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Abstract: Spontaneous capillary imbibition in rocks is fundamental to numerous geomorphological
processes and has caused numerous engineering problems. Sedimentary rocks are widely distributed
across the Earth’s surface and usually bear layer structures that make the pore structure anisotropic.
Understanding the effects of the anisotropic pore structure on capillary imbibition in sedimentary
rocks is crucially important but remains inadequate, especially on larger scales than a single tube.
In this study, the capillary imbibition process in sandstone was monitored by measuring the water
absorption mass, height of the water absorption front, NMR (nuclear magnetic resonance) T2 spectra,
and stratified moisture distribution. The results demonstrate that (1) the layer structure had a
significant effect on the capillary imbibition process by altering water absorption rate and water
redistribution mode, as the time of the water front reaching the top of Sample A1 lagged behind
Sample A2 by 500 min; (2) vapor diffusion and condensation occurred ahead of the water-absorption
front, which was more obvious in samples with well-developed beddings; (3) in sandstone samples
with bedding planes perpendicular to the height (Per samples), internal water migration lagged
behind superficial water migration and was longer in sandstones with well-developed beddings,
such as the case of Sample A2, for which the time lag was as large as 280min. Based on a combination
of observations of the sandstone structure at pore scale and layer scale with results calculated from
the Lucas–Washburn equation, we propose the concept of the representative pore-structure element
(RPE). Based on analysis on water migration in RPEs, we suggest that the effects of the layer structure
on capillary imbibition in sandstone are embedded in the different water migration modes in Par

(samples with bedding planes parallel to the height) and Per samples. The water migration mode
in Par samples can be simplified as primary upward intra-layer migration followed by intra-layer
horizontal migration, while that in Per samples is primary intra-layer horizontal migration followed
by intra-layer upward migration.

Keywords: layered sandstone; nuclear magnetic resonance; vapor diffusion and condensation;
representative pore-structure element

1. Introduction

Spontaneous capillary imbibition in porous materials (e.g., rock, soil, concrete) oc-
curs widely in nature and engineering. It is a key influence on several geomorphological
processes, such as the wet–dry weathering of rocks [1–9] and the formation of vadose
zones [10–15], and also induces many geological engineering problems, such as the de-
terioration of building materials [16–18] and the weathering of cultural relics [19–26].
Sedimentary rocks are a typical porous material that is widely distributed across the Earth’s
surface. They are often used as building materials and are major material sources of weath-
ering. The pore system in sedimentary rocks is primarily featured by the layer structure,
which may cause anisotropy in the capillary imbibition process.
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There has been plentiful research on capillary water migration in rocks, mainly fo-
cusing on the effects of liquid properties (salt content, viscosity, pH, et al.) [27–29], pore
structure (size, shape, connectivity) [30–35], and environmental conditions (temperature,
humidity) [36–38] on the capillary imbibition process. The influence of pore structure on
capillary imbibition is particularly important and has received much research attention. The
Young–Laplace equation explains the source of capillary suction; i.e., the surface tension
causes the liquid surface to bend, thus creating a pressure difference that allows the liquid
to rise [39]. Bell and Cameron [40] found the proportional relationship between water mi-
gration height and square root of time. Based on the Young–Laplace and Hagen–Poiseuille
equations, Lucas [41] and Washburn [42] proposed the Lucas–Washburn (LW) equation,
which describes the capillary water migration process while considering the influence
of the capillary radius. The LW equation assumes that the section of a capillary tube is
uniform and circular, which is different from the actual situation, generating disagreements
between the predicted results and the experimental ones. Therefore, many scholars have
sought to improve the LW equation by considering the geometrical features of capillary
pores [43–48]. These features include changes in the cross-sectional area [49–51], branching
and intersection of pores [52], and tortuosity [53,54]. Some scholars introduced the fractal
theory to describe the tortuousness of capillaries [55,56]. As an alternative, Lundblad and
Bergman (1997) [57] proposed that the complex effects of geometrical features of capillaries
can be equalized by employing an effective radius, so that the capillary imbibition equation
stays as simple as the LW law.

These studies deepen the understanding of capillary imbibition process; however,
these classic models provide primarily one-dimensional (1D) solutions, which ignores the
effect of capillary interactions in pore networks. Recently, more attention has been paid to
water migration in two- or three-dimensional (2D or 3D) capillary networks [58]. Among
them, one of the most fundamental studies was on the capillary competition phenomenon
of a Y-shaped bifurcation [59]. Despite these attempts, capillary imbibition in rocks with
anisotropic pore network can still not be predicted perfectly. Anisotropy is an inherent
attribute of the pore structure in layered rocks and is characterized by the significant
difference in pore radius and connectivity along the bedding and perpendicular to the
bedding, as well as between adjacent layers [60,61]. Therefore, capillary imbibition in
layered rocks should be studied at a scale larger than one single tube or one Y-shaped
bifurcation. Still, research on the capillary imbibition in layered rocks at larger scales
is inadequate, and the way that the layer structure modifies capillary water migration
remains uncertain.

In addition, the capillary imbibition in rock pores should be related to water vapor
adsorption and condensation as well, whose effects are commonly neglected. The move-
ment of water vapor is mainly affected by the relative humidity of the environment (under
constant-temperature conditions) [62,63]. At low relative humidities, water molecules are
bound to the particle surface in the form of adsorption film [64,65]. Along with increases
in relative humidity, water-vapor adsorption approaches its maximum value gradually;
afterwards, a free-water layer appears. Capillary condensation occurs via liquid bridges
when the thickness of adsorption water film reaches a critical value. In our experiment, the
vapor adsorption and condensation during water migration was verified by analyzing the
bound water content through the T2 spectrum.

Apart from theoretical investigations on capillary imbibition in porous rocks, ex-
perimental studies promote understanding of this phenomenon as well. Among them,
weighing and visual observation methods were initially adopted to clarify the migration
process and moisture distribution in porous rocks, as they are intuitive and convenient.
However, absorption water mass or rising height of the absorption front cannot accurately
reflect the water migration process inside samples, and especially cannot measure the
migration process of water vapor. Therefore, some technologies such as electrical resistivity
tomography (ERT) [66], nuclear magnetic resonance imaging (MRI) [67], X-ray computer-
ized tomography CT [68], and infrared thermography (IRT) are employed to monitor the
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capillary imbibition process. Some of the above methods, for instance, MRI [69–71] and
X-ray CT, measure variation of moisture distribution along the imbibition direction directly,
while others adopt parameters such as resistivity (ERT) and infrared rays (IRT), which
are sensitive to moisture content, to demonstrate moisture movement indirectly [72–74].
Nuclear magnetic resonance technology has great advantages in such experiments, since
it not only quickly obtains the water distribution in rock without damaging it, but also
accurately characterizes the rock’s pore structure. In this study, two types of sandstone
samples with different layer orientations were used in capillary imbibition experiments.
During the experiments, the water migration process was carefully observed by measuring
water absorption mass, height of the absorption front, lightness of the sample tops, nuclear
magnetic resonance T2 spectra, and the stratified moisture distribution. The typical pore
structure of layered sandstone was obtained through multi-scale observation of the pore
structure with MRI and cast thin sections. Based on the results, the concept of the repre-
sentative pore-structure element (RPE) is proposed. Combined with some basic theories
of capillary water movement, effects of layer structure on the moisture migration process
were interpreted at the sample scale and pore structure scale.

2. Methodology
2.1. Sample Preparation

Four sandstone samples were selected for the test, as shown in Figure 1a [75]. Cylin-
drical samples with a diameter of 50 mm were drilled from two sandstone blocks both
perpendicular and parallel to the bedding plane. After that, the cylindrical cores were cut
into standard samples with a height of 100 mm. The top and bottom surface of the samples
were polished to be smooth. Samples A1 and A2 were taken from the same coarse-grained
sandstone, which had well-developed bedding with alternating coarse-grained strata and
fine-grained strata. The mineral composition of Sample A1 and A2, derived from XRD
experimental results, are shown in Table 1. After the samples were saturated in a vacuum
chamber, we could obtain their porosity, and the pore size distribution curves (Figure 1b)
could be calculated from the NMR T2 distributions (Figure 1b); the principle is introduced
in Section 2.2. The porosity of Sample A1 was 16.97%; while the porosity of Sample A2 was
18.60%. Samples B1 and B2 were taken from the same fine-grained sandstone, which had
obvious bedding as well but with no great differences in grain size between the adjacent
strata. Mineral composition of Sample B1 and B2 derived from XRD experimental results
are shown in Table 2. The porosity of Sample B1 was 14.93%, and the porosity of Sample
B2 was 14.59%. Sample A1 and B1 were sandstones with bedding planes parallel to the
axis of the cylindrical core (hereinafter marked by Par samples), while Sample A2 and
B2 were sandstones with bedding planes perpendicular to the axis of the cylindrical core
(hereinafter marked by Per samples). Pore size distribution curves of the four samples are
shown in Figure 1b (the principle is introduced in Section 2.2).

Table 1. Mineral composition in Samples A1 and A2.

Mineral Name Content Proportion (%)

Quartz 47.0
Plagioclase 19.9

Potassium feldspar 6.4
Calcite 19.8

Dolomite 3.6
Chlorite 3.0
hematite 0.3
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Table 2. Mineral composition in Samples B1 and B2.

Mineral Name Content Proportion (%)

Quartz 71
Potassium feldspar 18

Calcite 6
Chlorite 5
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Figure 1. Test samples (a) and their pore size distributions and T2 spectra (b).

2.2. Background Theory of Nuclear Magnetic Resonance (NMR)

(1) Measurement of pore size distribution

Generally, we study the moisture changes of rock and soil by measuring their relax-
ation time, T2, which can reflect the water content of samples [76,77]. In capillary tubes
of different radii, the T2 of water is different. Therefore, the pore size distribution of rock
can be calculated according to T2 spectra [78], which is related to the average pore size
as follows:

1
T2

= ρ2
Fs

rc
. (1)

where Fs is a geometric factor (Fs = 3 for spherical pores and 2 for columnar pores; hence,
Fs = 2 in this study); ρ2 is the surface relativity of pore walls and is strongly influenced by
paramagnetic ions or electrons on the solid surface; and rc is the average radius. According
to Equation (1), there is a one-to-one correspondence between T2 and pore size.

(2) Measurement of stratified moisture distribution

Like the basic phenomena of T2 spectra, stratified moisture content can be reflected
by the signal value. On the basis of the static magnetic field B0, a gradient magnetic field
Gy is superimposed along the axis of the cylindrical core of the sample. Assume that the
magnetic field strength of cross section A, which is along the sample’s axis of cylindrical
core, is BA. When a pulse of frequency rBA is applied (where r is a positive integer), only
the hydrogen protons at cross section A will undergo magnetic resonance. Therefore, the
stratified moisture distribution of the sample can be obtained from the signal intensity at
different height sections of the sample.
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(3) Nuclear magnetic resonance imaging (MRI)

An NMR imaging sequence was used to obtain the layered structure of a sample [79],
in which, the brighter a pixel was, the higher the moisture content was interpreted to be.
On the basis of the static magnetic field B0, the phase-encoding gradient Gp was applied
in the y-direction. Therefore, protons along this direction had different phase values. In
the process of collecting the sample signal, a gradient magnetic Gr was applied along
the x-direction, and the precession frequencies of protons at different positions along this
direction were different. So, the frequency and phase values could be used to determine
the unique position of the proton. Then, through Fourier transformation of the position
information, an image illustrating the layer structure was obtained.

2.3. Experimental Design
2.3.1. Capillary Imbibition Test

The four dried samples were placed on a permeable stone in a petri dish. The water
surface in the petri dish only just diffused through the permeable stone, and its height was
kept constant during the tests (Figure 1a). The following parameters were tested under
different water absorption times:

(1) Water absorption mass and height rising of the water absorption front

The water absorption mass of a sample equals the mass of the sample after water
absorption minus that at dry state. The mass of samples was measured with a balance at
regular intervals. The height of the water-absorption front on the surface of the samples was
measured at the same intervals. The interval time between measurements was 10–30 min in
the early stage and 300 min in the later period. Four fixed measuring lines were arranged
on the side of the sample, and the height of water migration between the water-absorption
front and the ground was measured along the four measuring lines. The average value was
taken as the height increase of the water absorption front at a certain time.

(2) Lightness of the sample’s top surface

To observe the water redistribution process on the top surface of samples, the lightness
of the top surface was measured during the water migration process. The lightness of
a surface is determined by its ability to reflect light. The good light-reflection ability of
water causes the reflection of the upper surface of sandstone to vary according to water
conditions. Therefore, by measuring the lightness of the upper surface, the moisture
distribution process at that location can be determined. The lightness value was measured
by colorimeter (3nh NR145), and the lightness value of the upper surface was obtained by
taking the average value of the three values.

(3) NMR T2 spectra and stratified moisture content of samples

After these three parameters were measured, the T2 spectra and stratified moisture
content were also tested. For this, an NMR microstructural analysis and imaging system
was used (MacroMR12-150H-I). The parameters of the T2 spectral test were set in accordance
withj Jia et al. [80]. The parameters for the stratified moisture content test were as follows:
P1 (pulse 1 (pulse 90◦)) = 14.52, TD (time data) = 256, SW (sampling bandwidth) = 20 kHz,
TW (time wait) = 1000 ms, RFD (regulate first data) = 0.008 ms, RG1 (regulate analog
gain 1) = 10 dB, DRG1 (regulate digital gain 1) = 3, NS (number sampling) = 4, TE (time
echo) = 1.42752 ms, DR (data radius) = 1, PRG (pre-amp regulate gain) = 2, GM (the
frequency encoding gradient application direction) = 1, FOVR (field of view) = 200 mm,
Ga1 (frequency coding compensates for the percentage of gradient output) = 4.186%, DL1
(the frequency encoding compensates for the gradient duration) = 1 ms, GA0 (frequency
coding compensates for the percentage of gradient output) = 5.56738%.

2.3.2. Observations of the Layer Structures and Pore Structures of Samples

The layer structure of the sandstone was observed by NMR imaging after the samples
were completely saturated with distilled water via the vacuum method. The equipment was
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the same as above, and the test parameters were set in accordance with Jia et al. [79]. The
pore structure of sandstone was observed by optical microscopy using cast thin sections.

3. Results
3.1. Water-Absorption Mass Changes with Time

The water migration processes in the four samples were similar (Figure 2), showing
a three-stage trend of (1) rapid increasing, (2) slow increasing, and (3) stabilization. The
stages were divided according to the change in the water-absorption rate. When the
water-absorption rate is much higher than 0.01, this stage is the stage of rapid growth.
However, the layer orientation had a significant effect on the capillary imbibition process.
The layer orientation mainly affected the duration time, water absorption mass, and the
rate of water-absorption mass in each stage.
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(d) Sample B2.

In sandstone with well-developed bedding (Samples A1 and A2), the layer orientation
caused significant differences in water absorption mass and its rate of change at each
stage. In Par sample (Sample A1), shown in Figure 2a, the water mass mainly increased
during the rapid increase stage, while for the Per sample (Sample A2), shown in Figure 2b,
the water absorption mass increased mainly in the slow increasing stage. Counting the
water-absorption mass and its proportion at each stage, shown in Table 3, in the Par sample
(Sample A1), water-absorption mass increase during the rapid increase stage accounted for
81.37% of the total water-absorption mass, while that absorbed in the slow increasing stage
accounted for 4.81%. The parameters in Table 3 are defined in the note below the table.
In the Per sample (Sample A2), water-absorption mass increase during the rapid increase
stage accounted for 41.35% of the total water-absorption mass in sandstone, while that
absorbed in the slow increasing stage accounted for 44.03%. In addition, in each stage, the
water increase rate (the increase in the water absorption mass per unit time) is significantly
greater in Par sample than that in Per sample (Table 3).
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Table 3. Water-absorption time and mass of samples at each stage.

Sample Variable (Units) Stage 1 Stage 2 Stage 3

A1

T (min) 160 960 8510
M (g) 20.62 1.22 3.50

MR (%) 81.37% 4.81% 13.81%
R (g/min) 0.12 0.0013 0.00041

A2

T (min) 140 980 8510
M (g) 11.73 12.49 4.15

MR (%) 41.35% 44.03% 14.63%
R (g/min) 0.077 0.015 0.00022

B1

T (min) 220 800 7780
M (g) 10.2 8.48 3.37

MR (%) 46.42% 38.39% 15.34%
R (g/min) 0.046 0.0106 0.00043

B2

T (min) 220 1640 6940
M (g) 7.67 10.71 2.8

MR (%) 36.21% 50.57% 13.22%
R (g/min) 0.035 0.0065 0.00040

Note. T = water-absorption time; M = water-absorption mass within each stage; MR = ratio of water-absorption
mass in each stage to total water-absorption mass; R = the increase in the water-absorption mass per unit
time = M/T.

In sandstone with poorly developed bedding (Samples B1 and B2), the layer orientation
caused significant differences in the duration of the slow increasing stage (Figure 2c,d). In
addition, the layer orientation still affected the water-absorption mass and its rate at each
stage, but the influence is not as pronounced in these sandstones with poorly developed
bedding. In the Par sample (Sample B1), the slow increasing stage lasted for 800 min,
while in the Per sample (Sample B2), the slow increasing stage lasted for 1640 min. In the
Par sample (Sample B1), the water-absorption mass increase during the rapid increasing
stage accounted for 46.42% of the total water-absorption mass, while that in the slow
increasing stage accounted for 38.39%. In the Per sample (Sample B2), the water-absorption
mass increase during the rapid increasing stage accounted for 36.21% of the total water
absorption mass, while that in the slow increasing stage accounted for 50.57% (Table 3). In
each stage, the average rate of change in water absorption was greater in the Par sample than
in the Per sample, but the difference is smaller compared to the well-developed sandstone.

In addition, the total water-absorption mass of the samples was influenced by porosity.
The water-absorption mass of the four samples were ranked in descending order as A2, A1,
B1, and B2, which is the same order as for porosity.

3.2. Variation in the Height of the Absorption Front

The orientation of the bedding plane has a significant effect on the rising rate and
morphology of the water-absorption front, and this effect varies with the degree of layer
development (Figure 3). The rising rate in the water-absorption front was higher in the
Par sample than in the Per sample. This phenomenon is more obvious in well-developed
bedding sandstone. The rising of the water-absorption front in Sample A1 can be divided
into two stages: (1) rapid rising and (2) stabilization. The front reached the top of the
sample within 105 min. The rise in Sample A2 can be divided into three stages: (1) rapid
rising, (2) slow rising, and (3) stabilization. It took 500 min for the front to reach the top of
the sample. Samples B1 and B2 also featured these three stages, and it took 700 min and
1380 min, respectively, for the fronts to reach the tops of the samples.
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(d) Sample B2.

The influence of layer orientation on the morphology of the water absorption fronts
was mainly evident in sandstone with well-developed bedding. The height of the water-
absorption front varied significantly within the different layers of the Par sample, reflecting
different absorption rates. Meanwhile, the front height increased uniformly layer by layer
in the Per sample. In sandstone with poorly developed bedding, there was no obvious
difference in the morphologies of the water absorption fronts, demonstrating that the water
absorption rates were relatively uniform.

3.3. Water Distribution at the Top of Samples According to Lightness

The lightness of the top surface of the samples was negatively correlated with the
water content of that surface. The change in lightness of the top surface may reflect the
moisture migration process along the radial direction of the specimen. The change in
lightness of the top surface corresponds to the phases of the height increase of the water
absorption front and can be divided into three stages: (1) Water migrates along the axis of
cylindrical core. In this stage, water mainly migrates upward along the dominant seepage
channels in the axis of cylindrical core. The absorption front gradually rises to the top
surface, but its lightness is largely unchanged. As shown in Figure 4a,b, red star A is the
top surface of the sample in this state. (2) Water migrates along the radial direction. In
this stage, water mainly migrates along the radial seepage channels. The height of the
water absorption front no longer changes, but the lightness of the top surface decreases
significantly. As shown in Figure 4a,b, red star B is the top surface of the sample in this
state. (3) Water redistributes. Water migration in this stage mainly occurs between pores
of different sizes. The lightness and water absorption mass of the samples are also stable
(Figure 4). As shown in Figure 4a, red star C is the top surface of the sample in this state.
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The variation in lightness in different types of layered sandstones indicates that (1) the
layer orientation has a significant effect on the capillary imbibition process in the axis of
cylindrical core; (2) the layer orientation also has a significant influence on the capillary
imbibition process in the radial direction. The main features of this phenomenon are
(1) in sandstone with well-developed bedding, radial water migration in the Par sample
(Sample A1) lasted for 130 min after the water absorption front reached the top, while in
the Per sample (Sample A2), it lasted 240 min; (2) in sandstone with poorly developed
bedding, radial water migration in the Par sample (Sample B1) lasted 440 min after the
water absorption front reached the top, while in the Per sample (Sample B2), it lasted
810 min.

It should be noted that during the stage of water migration along the height, there was
still minor radial migration. In addition, the initial difference in lightness between Speci-
mens A and B was caused by a difference in the grain thickness of the sandstone samples.

3.4. Variation in T2 Spectra during Water Adsorption

The T2 spectra of the samples at different moments reflect the capillary imbibition
process (Figure 5). To study the pore water transport process more clearly, pore water was
classified into three types—bound water, capillary water, and bulk water—according to
the T2 spectra. The T2 of bound water in sandstone is generally <3 ms, whereas those
of capillary water range between 3 and 33 ms, and values of >33 ms are associated with
bulk water or free water [75]. The bound water content was the first to reach stabilization
in all four samples during the capillary imbibition process, followed by capillary water,
and finally, bulk water (Figures 5 and 6). In addition, upon comparing the stabilization
times of the bound water and water absorption mass and the time taken for the water
absorption front to reach the top of the sample (Table 4), it can be found that the bound
water content stabilized before the measured water absorption front reached the top. Given
the fact that bound water may transport in the pores through vapor diffusion in addition to
surface diffusion, the stabilization time of three types of water indicate that vapor diffusion
did exist in the capillary imbibition process; i.e., vapor diffused and condensed to fill
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partial micropores and adsorb on the surface of pores ahead of the water-absorption front
(Figure 6).
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Table 4. Stabilization time for bound water content (Figure 6), water-absorption mass (Figure 2), and
height (Figure 3) of the four samples.

Sample

Bound Water
Content

Stabilization Time
(min)

Mass of Absorption
Water Stabilization

Time
(min)

Height of
Absorption Front

Stabilization Time
(min)

A1 120 1120 120
A2 360 1120 540
B1 500 1020 780
B2 1020 1860 1380

The results in Figures 7 and 8 also show that the porosity and layer orientation of the
samples had significant effects on the migration processes and final state of water distribu-
tion in the following manner: (1) Bound water content stabilization time is influenced by the
porosity and layer orientation of the sample. The higher the porosity, the shorter the time
required for the bound water to reach stability. The stabilization time in the Par samples was
significantly shorter than that in Per samples. In sandstone with well-developed bedding,
it took 120 min for the bound water content to reach stability in the Par sample (Sample A1)
and 360 min in the Per sample (Sample A2). In sandstone with poorly developed bedding,
it took 500 min for the bound water content to reach stability in the Par sandstone (Sample
B1) and 1020 min in the Per sample (Sample B2). (2) The time taken for the capillary water
content to reach stability was mainly influenced by porosity. The higher the porosity of the
sample, the longer it took for the capillary water content to reach stability. In sandstone
with well-developed bedding (Samples A1 and A2), the stabilization time was relatively
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long due to the high porosity, being 3380 min in both. Sandstone with poorly developed
bedding (Samples B1 and B2) had lower porosity, corresponding to shorter times required
for their capillary water contents to stabilize, being 1020 min and 1860 min, respectively.
(3) The bulk water content stabilization time was unaffected by layer orientation and pore
size. (4) The layer orientation did not affect the final content of each type of water.
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According to the pore water classification method mentioned above, the signal ampli-
tude of different types of water can be calculated, and then its proportion in the total signal
amplitude can be obtained. In sandstone with well-developed bedding, the contents of
bound water, capillary water, and bulk water inside the Par sample (Sample A1) accounted
for 30%, 46%, and 24%, respectively, of the total water; while in the Per sample (Sample A2),
they accounted for 28%, 45%, and 27%. In sandstone with poorly developed bedding, the
contents of bound water, capillary water, and bulk water inside the Par sample (Sample B1)
accounted for 12%, 40%, and 48%, respectively, of the total water; while in the Per sample
(Sample B2), they accounted for 12%, 40%, and 48%. This indicates that the proportions of
different types of water within a rock were mainly related to its pore size distribution and
had no direct correlation with layer orientation.

3.5. Variation in Stratified Moisture Distribution during Capillary Imbibition

The stratified moisture distribution curve obtained by NMR can intuitively reflect the
water migration process along the axis of cylindrical core of the samples. Corresponding to
changes in water-absorption height, the curve can be divided into two stages: (1) water mi-
gration and (2) redistribution. In the water migration stage, water primarily migrates in the
axis of the cylindrical core, and the signal amplitude of the stratified moisture distribution
curve also increases in this direction. In the redistribution stage, water migration in the
main capillary channels is largely complete, and water mainly migrates into adjacent pores.
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The stratified moisture distribution curve no longer changes in the axis of the cylindrical
core while its overall signal amplitude increases (Figure 7).
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The stratified moisture distribution curves of samples with different layer directions
show that the layer direction influences the water migration along the axis of the cylindrical
core. In the Par sample, the signal difference is relatively small along the axis of the
cylindrical core; while in the Per sample, the difference is greater. In sandstone with
well-developed bedding, the maximum-to-minimum signal amplitude ratio after water
absorption stabilized was 0.54 in the Par sample (Sample A1) and 0.20 in the Per sample
(Sample A2). In sandstone with poorly developed bedding, the ratio was 0.82 in the Par
sample (Sample B1) and 0.63 in the Per sample (Sample B2). Here, it should be noted that
since moisture dissipated more rapidly at the sample surface, the data from both ends of the
samples were excluded when determining the maximum and minimum signal amplitudes.

Upon comparing the water-absorption height reflected by stratified moisture distri-
bution curves with the directly measured height of the water-absorption front (Figure 8),
we found that the internal and superficial capillary imbibition processes were basically
synchronized in the Par sample, while in the Per sample, internal water migration lagged
behind superficial water migration. In sandstone with well-developed beddings, there was
little difference between the directly measured height and NMR-derived height in the Par
sample (Sample A1), while in the Per sample (Sample A2), the NMR-derived height lagged
behind the measured height. This phenomenon was not obvious in samples with poorly
developed bedding (Figure 8).

4. Pore Structure of Layered Sandstone
4.1. Layer Structure According to MRI

Based on the above experimental results, the layer structure and porosity had impor-
tant influences on the migration and distribution of water in the samples. To study the layer
structures more closely, the samples were subjected to NMR imaging. Figure 9a,b show
images from the MRI of two Par samples: Samples A1 and B1, respectively. The coarse
layers and fine layers of the samples can be clearly seen in the imaging results.
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4.2. Pore Structure Observed in Cast Thin Sections

The sandstone samples exhibited a layer structure at the macroscopic scale, which
was reflected in different particle arrangements at the microscopic scale. Thus, the samples
were cast into thin sections and then observed under the microscope (Figure 10). In
the Par sample with well-developed bedding (Sample A1), the difference between the
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coarse-grained and fine-grained layers was more obvious. In the coarse-grained layer,
the quartz particles were mostly angular, less filled with fine grains, and the structure
generally showed support from the particles, with large inter-granular voids and good
connectivity. There were obvious boundaries between the fine-grained and coarse-grained
layers. The mineral particles in the fine-grained layer were mainly sub-angular and the
support particles formed a mosaic-like structure, resulting in a significant reduction in
pore volume and pore connectivity. The result was processed to obtain a binarized image.
Figure 10 shows that the radius of the capillary channels within the coarse-grained layer
was larger than those in the fine-grained layer. According to the binarization results, the
porosity of the coarse-grained layer was 20.48% and that of the fine-grained layer was
12.83%. For the Par sample with poorly developed bedding (Sample B1), there was no
significant difference between the coarse-grained and fine-grained layers. The quartz grains
were similar in size and their shapes were mostly sub-angular. A binarized image was
obtained after processing, which indicated a porosity of 14.44%.
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Figure 10. Cast thin sections and binary images of the pore structures of (a) Samples A1 and (b) B1.

According to the positive correlation between porosity and permeability [81,82], the
pore connectivity of the coarse-grained layer is significantly higher than that of the fine-
grained layer. In addition, due to the directivity of mineral grains during sedimentation [83],
pore connectivity is usually better along the bedding plane than perpendicular to the
bedding plane.

5. Discussion

The major phenomena observed during the capillary imbibition experiments in this
study are as follows: (1) the layer structure had a significant effect on the capillary imbibition
process by altering water-absorption rate and water redistribution mode; (2) vapor diffused
and condensed to fill partial micropores and adsorb on surface of pores ahead of the water
absorption front, which was more obvious in samples with well-developed beddings; (3) in
the Per sample, internal water migration lagged behind superficial water migration, which
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was longer in sandstones with well-developed beddings. The mechanisms behind the
above phenomena were interpreted by addressing the effects of the pore/layer structure
on the water migration process.

5.1. Basic Theories of Capillary Rise in a Tube and Calculation of the Equivalent Radius

When capillary water migrates upward along a tube with a radius of a, based on the
law of conservation of momentum, the following equation of motion for the fluid in the
tube is obtained [84]:

2σ cos θ

a
− 8ρη

a2 Z
dz
dt

− ρgz = ρ
d
dt
(z

dz
dt

). (2)

The solution of this equation was given by Bosanquet [85] as
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− 8ηt

ρa2 − 1) + (
1
2
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η

cos θ)t + z0
2
} 1

2

. (3)

where z is the height of capillary front from initial height, z0 is the initial height, σ is the
surface tension, a is the tube radius, η is the coefficient of the term representing the inertia
of fluid in reservoir, ρ is the mass density, θ is the contact angle, and t represents the time.
When the capillary tube is long enough and the flow approaches the Poiseuille flow, as was
the case in this study, Equation (3) will reduce to the Lucas–Washburn formula [41]:

z =

{
(

1
2

σa
η

cos θ)t + z0

} 1
2
. (4)

Using Equation (4), assuming z0 = 0, the curves of z vs. t with different tube radii can be
obtained. Parameters used in the calculation are as follows: σ is the surface tension (at 25 ◦C,
σ = 0.07197 N/m [86]; η is the coefficient of viscosity (at 25 ◦C, η = 0.899 × 103 Pa · s) [87];
ρ is the mass density of water (ρ = 1 × 103 kg/m3 ); θ is the contact angle (between water
and quartz, θ = 33◦) [88].

By approximating the tested z vs. t curves with the calculated curves, an equivalent
radius of each sample could be obtained (Figure 11). As we expected, the equivalent radius
was larger along the bedding plane than perpendicular to the bedding plane, which is
consistent with the results from direct observation with the cast thin sections in Figure 10.
The equivalent radii in sandstones with well-developed bedding were much larger than
those with poorly developed bedding.

5.2. Interpretating the Effects of the Bedding Plane on Moisture Migration with the Representative
Pore-Structure Element

Based on the direct observation of pore structure of layered sandstone samples and
calculation of the equivalent radii of samples, we propose the concept of the representative
pore-structure element (RPE). An RPE consists of primary capillary channels (both parallel
and perpendicular to the bedding plane) embedded in coarse-grained layers, secondary
capillary channels embedded in fine-grained layers, and dead-end pores connected to
the channels. The sizes of capillaries that develop in parallel to the bedding are larger
than at other directions (but of the same magnitude as shown in Figure 11) in one layer
(Figure 12). Accordingly, the layer structure of sandstone can be simplified as a combination
of numerous RPEs.
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By differentiating Equation (4) with t, the rising velocity of capillary water in a tube dz
dt

can be obtained:
dz
dt

= (
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8
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ηt

cos θ)
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2
. (5)

As indicated by Equation (5), dz
dt correlates positively with the radius of the tube a.

This correlation stipulates one of the water migration laws in the RPE that water migrates
faster in primary capillary channels. Furthermore, when water migration front reaches the
branching point, the capillary competition effect should be taken into account, which says
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water will flow in both branches when sizes of branches are close to that of the root tube
but will flow primarily in the narrow branch when the thick branch is larger than the root
tube [58]. The water migration process in the RPEs of Par and Per samples are deduced
below, following the above migration laws.

In the RPEs of the Par samples, water migrated primarily upwards in larger channels
within coarse-grained layers, and upward migration in fine-grained layer was slower. Mean-
while, horizontal water movement in the form of both intra-layer and inter-layer migration
was slower than upward migration. Intra-layer horizontal migration in coarse-grained
layers was faster than in fine-grained layers as well. Inter-layer horizontal migration
from coarse-grained layers to adjacent fine-grained layers may also have occurred. As
the water-migration front reached the top of the samples, water migration continued by
entering the dead-end pores until pore gas pressure balanced the driving pressure of water
migration. The average water-migration rate in the Par samples was mainly determined
by the sizes of larger channels. Accordingly, the water-migration mode in Par samples can
be simplified as follows: primary upward intra-layer migration followed by intra-layer
horizontal migration and then inter-layer horizontal migration.

In the RPEs of the Per samples, horizontal water migration should have been dominant,
since it moved along larger channels. Upward water migration was much slower, alter-
nating between intra-layer and inter-layer migration. Due to the slow upward migration
rate, there was sufficient time for water entering the dead-end pores. The average water-
migration rate in the Per samples was mainly determined by the sizes of smaller channels.
Accordingly, the water migration mode in the Per samples can be simplified as follows:
primary intra-layer horizontal migration followed by intra-layer upward migration and
then inter-layer horizontal migration.

Due to horizontal water migration, pore water at the center of samples was sucked
out towards the surface. This suction effect was more significant in Per samples, because
horizontal capillaries are the preferential channels for water migration. This explains why
internal water migration lagged behind surface water migration and the time lag was
longer in sandstones with well-developed beddings. Although prior researchers proposed
that capillary imbibition in rocks exhibits features of direction-dependence [84], this study
explains in detail the origination of direction-dependence.

Except for capillary movement along pore channels, water-vapor diffusion is an
important part of the water-migration process that cannot be ignored; this is consistent
with previous studies [89,90]. Ahead of the capillary water front, water vapor diffused
to the particle surface, which is shown in blue lines in Figure 12. The driving force of
vapor diffusion is the equilibrium tendency between a higher water vapor concentration
and a lower one. The water diffusing on the pore walls favored capillary water migration;
however, when the vapor condensed at the pore throat, the enclosed space hindered
capillary water movement.

6. Conclusions

The following conclusions were obtained.

(1) The layer structure had a significant effect on the capillary imbibition process by alter-
ing the water-absorption rate and water-redistribution mode. The water-migration
rate along the axis of the cylindrical core was faster in the Par samples, which is
evidenced by the variation in water-absorption mass and water height increase. The
change of lightness on the top of the samples with time indicated different moisture-
redistribution modes in Par samples and Per samples.

(2) Vapor diffused and condensed to fill partial micropores and adsorb on the surface of
pores ahead of the water-absorption front. This was more obvious in samples with
well-developed bedding. The content of bound water as measured by NMR signals
achieved stability before the visible water-absorption front reached the samples’
top; this was attributed to vapor diffusion and condensation above the capillary
water front.
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(3) In Per sandstone, internal water migration lagged behind superficial water migration.
This time lag was longer in sandstones with well-developed beddings. In the Per
sample, variation in the NMR-derived height lagged behind the measured height.

(4) According to the calculated results from the Lucas–Washburn equation, the equivalent
radius was larger along the bedding plane than perpendicular to the bedding plane.
Combining this with the direct observation of the pore structure of layered sandstone,
we proposed the concept of the representative pore-structure element (RPE). Water
migration in RPEs follows the migration laws in capillary stipulated by both the posi-
tive correlation between the pore radius and water-movement rate and the capillary
competition effect.

(5) Effects of the layer structure on moisture migration in sandstone were embedded in the
different water-migration modes in Par and Per samples. The water-migration mode
in Par samples can be simplified as primary upward intra-layer migration followed by
intra-layer horizontal migration and then inter-layer horizontal migration. Meanwhile,
the mode in Per samples can be simplified as primary intra-layer horizontal migration
followed by intra-layer upward migration and then inter-layer horizontal migration.
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89. Záleská, M.; Pavlíková, M.; Pavlík, Z.; Černý, R. Retention curves of different types of sandstone. Adv. Mater. Res. 2014, 982,

44–48. [CrossRef]
90. Charola, A.E.; Wendler, E. An overview of the water-porous building materials interactions. Restor. Build. Monum. 2015, 21, 55–65.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.enggeo.2013.05.024
http://doi.org/10.5200/baltica.2022.1.2
http://doi.org/10.1007/s00603-019-01943-0
http://doi.org/10.1007/s00603-022-02830-x
http://doi.org/10.1016/j.coldregions.2019.102893
http://doi.org/10.1007/s00603-020-02343-5
http://doi.org/10.1016/j.catena.2020.104915
http://doi.org/10.1186/s40517-016-0048-6
http://doi.org/10.1007/s12665-015-4280-3
http://doi.org/10.1115/1.3641647
http://doi.org/10.1080/14786442308634144
http://doi.org/10.1016/0166-6622(83)80014-6
http://doi.org/10.1021/ac60257a011
http://doi.org/10.1016/j.minpro.2008.10.001
http://doi.org/10.4028/www.scientific.net/AMR.982.44
http://doi.org/10.1515/rbm-2015-2006

	Introduction 
	Methodology 
	Sample Preparation 
	Background Theory of Nuclear Magnetic Resonance (NMR) 
	Experimental Design 
	Capillary Imbibition Test 
	Observations of the Layer Structures and Pore Structures of Samples 


	Results 
	Water-Absorption Mass Changes with Time 
	Variation in the Height of the Absorption Front 
	Water Distribution at the Top of Samples According to Lightness 
	Variation in T2 Spectra during Water Adsorption 
	Variation in Stratified Moisture Distribution during Capillary Imbibition 

	Pore Structure of Layered Sandstone 
	Layer Structure According to MRI 
	Pore Structure Observed in Cast Thin Sections 

	Discussion 
	Basic Theories of Capillary Rise in a Tube and Calculation of the Equivalent Radius 
	Interpretating the Effects of the Bedding Plane on Moisture Migration with the Representative Pore-Structure Element 

	Conclusions 
	References

