4,5,10 1,2,3,4,5,10 1810 517 259
TP&AT6 1,2,3,4,5,6,7 10,30,60 10,30,60 1845 527 264

The input dataset was handled and prepared with the Pandas [72] and Scikit-learn [73]
packages. Thus, with the Pandas package, all the accumulations, averages, and delays were
performed, and days with data missing were excluded. The resulting dataset was then
scaled using MinMaxScaler in the scikit-learn package to improve the learning process and
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avoid convergence problems. The range to scale each column of the dataset independently
was set to [0,0.9] and the new values of the columns were calculated according to:

vscaled =
v− vmin

vmax − vmin
∗ (M−m) ∗m (3)

where vscaled is the new value in the range [0,0.9], v is the original value in the dataset,
vmax and vmin are the maximum and minimum values present in the column being scaled,
respectively, M is the maximum value of the range, and m is the minimum value of the
range. The range was selected considering that the maximum streamflow in this section
could not be represented in the period analyzed.

Finally, because of the different time lags and aggregation periods considered, the size
of the input dataset varied, with the size of the training, validation, and test datasets also
being different for the different scenarios. After removing the streamflow gaps, the size of
those datasets for each scenario was presented in Table 8.

2.2.5. Tunning Parameters

Besides the optimization of the weights or the filters during the model’s training
process, the structure of the model should also be optimized. The best structure may be
considered the one that demonstrates the best performance in terms of error minimization
and, at the same time, that presents its simplest form [10]. Usually, the definition of a neural
network structure is accomplished by a trial and error procedure, which is used to define
the number of hidden layers and their number of nodes and filters or their kernel size. The
number of nodes in the input and output layers is problem-dependent and, consequently,
they are not an optimization target [10,52].

To avoid all the effort involved in manual structure optimization, the KerasTuner
package was used to discern the best structure for each type of model studied in this
work (MLP, LSTM, and CNN) in a more efficient way. This package allows the user to
define ranges or values to test different parameters in the model’s structure as well as the
model’s structure itself by, for example, providing the possibility to vary the number of
hidden layers in the model. The parameters that can be optimized by the user, and that
are set before the model’s training process, are known as hyper-parameters. In this study,
the hyper-parameters optimized included the number of nodes in each layer in the MLP
and LSTM models and the number of filters and the kernel size in the CNN model. The
model’s structure was optimized with consideration of the number of hidden layers and
the activation functions of the hidden, input, and output layers. The optimized hyper-
parameters and the structures’ composition were already discussed and are summarized in
Table 4 for the MLP models, Table 5 for the LSTM models, and Table 6 for the CNN models.
As referred to before, some hyper-parameters related to the training algorithms, such as
the learning rate or the epsilon value, were further optimized using KerasTuner. Table 9
presents a summary of the hyper-parameters tuned for each training algorithm applied in
this study.

The batch size and the number of epochs were also optimized using a tuner customized
by the user and based on the Bayesian optimization in KerasTuner. The batch size here
can take values from 10 to 50, in steps of 10, indicates the number of samples collected
from the training dataset, and is used to make one update to the network parameters [74].
This means that the choice of batch size has an impact on the convergence time and the
fitting performance during the training process, with smaller batch sizes conducting a
faster computation but forcing more samples to be passed through the model to achieve
the same error because the number of updates per training iteration is lower. On the other
hand, the number of epochs represents the number of times that the entire dataset flows
in the model [75,76]. In this study, it was possible to assume values for this parameter
between 100 and 400 in steps of 50 and with a default value of 150. Finally, Bayesian
optimization [77] is an algorithm developed to efficiently guide the search for the best
combinations of hyper-parameters among the search space of a model, which is composed
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of different combinations of hyper-parameter values [78]. The usage of the KerasTuner
package implies the definition of the maximum number of model configurations (trials)
that should be tested, and this value was set to 500. From the entire set of trials, the
tuner elects the model with the best performance, in terms of the resulting values of the
validation dataset, as the best model, i.e., the model where the predicted values best fit the
output variable.

Table 9. Summary of hyper-parameters tuned for training algorithms.

Training Algorithm
Hyper-Parameters Optimized

Possible Values Tested for Learning Rate Possible Values Tested for ε

SGD 1 × 10−4, 1 × 10−3 or 1 × 10−2 -
AdaGrad -

1 × 10−7 or 1 × 10−8
RMSprop -

Adam
1 × 10−4, 1 × 10−3 or 1 × 10−2AdaMax

Nadam

Therefore, 12 different combinations of input variables (Table 8) were tested in combi-
nation with each one of the three types of neural networks considered in this study, namely,
MLP, LSTM, and CNN. For each pair of input variables and each type of neural network,
the hyper-parameters were optimized and the performance of six different training algo-
rithms (SGD, AdaGrad, RMSprop, Adam, AdaMax, and Nadam) was tested. In total, the
hyper-parameters of 216 solutions (72 for MLP, 72 for LSTM, and 72 for CNN) were tuned
with a total of 500 trials for each solution. For better understanding, Figure 5 presents a
schematic summary of how the tests were carried out.
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2.3. Model Evaluation

According to ASCE [10], the performance of a neural network model can be evaluated
by exposing the developed model to a new set of data containing values that had never
been used during the model training process. Thus, in this study, the best solution for each
combination of input variables, type of model and training algorithm was evaluated by
considering the test dataset defined before. This means that each solution was run with
consideration of the input variables present in the test dataset. The performance of each run
was then evaluated by comparing the model results with the observed flow values. This
comparison included a visual analysis and the calculation of four statistical parameters,
namely, the coefficient of determination (R2), the percent bias (PBIAS), the root mean square
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error (RMSE), and the Nash–Sutcliffe efficiency (NSE), which were computed, respectively
as follows:

R2 =

 ∑
p
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i −Qobs
mean

)(
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where Qi
obs and Qi

sim are the flow values observed and estimated by the model on day
i, respectively. Qmean

obs and Qmean
sim are the average flow values, which consider the

observed and modeled values in the period comprehended in the test dataset, and p is
the total number of days/values in this period. According to Moriasi et al. [79], the
model’s performance is considered satisfactory when NSE > 0.5, PBIAS ± 25%, and
R2 > 0.5. The RMSE represents the standard deviation of the residuals (the difference be-
tween the predictions and the observed values) and, consequently, lower values mean better
model performance.

The model solution which combines the best statistics and the best visual fit between
the modeled and observed values was elected as the one with a higher probability of better
representing the watershed in the case study (Figure 5).

3. Results

The distribution of the values of the statistical parameterss for the scenarios of each
neural network considered (multi-layer perceptron, long sort-term model, and convolu-
tional neural network) are presented in Figure 6. The dispersion of the markers presented
in those graphs is a consequence of testing different optimizers, with most of the scenarios
presenting a maximum of 6 markers, corresponding to the 6 optimizers tested. However,
in some scenarios of optimizer–NN model combinations, the training process did not
converge, and so the respective marker is not represented in the graph. In Supplementary
Material, Table S1, the statistical parameters are presented in detail for each scenario and
each tested optimizer according to the NN model considered.

Considering the calculated statistical parameters and the range of values suggested
by Moriasi et al. [79], 24% (17 out of 72) of the combinations tested in the multi-layer
perceptron models showed satisfactory performance in reproducing river flow. The long
short-term memory models and convolutional models each presented satisfactory behavior
for 18 of the combinations tested, corresponding to 25% of the tests performed.

The best solution for the multi-layer perceptron models presented a NSE of 0.8, an R2

of 0.85, a PBIAS of −17.3%, and a RMSE of 5.0 m3 s−1. This solution was obtained for the
TP5 input scenario (Figure 7) with the Adamax optimizer.

In the case of LSTM models, the best solution was also reached for the TP5 scenario and
the Adamax optimizer (Figure 8a), resulting in NSE, R2, PBIAS, and RMSE values of 0.75,
0.83, 15.8%, and 5.6 m3 s−1, respectively. However, the scenario in which TP3 was combined
with the RMSprop optimizer (Figure 8b) showed a very similar performance, presenting a
NSE of 0.74, R2 of 0.76, PBIAS of 13.6%, and RMSE of 5.8 m3 s−1. As shown in Figure 8,
both models predicted negative flow values, which was considered a non-acceptable result.
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The best LSTM solution without negative predicted values resulted from the combina-
tion of scenario TP3 and the SGD optimizer (Figure 9). This solution returned acceptable
indicators, with a NSE of 0.59, an R2 of 0.61, a PBIAS of −20.0%, and a RMSE of 7.2 m3 s−1.
However, when compared with the best solution for the multi-layer perceptron model, the
performance of this solution was substantially worse.
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Finally, for the convolutional models, the four best solutions were obtained for scenario
TP5, and all of them have a NSE and R2 higher than 0.82 and 0.83, respectively, with the
PBIAS laying in the range of−14 to 11%, and the RMSE varying between 4.2 and 4.9 m3 s−1

(Figure 10). From this set, the combination of the TP5 scenario with the Nadam optimizer
is the one with the best performance, with the NSE, R2, PBIAS, and RMSE values being
0.86, 0.87, 10.5%, and 4.2 m3 s−1, respectively.
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Figure 10. Best solutions for convolutional model: (a) TP5 scenario with Nadam optimizer; (b) TP5
with Adam optimizer; (c) TP5 with Adagrad optimizer; (d) TP5 with RMSprop scenario.

The structure of the best solution is composed of one input 1D convolutional layer
with the number of filters and the kernel size being 16 and 1, respectively, and one output
dense layer with a linear function as the activation function. Between them, two more
convolutional 1D layers were placed, with both having 32 filters and a kernel size of 8.
After each 1D convolutional layer, a MaxPooling1D layer with a pool size of 2 was set.
Finally, the learning rate and the ε of the optimizer took the values 1 × 10−3 and 1 × 10−8,
respectively, with the batch size being defined as 20 while the optimum number of epochs
was 200.

4. Discussion

In general, results show that convolutional neural networks seem better able to predict
the river flow one day ahead than LSTM and MLP models. These results are in accordance
with Huang et al. [56], who compared the capability of a MLP model, a generic CNN model,
and a CNN model trained with a transfer learning procedure to predict the river flow one
day ahead in four different locations in the United Kingdom. For each location, the authors
considered as inputs the river flow time series of neighboring sites. The results of both
CNN models (average mean absolute percentage errors (MAPE): generic CNN = 27.09%;
CNN with transfer learning = 22.85%) were substantially better than those presented for
the MLP model (average MAPE = 31.65%). Shu et al. [18] tested the prediction of the
monthly river flow of two basins in China: the Huaren Reservoir basin, with a drained
area of 10,400 km2 and an average annual streamflow of 142 m3 s−1, and the Xiangjiaba
Hydropower Station basin, where the average annual streamflow is 3810 m3 s−1. The
authors considered 68 variables as candidate inputs, from which rainfall and streamflow
were the only ones specified; all others were not given. They compared the performance
of a CNN model, an ANN model of the MLP type, and an extreme learning machine
(ELM) model with a different number of inputs, with the first model presenting the best
performance for both watersheds and most of the number of inputs tested. They concluded
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that the performance of the models does not improve or worsen clearly with the inclusion
of more inputs, but they also did not provide the candidate variables that reached the best
performances. Barino et al. [20] also compared the performance of four different models,
including a MLP model and two CNN models, to predict the river flow in a river section
of Madeira River, a tributary of the Amazon River, Brazil. The input variable of the MLP
model and one of the CNN models was the river flow of the previous days, while the other
CNN model had the river flow and the turbidity in previous days as input variables. The
authors concluded that CNN models were the best models for predicting the river flow,
with an average NSE, R2, and MAPE of 0.93, 0.93, and 22.44%, respectively, compared with
the NSE of 0.93, R2 of 0.91, and MAPE of 33.60% for the MLP model. Finally, Duan et al. [80]
used a CNN with past values of precipitation, temperature, and solar radiation as inputs
to predict the long-term river flow, for Catchment Attributes for Large-Sample Studies
watershed regions, in California, USA. The CNN model’s performance was compared
with that of other machine learning models, with the authors concluding that ANNs have
problems capturing some important temporal features when compared with CNNs and
RNNs. Additionally, the CNN model was demonstrated to be faster and more stable during
the training phase, producing better results for average and high-flow regimes, while the
LSTM model was better at producing results for a low-flow regime.

However, there are several studies demonstrating that MLP and LSTM models can
also predict river flow in some cases with acceptable results. Cigizoglu [39] tested the
performance of a MLP model to forecast the river flow one and six days ahead, beyond
the calibration range and using different time series with the model already trained in four
flow stations on the rivers Göksu, Lamas, and Ermenek, Turkey. The author obtained an
average R2 of 0.94. More recently, Darbandi and Pourhosseini [81] and Üneş [82] also used
MLP algorithms to predict the river flow in the Ajichay watershed (with a drained area
of 12 790 km2), East Azerbaijan, and in a station (with a drained area of 75 km2) of the
Stilwater river, Worcester, Sterling, MA, USA, respectively. In the first case, the authors
applied the MLP model to predict monthly river flow at three points of the watershed
considering as input data the river flow values from the previous one, two, and three
months. The average R2 (considering all the stations and all the input data scenarios) for
the training period reached 0.86, while that of the test period was 0.78. In the second case,
the authors predicted daily flow values using daily average temperature, precipitation, and
lagged day flow values as input variables and obtained a Pearson’s correlation coefficient
of 0.91. In both cases, MLP models were compared with other models, however, neither
demonstrated the best performance. Ni et al. [2] used a MLP model and three LSTM models
(one simple LSTM model, a convolutional LSTM model, CLSTM, and a wavelet-LSTM
model, WLSTM) to predict the monthly streamflow volume one, three and six months
ahead in Cuntan and Hankou stations, Yangtze River basin, China. They demonstrated that
the MLP model was the one with the worst performance (average NSE = 0.72), while the
simple LSTM model reached an average NSE of 0.76, and the WLSTM and CLSTM models
had average NSEs of 0.78 and 0.79, respectively. According to the authors, WLSTM and
CLSTM demonstrated better performance because both can be considered as having pre-
processing methods based on the convolutional operation, both are based on filter usage,
and both are responsible for extracting temporally local information from data. However,
the CLSTM filters can be trained by data and, thus, they can learn, while the WLSTM model
has pre-specified structured filters. Xu et al. [48] applied several models to predict the
streamflow in two watersheds in China, namely, the Hun river basin, with a drained area
of 14,800 km2, and the Yangtze river basin, with a drained area of 1,002,300 km2. Among
the applied models, the authors considered the different structures of the LSTM models
for each watershed with meteorological data from different stations in both basins being
used as input variables. They concluded that, during the training period, the LSTM models
had the best performance among all the models used in both watersheds, while during
the verification period, LSTM performance decreased, becoming the second-best solution
right after the hydrological model. Additionally, Hu et al. [83] used a LSTM model to
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predict stream flow 6 h ahead in one hydrological station placed in Tunxi, China. Using
streamflow and precipitation data to feed the model, the authors found that the LSTM
model performed better than a support vector regression and the MLP models, with the
LSTM solution reaching an R2 of 0.97. On top of the good results, it is also important to
note that Xu et al. [48] and Hu et al. [83] found some difficulties in predicting peak flow
values when using LSTM models.

According to the analysis presented before, there seems to exist an agreement about
CNN models having the best capacity to predict stream flow, which is frequently related
to their ability to extract features and to perform a subsampling of the data gained with
the usage of filters [2,18,56,84]. Additionally, Lee and Song [84] say that CNN models
have a significant advantage over MLP models that is related to the number of parameters
to estimate. This comes from the fact that CNNs share filters at different local regions
of the input, visiting all parts of the input sequence and performing the same identical
computation on it, thus considering several input features as one instead of considering
each feature as different from the others, as is the case in MLP structures. Shu et al. [18]
also says that a careful selection of the input variables for models like ANN and ELM is
required, while CNN models can do this task themselves because of their capacity for
feature extraction. Thus, in this study, the worse performance of the MLP and LSTM models
can be partly explained by the fact that the input variables were not a target of exhaustive
exploration since the authors wanted to limit them to precipitation and temperature. This
imposed limitation comes from the fact that, when considering an operational system, the
study of future scenarios, or even a hydrometric station with limited data availability, there
are no measured river flow values available to feed the model. Thus, if the neural network
is based on river flow values from past instances, in the situations referred to before, the
model needs to be fed by its own outputs, which can significantly increase the uncertainty
of the predicted values.

On the other hand, in the last few years, several authors have explored different
models from those presented here with promising results. This is the case of Sit et al. [85]
and Szczepanek [86]. Sit et al. [85] used a graphical convolutional GRU model to predict the
next 36 h of streamflow, obtaining a NSE very close to 1 for the first hours and decreasing
to 0.85 for the last predicted hours. Szczepanek [86] tested the prediction of daily stream-
flow in mountain catchments with the XGBoost, LightGBM, and CatBoost models. The
authors found that, using the default model parameters, CatBoost obtained the best results
(NSE = 0.78, MAE = 3.96), while for hyperparameter optimization, LightGBM obtained the
best performance (NSE = 0.87, MAE = 2.70).

Finally, to improve the results of these types of data-driven models, Duan et al. [80]
proposed the use of alternative designs that can explicitly include physically based con-
servation laws, which also allow the physical interpretation of model results. However,
even without considering these types of modifications, these models still have several
advantages. Humphrey et al. [3] suggest that the flexible model structure of neural network
models allows them to capture the complex and nonlinear relationships between input
and output values without taking into consideration the underlying processes. Besides the
flexible structure, the advantages of ASCE [10] include the capacity of these models to work
well even when training datasets contain noise and measurement errors, the fact that they
can adapt to solutions over time to compensate for changes in the modeled system, and
the fact that they are easy to use once they are trained. On the other hand, there are also
several disadvantages associated with the use of neural network models. These models
are highly dependent on the size and quality of the input dataset, and they have many
more parameters to calibrate than typical rainfall–runoff models do, which can lead to
an over-parameterization of NN models [3,10]. This over-parametrization substantially
increases the risk of the model’s inability to make forecasts beyond the calibration process.
The lack of a standardized way to select the network architecture is also a limitation of the
usage of these models. The network structure, the training algorithm, and the definition of
error result, most of the time, depend on the experience of the user.
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5. Conclusions

The work presented here demonstrates that the implementation of neural network
models based on tools already developed, namely, the Keras and KerasTuner packages,
can constitute an easy-to-use and powerful solution to streamflow estimation with a daily
time step.

Among the set of tests performed for simulating streamflow in the Ponte Vila Formosa
hydrometric station, the best solution was reached with a CNN model composed of one
input 1D convolutional layer with 16 filters and a kernel size equal to 1, followed by two
other 1D convolutional layers, each having 32 filters and a kernel size of 8 and each being
finalized with a dense layer activated by a linear function. After each 1D convolutional
layer, a MaxPooling1D layer was imposed with a pool size of 2. The optimizer with the best
performance was Nadam, with a learning rate of 1 × 10−3 and an ε of 1 × 10−8. The model
obtained the best solution with a batch size of 20 and with 200 as the number of epochs.
The input variables of the best solution included only the average daily precipitation values
in the watershed accumulated in 1, 2, 3, 4, 5, and 10 days and delayed by 1, 2, 3, 4, 5, 6, and
7 days. This solution reached a NSE of 0.86 and an R2 of 0.87, with the PBIAS and RMSE
being 10.5% and 4.2 m3 s−1, respectively. However, it is important to note that the worse
performances of the LSTM and MLP models, when compared with solutions found in the
literature, can be closely related to the choice and treatment of the input variables.

It is also important to note that the methodology presented here focused on easy
predictive data, such as meteorological conditions. However, according to different studies
already presented, it seems possible that the results obtained could be improved using
other parameters that are historically related as forcing variables. Additionally, the case
study in this work is of a watershed characterized by a small size and natural regime flow.
Thus, the transference of the methodology presented here to other watersheds should be
carried out carefully and could perhaps be the target of benchmark tests [87].

Although data-driven models are easy to implement and do not require knowledge
about the physical processes involved in the generation of streamflow in a watershed, it
is important to note that the application of these types of models relies on the fact that
they are developed under a certain combination of watershed characteristics. When those
characteristics change, for example, when the land use or the construction of a dam change,
an already developed and trained model can no longer be representative of that watershed.
To avoid these limitations, solutions for NN models that incorporate some information
about the physical processes involved can be developed, which will be the topic of a
subsequent study.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15050947/s1, Table S1: Statistical parameters for each considered
input variable scenario (according to Table 8) and for each tested optimizer for MLP, LSTM, and
convolutional models.
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