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Abstract: The mixed pixel of low-resolution remote-sensing image makes the traditional water ex-
traction method not effective for small water body extraction. This study takes the Loess Plateau with
complex terrain as the research area and develops a multi-index fusion threshold segmentation algo-
rithm (MFTSA) for a large-scale small water body extraction algorithm based on GEE (Google Earth
Engine). MFTSA uses the AWEI (automated water extraction index), MNDWI (modified normalized
difference water index), NDVI (normalized difference vegetation index) and EVI (enhanced vegeta-
tion index) for multi-index synergy to extract small water bodies. It also uses slope data generated by
the SRTM (Shuttle Radar Topography Mission digital elevation model) and NIR band reflectance to
eliminate suppressing high reflectivity noise and shadow noise. An MFTSA algorithm was proposed
and the results showed that: (1) The overall extraction accuracy of the MFTSA algorithm on the Loess
Plateau was 98.14%, and the correct extraction rate of small water bodies was 92.82%. (2) Compared
with traditional water index methods and classification methods, the MFTSA algorithm could extract
small water bodies with higher integrity and clearer and more accurate boundaries. (3) The MFTSA
algorithm was used to extract a total of 69,900 small water bodies on the Loess Plateau, accounting
for 97.63% of the total water bodies, and the area was 482.11 square kilometers, accounting for 16.50%
of the total water bodies.

Keywords: China Loess Plateau; small water body; multi-index fusion threshold segmentation algorithm

1. Introduction

A small water body is an important component of a terrestrial ecosystem. Compared
with large water bodies, small water bodies are more widely distributed and play an im-
portant role in the local ecology for the diversity of freshwater organisms. However, small
water bodies are often ignored in resource surveys, resulting in a lack of a comprehensive
understanding of their spatial distribution, which limits water resource utilization [1,2].
Currently, there is no uniform definition for small water bodies. Jiang et al. [3] defined
small water bodies as narrow water bodies whose apparent width in an image is less than
or equal to three pixels. Biggs et al. [1] defined small water bodies as sets of ponds and
small lakes, low streams, ditches and springs. In this study, water bodies with an area of
less than 0.1 km2 are defined as small water bodies, mainly including ponds, aquaculture
water surfaces, ditches, artificial water reservoirs, small reservoirs, small rivers, etc.

Water body extraction methods can be divided into three basic types in optical remote
sensing [4]: the single-threshold segmentation method, multi-band spectral relationship
method and classification method. The single-threshold segmentation method is simple. It
mainly uses the difference in the spectral characteristics of a water body and other ground
objects in certain bands to extract the water body. The threshold selection criterion directly
determines the accuracy of water body extraction. This method is effective in extracting
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large water bodies such as lakes and rivers but not effective in study areas with more
mixed pixels of water and non-water, so the extraction effect in mountainous areas and
small water bodies is not ideal [5]. The multi-band spectral relation method mainly uses
the difference of spectral characteristics to distinguish water bodies from other ground
objects. This method is more suitable for areas with small terrain fluctuations [6,7]. The
classification method extracts small water bodies by spectral, spatial and texture features of
images. The commonly used classifiers include the support vector machine (SVM), decision
tree and so on. The classification method has high accuracy in extracting water bodies
but is significantly affected by samples, which can be easily confused by ice, snow and
mountain shadows [8,9].

Currently, most water body extraction methods are only effective for large water areas
and are not suitable for small water bodies. Small water bodies show small and narrow
spatial characteristics on low-resolution images, and the spectral features are complex. The
water–land boundaries extracted by different methods may have the phenomenon of edge
loss or river flow interruption. The features of small water bodies in different regions on
the Loess Plateau are not exactly the same. Some rivers have no flow during the dry season,
and many large water bodies significantly reduce its surface area. These water bodies
contain a lot of sediment, and the spectral characteristics of water bodies are weakened.
Therefore, the spectral features of water bodies in different places are quite different. In
addition, there are many mountain shadows on the Loess Plateau, and these shadows cause
serious noise in the extraction of small water bodies. In this case, by using the same model
and parameters for the Loess Plateau images it is difficult to extract all water bodies, and it
is even more difficult to obtain very accurate water surface edges.

In view of the above problems, the main objective of this study was (1) to develop
a simple algorithm model for small water bodies’ extraction on the Loess Plateau that
takes into account the relationship between multi-band spectra; (2) to verify the accuracy
of the multi-index fusion threshold segmentation algorithm (MFTSA) and water index
method and classification method; (3) to extract small water bodies by GEE from the
Landsat5 remote-sensing images of the Loess Plateau acquired in 2010. The research results
can provide scientific reference for the ecological protection of the Loess Plateau and the
sustainable utilization of regional water resources.

2. Study Area and Data Source
2.1. Study Area

The Loess Plateau is located in the north-central part of China, with a total area of
about 640,000 km2. It is the largest loess sedimentary region in the world (Figure 1). The
strong water erosion on the Loess Plateau not only reduces the fertility of the land but
also leads to a continuous uplift of the riverbed and threat of the river to both sides of
the downstream. The Yellow River is the main water system on the Loess Plateau region;
the river has a high sand content. Due to the special hydrometeorological conditions and
underlying surface conditions of the Loess Plateau, people have built a large number of
check dams, small and medium-sized reservoirs, and cisterns. These reservoirs reduce
the amount of sediment flowing into the river. There are a large number of small water
bodies on the Loess Plateau, whose distribution is closely related to rainfall, topography
and population distribution. The study of small water bodies on the Loess Plateau is
of great significance for reducing soil erosion, increasing crop yields and improving the
living environment.
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Figure 1. The study area.

2.2. Data Source

The main data of this study include: (1) The land cover data of the Loess Plateau
in 2010 [10], the data resolution is 30 m. We generated random points on different land
cover types of the data, then extracted pixel values of these random points, calculated
the corresponding index values and finally drew scatter density maps of water and non-
water bodies. In addition, these random points were used as training and test datasets
when using the classifier to extract water bodies. (2) Landsat 5 TM remote image data. In
Google Earth Engine (GEE), we screened images with cloud cover less than 5% for median
synthesis as the original dataset for water extraction. After generating random points, we
loaded Landsat 5 TM remote image data in GEE and deleted the sample points that were
inconsistent between the actual category and the sample category. (3) The Shuttle Radar
Topography Mission Digital Elevation Model (SRTM) [11] has a spatial resolution of 30 m
and is mainly used to generate slope datasets and assist in eliminating shadow noise.

3. Research Methods
3.1. New Water Extraction Method Uses Multiple Remote-Sensing Water Indices
3.1.1. New Water Extraction Method

A schematic of an analytical procedure of this research is shown in Figure 2. The
Landsat TM image dataset and DEM data on GEE were obtained, and the pixels such as
clouds, shadows, ice and snow in the image were removed. There are many mountain
shadows in the study area, and these shadows have large slopes. In this study, pixels with
a slope greater than 20◦ were removed to minimize the impact of mountain shadows on
water extraction. To eliminate the influence of ice and snow and some high-reflectivity
ground objects within the urban development area, the near-infrared band (NIR) was
selected to eliminate the high-reflectivity noise pixels with reflectivity greater than 0.2 [12].
In order to compare different methods, we evaluated the accuracy of water extraction
results of different methods and further processed the water extraction results to get
a small-water-distribution map on the Loess Plateau.
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Figure 2. Technical flow chart. RF, random forest; SVM, support vector machine; CLCD, China Land
Cover Dataset; NDWI, normalized difference water index; MNDWI, modified normalized differ-
ence water index; AWEIsh, automated water extraction index with shadows elimination; AWEInsh,
automated water extraction index with no shadows elimination.

3.1.2. Extraction of Small Water Body by a Single Remote-Sensing Index

The process of single-band threshold method for water extraction is as follows: spectral
values between water body and non-water body are analyzed to set band segmentation
threshold for water extraction. Those indices include the normalized difference water
index (NDWI) [13], the modified normalized difference water index (MNDWI) [14] and the
automated water extraction index (AWEI) [15]. The AWEI index consists of two indices: one
for images with no shadow (AWEInsh) and another for those with shadows from mountains,
buildings and clouds (AWEIsh) [15]. The calculation formula is shown in Table 1. The
single-band threshold method uses the minimum error threshold, entropy threshold or
Otsu [16] threshold segmentation method to extract the water body.

Table 1. Calculation formula of remote-sensing feature indices.

Name of Index Formula

NDVI NDVI = (NIR− Red)/(NIR + Red)
EVI EVI = 2.5 ∗ ((NIR− Red)/(NIR + 6 ∗ Red− 7.5 ∗ Blue + 1))

NDWI NDWI = (Green− NIR)/(Green + NIR)
MNDWI MNDWI = (Green− SWIR1)/(Green + SWIR1)

AWEI AWEIsh = Blue + 2.5 ∗ Green− 1.5 ∗ (NIR + SWIR1)− (0.25 ∗ SWIR2)
AWEInsh = 4 ∗ (Green− SWIR1)− (0.25 ∗ NIR + 2.75 ∗ SWIR2)

Note: Blue, Green, Red, NIR, SWIR1 and SWIR2 are the blue band, green band, red band, near-red band, SWIR1
band and SWIR2 band of Landsat5, respectively.

In the process of remote-sensing-image classification, the accuracy and typicality of
sample selection directly affects classification accuracy. Therefore, a stratified sampling
method was adopted in this study, and sample selection was carried out in accordance with
the principles of sample quantity requirements, sample representativeness and difference.
In this study, it was stratified random sampling generated from the 2010 China’s land cover
dataset (CLCD) [10]. A Landsat5 TM image was used, including a total of 21,725 water
body sample points and 51,485 non-water body sample points (1807 impervious sample
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points, 871 snow points, 6762 forest points, 14,797 cultivated points, 2095 bare points, and
25,153 grassland points). We calculated the NDWI, MNDWI and AWEI and determined
the threshold where the density of water bodies and non-water bodies intersected.

3.1.3. Multi-Exponential Fusion Threshold Segmentation for Small Water Body Extraction

Single-exponential segmentation often has low accuracy in water body identification
because it is difficult to determine the ideal segmentation threshold. Dong found that
water extraction rules built according to the relationship between the water body index
and vegetation index could extract a water body better [17]. Researchers first calculated the
MNDWI, enhanced vegetation index (EVI) [7] and normalized difference vegetation index
(NDVI) [18] values of each pixel in the study area and then constructed water extraction
rules of MNDWI > EVI or MNDWI > NDVI according to the spectral index distribution of
sample points. This rule classifies pixels whose water signals are stronger than vegetation
signals as water bodies. Deng [19] drew a scatter density map between the water body
index and the vegetation index and found that water body pixels and non-water body
pixels can be distinguished by constructing a threshold segmentation rule for multiple
remote-sensing indices. Based on the above studies, this study firstly calculated the AWEI,
MNDWI, EVI and NDVI values of samples, then found the distribution rules between water
and non-water in different indices by drawing the scatter density of water and non-water
sample points and finally determined the extraction rules of small water bodies on the
Loess Plateau.

3.2. Classification Method to Extract Small Water Bodies
3.2.1. Selection of Input Data

The Loess Plateau land cover is classified into seven types: impermeable surface
(including buildings, roads, mountains, abandoned land, etc.), farmland, bare land, forest
land, grassland, snow and water body. There are seven bands in the Landsat5 image, as
shown in Table 2. The Blue band is more sensitive to water bodies, the green band has
higher reflectivity in surface water bodies, the red band is often used to distinguish the types
of man-made features and the NIR band has the highest reflectivity in non-water bodies.
This is a theoretical basis for construct vegetation indices and water body indices [13–15].
The SWIR1 band can be used to detect plant water content and soil humidity, and LWIR
can be used to detect land surface temperature. The SWIR2 band can be used to detect
hydrothermal altered rocks associated with mineral deposits. To improve the classification
accuracy, we added all seven bands to the feature dataset. The classifier could easily confuse
a water body and a shadow, and the slope of a shadow is generally larger than that of
a water body [20]. Therefore, the slope data was selected for the input dataset.

Table 2. Landsat5 band information. The source of band information is: https://www.usgs.gov/
landsat-missions/landsat-5 (accessed on 6 January 2023).

Band Index Band Name Wavelength (µm) Resolution (m)

Band-1 Blue 0.45–0.52 30
Band-2 Green 0.52–0.60 30
Band-3 Red 0.63–0.69 30
Band-4 NIR 0.76–0.90 30
Band-5 SWIR1 1.55–1.75 30
Band-6 LWIR 10.40–12.50 120
Band-7 SWIR2 2.08–2.35 30

The vegetation index can enhance vegetation information, and the water body index
can identify water body information. Adding the vegetation and water body indices to
the feature dataset helps a classifier identify objects better [14,19]. In order to compare the
effects of adding remote-sensing indices (MNDWI, EVI, NDVI and AWEI) on the classifica-

https://www.usgs.gov/landsat-missions/landsat-5
https://www.usgs.gov/landsat-missions/landsat-5
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tion of water bodies, we designed two sets of experiments, without indices and with indices,
to explore whether adding these index features could improve the classification accuracy.

3.2.2. Classifier Selection

RF was developed by Breiman [21]. It uses bagging and feature randomness when
building each individual tree to try to create an uncorrelated forest of trees whose prediction
by committee is more accurate than that of any individual tree. The RF algorithm can
improve the accuracy and generalization performance of the model by selecting different
training samples and different features. It is fast in training and classification, can effectively
process large amounts of data and has strong anti-noise ability. It is widely used in the
field of remote-sensing image recognition and classification [22,23]. In this study, RF
classifiers were trained in our application, increasing the number of trees from time to time
(from 1 to 100) [24]. By analyzing the change in overall accuracy, we determined that the
number of trees parameter was better set to 40. The other parameters of the RF model
remained default.

SVM was developed by Cortes et al. [25]. SVM is a linear model for classification and
regression problems. It can solve linear and nonlinear problems and work well for many
practical problems. Zhang et al. proposed a posterior probabilistic SVM method [9] that
uses five water-sensitive Landsat OLI bands and topographic indices as inputs to map river
water bodies. Experiments show that water bodies extraction with this method is highly
precise. The SVM classifier can consider the spectral, spatial and texture features of water
for small water bodies’ extraction. In this study, we chose RBF as the kernel function type
of the SVM model, because this kernel function is relatively stable. The values of gamma
and cost of the SVM model were selected by an experimental trial method [24]. The SVM
parameters we finally determined were Gamma = 10 and Cost = 25, and other parameters
remained default.

3.3. Evaluation Method

To evaluate the results of different methods, we randomly selected 831 river sample
points, 557 lake sample points, 790 reservoir sample points, 836 small water sample points,
1306 shadow sample points and 865 snow sample points in the study area as the test dataset.
Finally, we used these sample points to calculate different indicators of different models.
We chose user’s accuracy (UA), producer accuracy (PA), overall accuracy (OA), Kappa
accuracy (Kappa) and small water extraction rate (SWER) as the evaluation index of the
different methods. UA is defined as the probability of taking a random sample from the
classification results, whose type can indeed represent the actual class. PA is defined as
the probability that the actual sample is correctly classified. OA is the ratio between the
number of correctly classified samples and the total number of samples. Kappa is used for
the consistency test and can also be used to measure classification accuracy. SWER is the
ratio of the correctly extracted small water bodies to the total small water bodies, which
reflects the completeness of the extracted small water bodies.

4. Result
4.1. Small Water Extraction Based on Remote-Sensing Index
4.1.1. Determination of Remote-Sensing Index Segmentation Threshold

To explore the water index segmentation threshold, the remote-sensing indices of
training sample points were calculated, and a density map is shown (Figure 3). We only
extracted water bodies; non-water bodies were uniformly classified into others.

The peaks of water bodies and non-water bodies were significantly different (Figure 3).
Most water information could be separated by NDWI, AWEIsh and AWEInsh, but there were
overlapping pixels between water bodies and non-water bodies at the threshold segmenta-
tion. By comparison, the MNDWI method had good separability. There were few overlap-
ping areas between water bodies and others. Finally, the segmentation thresholds of NDWI,
MNDWI, AWEIsh and AWEInsh methods were −0.16, −0.12, −0.09, −0.35, respectively.
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Based on the algorithm proposed by Zou et al. [26] and Deng et al. [19], this study
firstly calculated the remote-sensing index of sample points, drew the scatter density map
of water and non-water bodies (Figure 4) and determined the segmentation threshold
according to the scatter density map.
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Training samples are concentrated in the first quadrant separated by the red dotted
line, and the non-water body samples are concentrated in the third quadrant (Figure 4). The
method misidentified 4.69% of water bodies as non-water bodies and 3.97% of non-water
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bodies as water bodies. To remove misclassified non-water bodies from water bodies, we
used the AWEI index for threshold segmentation. To compare the differences between
water bodies and other ground objects in the AWEIsh and AWEInsh, we drew a box plot
(Figure 5). Except for snow, water bodies had good separability from other ground objects.
When AWEIsh > −0.15 and AWEInsh > −0.52 were satisfied, the MFTSA method had
a good effect on suppressing mixed-pixel and shadow noise. Finally, the MFTSA method
((AWEIsh > −0.15 and AWEInsh > −0.52) and (AWEInsh − AWEIsh) > −0.18 and (MNDWI-
EVI > −0.25 or MNDWI-NDVI > −0.25)) was used to make a small-water-bodies map
based on Landsat TM5 data of the Loess Plateau.
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4.1.2. Analysis of Results of Small Water Bodies Extracted by Remote-Sensing
Index Method

To compare the effects of different remote-sensing index methods in extracting small
water bodies, five methods, namely NDVI, NDWI, MNDWI, AWEIsh, AWEInsh and
MFTSA, were used to extract water bodies on the Loess Plateau. Three typical areas
were selected that included small water bodies to display the extraction results in detail
(Figure 6).
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Figure 6. The comparison of results of different water extraction algorithms. (a) Ditch study area;
(b,c) pond study areas.

Study area (a) was a small ditch of uniform width. As shown in Figure 6, the MNDWI
and AWEIsh methods identified some non-water pixels as water pixels around the ditch,
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and the two methods identified different ditch widths. By contrast, other methods could
identify water body information more accurately. Study areas (b) and (c) were ponds. The
NDWI, MNDWI, AWEIsh and AWEInsh had difficulties identifying the boundary between
ponds, which led to fuzzy boundaries of ponds in the identification result. However, the
MFTSA method showed clear pond boundaries and complete extraction of small water
bodies. To quantitatively evaluate the influence of different remote-sensing indexes on
small-water-bodies extraction, experimental datasets were used in this study to evaluate
the accuracy of different methods. The correct extraction results and accuracy of different
methods on the test dataset are shown in Tables 3 and 4, respectively.

Table 3. Analysis of different threshold segmentation methods’ results.

Classes\Methods All NDWI MNDWI AWEIsh AWEInsh MFTSA

River 831 595 869 868 844 862
Lakes 557 502 551 541 521 549

Reservoir 790 699 763 755 686 762
Small water 836 573 773 737 537 776

Shadow 1306 1293 1280 1254 1294 1292
Snow 865 878 857 882 887 877

Table 4. Analysis of different threshold segmentation methods’ accuracy.

Methods\Accuracy PA (%) UA (%) OA (%) Kappa SWER (%)

NDWI 78.60 98.75 87.06 0.74 68.54
MNDWI 98.08 97.88 97.66 0.95 92.46
AWEIsh 96.25 97.81 96.59 0.93 88.16
AWEInsh 85.87 99.23 91.45 0.83 64.23
MFTSA 97.84 98.93 98.14 0.96 92.82

As shown in Table 3, NDWI could suppress snow and mountain shadow information
and highlight water body features. However, only 69% of small water bodies were extracted
by the NDWI method, and the OA index was only 87%. The MNDWI method suppressed
residential and soil noise well, highlighted water body information and rarely leaked
water bodies. The integrity of the MNDWI method in extracting large and small water
bodies was high, and the SWER of this method was up to 92%. However, this method
was easily affected by shadow, snow and mixed pixels, so it recognized non-water bodies
such as snow, shadows, sediment and pond stalks as water bodies, which resulted in fuzzy
boundaries of some water bodies in the identification results (Figure 6). The extraction
effect of MNDWI was better in the relatively flat area in the middle part of the Loess
Plateau, but it was less effective for the complex terrain. The method based on AWEIsh
could remove hill shadow noise, but it had poor accuracy on urban impervious surface and
some water pixels. The extraction accuracy of AWEIsh was good for large water bodies
such as rivers, lakes and reservoirs but not ideal for small water bodies. The method based
on AWEInsh could effectively eliminate dark buildings in urban background areas and
non-water pixels such as snow, but this method missed more small water pixels. Although
the UA index of this method was higher, the SWER index was only 64%. Among all the
methods, the AWEInsh method had the lowest SWER index because it removed a part of
the water bodies when removing background noise, which is consistent with the research
results of Jiang et al. [3]. Small water bodies extracted by the MFTSA method had high
integrity and clear boundaries (Figure 6), and there was better removal of shadow noise.
Among all the methods, this method had the highest OA and SWER index.
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4.2. Extraction of Small Water Bodies Based on Machine Learning Algorithms
4.2.1. Analysis of RF and SVM Accuracy for Extracted Small Water Bodies

In this study, 73,210 samples were randomly divided into the training dataset and test
dataset according to an 8:2 ratio. RF and SVM were used to train and test the dataset. The
accuracy of different models is shown in Figure 7.
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In Figure 7, RF_NoVI is the classification result obtained by using original Landsat5
bands and the slope band as the input dataset to train the RF model. RF is the classi-
fication result of adding NDVI, NDWI, MNDWI, AWEIsh and AWEInsh features to the
original feature dataset. After adding those remote-sensing indices, the overall accuracy
and Kappa accuracy of SVM and RF were improved. It can be seen that adding those
indices could significantly improve the classification accuracy of water bodies. The feature
importance of the RF model (Figure 8) indicated that Slope, EVI and Blue bands had higher
feature importance.
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As shown in Figure 8, the importance of Slope, EVI and Blue features was relatively
high, which was mainly related to samples. The top three samples in the dataset were
grassland, water and cultivated land. The three land cover types were all sensitive to
slope, while grassland and cultivated land were sensitive to EVI, and the blue band
was sensitive to water bodies. Therefore, the Slope, EVI, and Blue features were more
important. Although AWEInsh was sensitive to water bodies, it was difficult for this index
to distinguish grasslands, woodlands and cultivated land, so the importance of features
was relatively low.

4.2.2. Analysis of Extraction Results of Different Classification Methods

Three typical study areas including small water bodies were selected for comparative
analysis on the classification results of machine learning. The extraction results of the three
typical study areas are shown in Figure 9.
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area; (b,c) study areas for aquaculture water bodies and pond water bodies.

Study area (a) was a small ditch. The ditch was very narrow, occupying only about
one or two pixels on the image. Before the addition of exponential features, RF mistakenly
extracted many non-water pixels. After the addition of exponential features, the mistakenly
extracted non-water pixels decreased, and the addition of exponential features could
significantly improve the accuracy of small water bodies’ extraction (Figure 9). The water
pixels were relatively continuous in the results of SVM extraction, but there were many
wrongly extracted pixels beside the ditch. The water body was discontinuous in the results
of RF extraction, and a lot of water pixels were missed. Adding remote-sensing index
features greatly improved the accuracy of RF extraction ditches but had little effect on SVM
extraction of water. The water bodies in (b) and (c) were aquaculture water and pond water.
For aquaculture water and pond water, SVM extraction results showed that the water
bodies were relatively complete, with clear boundaries, but the rate of false extraction was
high. The main reason was that SVM recognized the soil pixel with high humidity as the
water pixel. On the whole, the integrity of water extracted by SVM was better, but the false
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extraction rate was higher. The integrity of water extracted by RF was not as good as that
of SVM, but the correct rate of extraction results was higher, which was consistent with
the higher OA of RF in the test dataset and the lower SWER. The results and accuracy of
different methods in the test dataset are shown in Tables 5 and 6.

Table 5. The extraction results of different classification methods.

Classes\Methods All SVM_NoVI SVM RF_NoVI RF

River 831 796 799 805 806
Lakes 557 522 535 544 550

Reservoir 790 676 727 729 745
Small water 836 755 759 736 718

Shadow 1306 1201 1135 1154 1196
Snow 865 880 884 885 877

Table 6. Extraction accuracy analysis of different classification methods.

Methods\Accuracy PA (%) UA (%) OA (%) Kappa SWER (%)

SVM_NoVI 91.21 95.82 92.62 0.85 90.31
SVM 93.56 93.94 92.79 0.85 90.79

RF_NoVI 93.36 94.56 93.06 0.86 88.04
RF 93.53 95.66 93.81 0.87 85.89

The OA index of the RF model was 1.02% higher than that of the SVM model. For the
SWER index, the RF model was 4.9% lower than the SVM model. The main reason was
that RF had a poor effect on small water bodies’ extraction for water boundary confusion
pixels. The integrity of small water bodies extracted by SVM was relatively good, but many
building shadows, mountain shadows and pond straws were extracted incorrectly. After
adding index features, the UA of SVM decreased by 1.64%, the SWER of RF decreased by
2.15%, and all other indicators improved. The reason was that the added index feature
was more capable of distinguishing vegetation and water bodies than the original feature
dataset, but the ability to distinguish other categories was not as good as the original band,
and the remote-sensing index features interfered with the classification.

4.3. Verification of Extraction Results by Different Methods

Due to the abnormal value of the image pixels, the water body extraction result
inevitably has a small range of noise. Therefore, it was necessary to further process the
extraction results to get the final result. Firstly, the water extraction results were converted
from the raster format to the vector format, and then the Aggregate Polygon operation was
carried out in ArcgisPro2.5. The reason for executing the Aggregate Polygon operation
was that in the conversion process of water extraction results, some water bodies were
divided into several small water bodies, which needed to be aggregated into one water
element. We set the Aggregation Distance to 60 m, and then multiple water elements with
a distance of less than 60 m were aggregated into one water element. Due to the limitation
of image resolution, it was difficult to identify particularly small water bodies (<100 m2),
so these water bodies were not included in the statistics. In the aggregation operation, Min
Area and Min Hole Size were set to 100 m2, bodies of water less than 100 m2 in area were
removed, and holes less than 100 m2 between vector bodies of water were filled as bodies
of water. In order to compare the effects of different methods for extracting small water
bodies, four regions (small rivers, aquaculture water, small urban reservoirs and small
ponds in mountainous areas) were selected for comparative analysis.

Because of image resolution limitations, small rivers show small and narrow spatial
characteristics on the image. Mixed pixels interfere with the extraction process of small
rivers, resulting in discontinuity of the extracted river water. As shown in Figure 10, the RF
method was not as good as the SVM method for the classification of mixed pixels, and the
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water body was missing in the red frame, while the SVM extraction result was relatively
complete. The AWEInsh method misidentified many non-water bodies pixels, and the main
ones were terrain shadows. AWEIsh had good results in removing topographic factors,
but the identification of water bodies was incomplete. The main reason is that the AWEIsh
method can remove shadows, which is suitable for areas where shadows are the main
noise, and AWEInsh method can effectively eliminate non-water pixels on dark building
surfaces and is suitable for scenes where shadows are not the main noise [15]. The water
body information extracted by MNDWI is also mixed with a lot of shadow noise.
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box shows where the extraction went wrong).

The area of aquaculture water is small, and its shape is generally rectangular. The
nutrient level of aquaculture water has a certain impact on the spectral characteristics
of a water body. There are generally pond ridges between different aquaculture water
surfaces. The SVM method was not complete in extracting water bodies. The main missing
locations were mostly located at the edge of the pond, which were mainly mixed pixels of
water and non-water bodies (Figure 11). The water body extracted by SVM was complete,
but the error rate of extraction rate was high. Not only the ridge of the pond but also
the road next to the pond (inside the red frame) was identified as a body of water. In the
red box of MNDWI extraction results, there were two slender aquaculture ponds with a
pond boundary between the ponds. The MNDWI method identified the pond boundary
as a water body and two small ponds as large ponds. In the red box, the body of water
in the pond was not visible. In the identification of water bodies, some pond ridges were
identified as water bodies, and the boundary between ponds was blurred. In contrast, the
NDWI method and the MFTSA method had no missing extraction, and the water surface
boundaries of different ponds were clear.

In urban areas, artificial building information is the dominant background information.
The reflection of buildings is strong, while the reflection of water bodies is weak (Figure 12).
Therefore, large background buildings and building shadows strongly interfere with water
body extraction. The SVM method extracts water bodies incompletely. SVM seldom
misses water bodies’ pixels in other scenes, but it misses water bodies in small urban
reservoirs. The main reason is that small water bodies in cities appear black, and the
spectral characteristics of water bodies in other places are not consistent. NDWI, MNDWI,
AWEIsh and AWEInsh are relatively complete in extracting water bodies, but there are
varying degrees of false extractions. Therefore, the RF and MFTSA methods are better in
the identification of small urban water bodies.
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There are hill shadows between mountains. Although we used slope information
to remove the hill shadows, it could only remove the hill shadows on the larger slopes.
In some mountainous areas with smaller slopes, the effect of removing hill shadows was
not good enough. As shown in Figure 13, the extraction results of the RF method leaked
a part of the water body in the red frame, resulting in holes in the pond; SVM, MNDWI
and AWEInsh recognized some mountain shadows as water bodies, and AWEInsh had the
most serious misrecognition phenomenon, mainly because the index was suited for scenes
without shadows. AWEIsh eliminates shadow pixels that are easy to confuse with water
bodies in the result of AWEInsh, so the effect of extracting water bodies is better. On the
whole, the NDWI, AWEIsh and MFTSA methods were better in extracting small water
bodies in mountainous areas.
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4.4. Spatial Distribution of Small Water Bodies on the Loess Plateau and Overall
Accuracy Analysis
4.4.1. Spatial Distribution of Small Water Bodies on the Loess Plateau

The MFTSA method extracted a total of 71,592 water bodies on the Loess Plateau, with
an area of 2921 km2 (Figure 14). The water bodies were mainly the Yellow River and other
rivers, and the small water bodies were mainly distributed near the rivers and human
living environments on the Loess Plateau.
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4.4.2. Overall Accuracy Analysis of Small Water Bodies’ Extraction in Loess Plateau

Water bodies that are easily misidentified as non-water bodies include water bodies
with large amounts of mud and sand, small ditches and some ponds on the Loess Plateau.
The Yellow River has a high sediment content, and sediment accumulation occurs in some
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rivers. The spectral reflectance of water body pixels was weakened, and it was easy to miss
the extraction and make the river interrupted in the extraction results.

Among all the methods, the RF, NDWI and AWEInsh methods had more serious
leakages of small water bodies. The main objects of misidentification of small water
bodies included terrain shadows, building shadows, dark impermeable surfaces and pond
boundaries. Among all methods, the SVM, NDWI, MNDWI and AWEInsh methods had
more misidentifications. The MFTSA method was better in removing mountain shadow
and urban shadow noise while ensuring the integrity of water bodies, and the boundary of
the extracted water body was clear. Statistics on water body results of the Loess Plateau
extracted by the MFTSA are shown in Table 7.

Table 7. Statistics of MFTSA water extraction results.

Type of Water Body Class of Area (km2) Number Area (km2)

Small water
0.001~0.01 60,152 217.06
0.01~0.05 8483 176.49
0.05~0.1 1265 88.56

Others >0.1 1692 2439.12
Total 71,592 2921.23

The number of small water bodies in the Loess Plateau is 69,900, accounting for 97.63%
of the total number of water bodies, but the area of small water bodies is small, accounting
for only 16.50% of the total water body area. Among the three grades of small water bodies,
the number of water bodies with an area range of 0.001–0.01 km2 accounts for 86.05% of the
total small water bodies, and its area accounts for 45.02% of the total small water bodies.
The water area in 0.001–0.01 km2 is mainly reservoirs, aquaculture and small puddles
formed after the river stopped flowing.

5. Discussion

The new water extraction method developed in this paper is helpful to improve the
accuracy of surface small water bodies’ mapping. However, the MFTSA method also has
some limitations. For example, excessive nutrition of water bodies in aquaculture ponds or
partial artificial facilities in ponds leads to spectral abnormalities of water bodies. For such
water bodies, the extraction accuracy of MFTSA was poor, and some water pixels were not
correctly extracted (Figure 11).

The Loess Plateau is mountainous, and the terrain is undulating. The use of remote-
sensing methods is significantly affected by the terrain. Shadows restrict the accuracy of
remote-sensing extraction of surface parameters. However, the MFTSA method can inhibit
the mountain shadow and snow to a certain extent but cannot eliminate it. In the results
of water extraction, there are still cases of misidentifying mountain shadows and snow as
water bodies. It is difficult for different water index methods to eliminate the influence of
mountain shadows and snow [10,19].

In addition, the selection of the threshold value of MFTSA methods is closely related
to the land cover types, so the MFTSA methods are only applicable to the extraction of fine
water bodies on the Loess Plateau, and the effect of extraction of small water bodies in other
places may not be good. AWEI methods can be applied to surface water mapping in various
environments [15]. Using deep learning to extract water can solve the problem of limited
application scenarios of the model. Deep learning uses information fusion technology
and a variety of networks to construct a water extraction model [27]. The deep learning
method has a large demand for samples and a high requirement for sample quality. It takes
a lot of time to make small-water-sample datasets. Moreover, the deep learning training
model takes a long time and has high requirements for computer hardware [28]. Therefore,
deep learning is suitable for extracting water in a small range from high-resolution remote-
sensing images. The MFTSA method has small sample requirements, simple calculations
and easy implementation, and is suitable for large-scale extraction of small water bodies.
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6. Conclusions

This study takes the Loess Plateau with complex terrain as the research area and
develops a multi-index fusion threshold segmentation algorithm (MFTSA) for a large-scale
small water body extraction algorithm based on GEE (Google Earth Engine). The MFTSA
uses AWEI, MNDWI, NDVI and EVI for multi-index synergy to extract small water bodies.
It also uses NIR band reflectance and slope data generated by the SRTM digital elevation
model to eliminate suppressing high-reflectivity noise and shadow noise. An MFTSA
algorithm was developed and the results showed that:

(1) It had high accuracy: the overall accuracy was 98.14% in the Loess Plateau, and the
ratio of correctly extracted small water bodies was 92.82%.

(2) Compared with traditional water index methods and the classification method, the
MFTSA algorithm could extract small water with higher integrity and clearer and
more accurate boundaries.

(3) The MFTSA algorithm was used to extract a total of 69,900 small water bodies in
the Loess Plateau, accounting for 97.63% of the total water bodies, and the area was
482.11 km2, accounting for 16.50% of the total water bodies.

The MFTSA method can be used to reflect the location and area information of small
water bodies in the Loess Plateau, monitor the change characteristics of small water bodies,
and reveal the temporal and spatial evolution of water bodies in the Loess Plateau. The
MFTSA method can provide scientific reference for the ecological protection of the Loess
Plateau and the sustainable utilization of regional water resources.

Author Contributions: Conceptualization: X.W. and C.W.; writing—original draft: J.G. and Y.Z.;
writing—review and editing: X.W., C.W., J.G., B.L. and K.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was funded by the National Key Research and Development Program of China
(2022YFF1300801) and the National Natural Science Foundation of China (U2243240, 42207396).

Data Availability Statement: This work also used the Landsat TM data acquired by the https:
//www.usgs.gov/ (accessed on 6 January 2023).

Acknowledgments: We gratefully acknowledged constructive suggestions by two anonymous re-
viewers and the editor, which helped improve the quality of manuscript greatly.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Biggs, J.; von Fumetti, S.; Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services:

Implications for policy makers. Hydrobiology 2017, 793, 3–39. [CrossRef]
2. Golden, H.E.; Rajib, A.; Lane, C.R.; Christensen, J.R.; Wu, Q.S.; Mengistu, S. Non-floodplain wetlands affect watershed nutrient

dynamics: A critical review. Environ. Sci. Technol. 2019, 53, 7203–7214. [CrossRef] [PubMed]
3. Jiang, H.; Feng, M.; Zhu, Y.Q.; Lu, N.; Huang, J.X.; Xiao, T. An automated method for Extracting Rivers and Lakes from Landsat

Imagery. Remote Sens. 2014, 6, 5067–5089. [CrossRef]
4. Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic thresholds for the normalized difference water index. Photogramm. Eng. Remote

Sens. 2009, 75, 1307–1317. [CrossRef]
5. Jain, S.K.; Singh, R.D.; Jain, M.K.; Lohani, A.K. Delineation of flood-prone areas using remote sensing techniques. Water Resour.

Manag. 2005, 19, 333–347. [CrossRef]
6. Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia.

Remote Sens. Environ. 2016, 175, 167–182. [CrossRef]
7. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance

of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]
8. Aung, E.M.M.; Tint, T. Ayeyarwady river regions detection and extraction system from Google Earth imagery. In Proceedings

of the 2018 IEEE International Conference on Information Communication and Signal Processing (ICICSP), Singapore, 28–30
September 2018; pp. 74–78.

9. Liu, Q.H.; Huang, C.; Shi, Z.L.; Zhang, S.Q. Probabilistic river water mapping from Landsat-8 using the support vector machine
method. Remote Sens. 2020, 12, 1374. [CrossRef]

https://www.usgs.gov/
https://www.usgs.gov/
http://doi.org/10.1007/s10750-016-3007-0
http://doi.org/10.1021/acs.est.8b07270
http://www.ncbi.nlm.nih.gov/pubmed/31244063
http://doi.org/10.3390/rs6065067
http://doi.org/10.14358/PERS.75.11.1307
http://doi.org/10.1007/s11269-005-3281-5
http://doi.org/10.1016/j.rse.2015.12.055
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.3390/rs12091374


Water 2023, 15, 866 18 of 18

10. Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13,
3907–3925. [CrossRef]

11. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The
shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [CrossRef]

12. Li, Y.; Niu, Z.G.; Xu, Z.Y.; Yan, X. Construction of high spatial-temporal water body dataset in China based on Sentinel-1 archives
and GEE. Remote Sens. 2020, 12, 2413. [CrossRef]

13. McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Inter. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

14. Xu, H.Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.
Inter. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

15. Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated water extraction index: A new technique for surface water mapping
using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [CrossRef]

16. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
17. Dong, J.W.; Xiao, X.M.; Kou, W.L.; Qin, Y.W.; Zhang, G.L.; Li, L.; Jin, C.; Zhou, Y.T.; Wang, J.; Biradar, C.; et al. Tracking the

dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms. Remote
Sens. Environ. 2015, 160, 99–113. [CrossRef]

18. Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Third Earth Resources Technology Satellite-1 Symposium: The Proceedings
of a Symposium Held by Goddard Space Flight Center at Washington, DC on 10–14 December 1973: Prepared at Goddard Space Flight
Center; Scientific and Technical Information Office, National Aeronautics and Space Administration: Washington, DC, USA, 1974;
Volume 351, p. 309.

19. Deng, Y.; Jiang, W.G.; Tang, Z.H.; Ling, Z.Y.; Wu, Z.F. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River
Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [CrossRef]

20. Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah
Univ. Sci. 2017, 11, 381–391. [CrossRef]

21. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
22. Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogram.

Remote Sens. 2016, 114, 24–31. [CrossRef]
23. Corcoran, J.M.; Knight, J.F.; Gallant, A.L. Influence of multi-source and multi-temporal remotely sensed and ancillary data on the

accuracy of random forest classification of Wetlands in Northern Minnesota. Remote Sens. 2013, 5, 3212–3238. [CrossRef]
24. Zhou, L.; Luo, T.; Du, M.; Qiang, C.; Yang, L.; Yinuo, Z.; Congcong, H.; Siyu, W.; Kun, Y. Machine learning comparison and

parameter setting methods for the detection of dump sites for construction and demolition waste using the google earth engine.
Remote Sens. 2021, 13, 787. [CrossRef]

25. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
26. Zou, Z.H.; Xiao, X.M.; Dong, J.W.; Qin, Y.W.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.L.; Wang, J. Divergent trends of

open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815.
[CrossRef]

27. Chen, Y.; Fan, R.S.; Yang, X.C.; Wang, J.X.; Latif, A. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing
Imagery Using Deep Learning. Water 2018, 10, 585. [CrossRef]

28. Li, Y.S.; Dang, B.; Zhang, Y.J.; Du, Z.H. Water body classification from high-resolution optical remote sensing imagery: Achieve-
ments and perspectives. ISPRS J. Photogramm. Remote Sens. 2022, 187, 306–327. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.5194/essd-13-3907-2021
http://doi.org/10.1029/2005RG000183
http://doi.org/10.3390/rs12152413
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1080/01431160600589179
http://doi.org/10.1016/j.rse.2013.08.029
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1016/j.rse.2015.01.004
http://doi.org/10.3390/rs11192213
http://doi.org/10.1016/j.jtusci.2016.04.005
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.isprsjprs.2016.01.011
http://doi.org/10.3390/rs5073212
http://doi.org/10.3390/rs13040787
http://doi.org/10.1007/BF00994018
http://doi.org/10.1073/pnas.1719275115
http://doi.org/10.3390/w10050585
http://doi.org/10.1016/j.isprsjprs.2022.03.013

	Introduction 
	Study Area and Data Source 
	Study Area 
	Data Source 

	Research Methods 
	New Water Extraction Method Uses Multiple Remote-Sensing Water Indices 
	New Water Extraction Method 
	Extraction of Small Water Body by a Single Remote-Sensing Index 
	Multi-Exponential Fusion Threshold Segmentation for Small Water Body Extraction 

	Classification Method to Extract Small Water Bodies 
	Selection of Input Data 
	Classifier Selection 

	Evaluation Method 

	Result 
	Small Water Extraction Based on Remote-Sensing Index 
	Determination of Remote-Sensing Index Segmentation Threshold 
	Analysis of Results of Small Water Bodies Extracted by Remote-Sensing Index Method 

	Extraction of Small Water Bodies Based on Machine Learning Algorithms 
	Analysis of RF and SVM Accuracy for Extracted Small Water Bodies 
	Analysis of Extraction Results of Different Classification Methods 

	Verification of Extraction Results by Different Methods 
	Spatial Distribution of Small Water Bodies on the Loess Plateau and Overall Accuracy Analysis 
	Spatial Distribution of Small Water Bodies on the Loess Plateau 
	Overall Accuracy Analysis of Small Water Bodies’ Extraction in Loess Plateau 


	Discussion 
	Conclusions 
	References

