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Abstract: The pipe systems of hydropower plants are complex and feature special pipe types and
various devices. When the Method of Characteristics (MOC) is used, interpolation or wave velocity
adjustment is required, which may introduce calculation errors. The second-order Finite Volume
Method (FVM) was presented to simulate water hammer and the load-rejection process of a hy-
dropower plant with an air cushion surge chamber, which has rarely been considered before. First,
the governing equations were discretized by FVM and the flux was calculated by a Riemann solver. A
MINMOD slope limiter was introduced to avoid false oscillation caused by data reconstruction. The
virtual boundary strategy was proposed to simply and effectively handle the complicated boundary
problems between the pipe and the various devices, and to unify the internal pipeline and boundary
calculations. FVM results were compared with MOC results, exact solutions, and measured values,
and the sensitivity analysis was conducted. When the Courant number was equal to 1, the results of
FVM and MOC were consistent with the exact solution. When the Courant number was less than 1,
compared with MOC, the second-order FVM results were more accurate with less numerical dissipa-
tion. As the Courant number gradually decreased, the second-order FVM simulations were more
stable. For the given numerical accuracy, second-order FVM had higher computational efficiency.
The simulations of load rejection showed that compared with the MOC results, the second-order
FVM calculations were closer to the measured values. For hydropower plants with complex pipe
systems, wave velocity or the Courant number should be adjusted during MOC calculation, resulting
in calculation error, and the error value is related to the parameters of the air cushion surge chamber
(initial water depth, air cushion height, etc.). The second-order FVM can more accurately, stably, and
efficiently simulate the load-rejection process of hydropower plants compared with MOC.

Keywords: air cushion surge chamber; method of characteristics; finite volume method; load
rejection process

1. Introduction

In hydropower plants, complicated hydraulic transients often occur during startup,
shutdown, or load change of the power generation unit. Dangerous water hammer events
are caused by some inappropriate operations in the water system and likely produce
abnormally high pressures, which may induce pipe rupture and damage other hydraulic
devices. Due to the advantages of low construction cost and ecological environment
impact, air cushion surge chambers have been widely used in water hammer protection in
hydropower stations, ensuring the safety of the hydraulic operation [1]. However, water
hammer protection devices also increase the operational complexity of the hydraulic system.
Therefore, accurate and efficient numerical simulations of water hammer events become
more important for the proper design and safe operation of hydropower plants.
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The Method of Characteristics (MOC) is widely used in the simulation of hydraulic
transition processes in hydropower plants [2]. However, in the actual complex water trans-
mission system, there are certain short pipes, T-pipes, and tandem pipes. In the calculation
of simulation with MOC modeling, interpolation calculation or wave speed adjustment is
required; the former reduces the calculation efficiency and calculation accuracy and the
latter often introduces calculation errors, which may lead to poor simulation results [1–3].

In recent years, many scholars have tried to use the Finite Volume Method (FVM)
for the simulation of water hammer problems. Based on the system’s mass and energy
conservation, FVM can solve the discontinuous problem well without causing spurious
numerical oscillations. Guinot [4] was the first to introduce the first-order FVM numerical
method into the solution of the water hammer problem, and its calculation results are
basically consistent with those of the MOC calculation. Zhao [5] developed the first-order
and second-order FVM Godunov-type scheme (GTS) to simulate water-hammer problems
in a simple horizontal pipeline with an instantaneously closed valve.

Zhou et al. [6,7] firstly developed a GTS approach to simulate transient cavitating
pipe flow. Elong [8] solved the two-dimensional shallow water equations using the first-
order finite volume method (FVM), the Harten Lax and van Leer (HLL) scheme, and the
monotone upwind scheme for conservation laws (MUSCL) to simulate floods. Zhou [9]
and Xue [10] conducted a simulation study of water–gas two-phase homogeneous flow
using the FVM format and found that second-order FVM can effectively avoid spurious
numerical oscillations and can improve the stability and accuracy of the calculation results.

Zhou et al. [2,3] developed one explicit solution source item approach for second-order
FVM GTS to easily incorporate various forms of the existing unsteady friction models,
including original convolution-based models, simplified convolution-based models, and
Brunone instantaneous acceleration-based models. They pointed out that the first-order
Godunov scheme and fixed-grid MOC scheme can achieve the same accuracy, but both
display strong numerical damping once the Courant number is less than one. In contrast,
the second-order GTS is more robust, even for Courant numbers significantly less than
those for simple water hammer events.

Overall, the motivation and reason of attempting the second-order FVM GTS to
simulate the load-rejection process of hydropower plants with an air cushion surge chamber
are as follows. The fixed-grid MOC scheme is of first-order accuracy and has been widely
used for solving water hammer equations in the simulation of hydraulic transition processes
in hydropower plants. Since the real water pipe systems are usually complicated and made
of pipe sections with different lengths, diameters, and materials, it is impossible to make
the Courant number exactly equal to one in every pipe of such a complex pipe system; thus,
the MOC scheme has to be implemented either via interpolation or wavespeed adjustment,
which may induce large accumulated numerical errors. Importantly, as the Courant number
is less than one and decreases, compared with MOC, the second-order GTS results are
more accurate and more stable with less numerical dissipation. The previous work mainly
focuses on the FVM GTS simulating the water hammer problem in a simple reservoir–
pipe–valve system. However, it is necessary to further investigate the feasibility of GTS
for more complicated hydraulic transient problems in a real hydraulic system with more
complicated pipe components and devices, and to explore the possible computation error
caused by the classic MOC scheme in a hydropower plant with a complex pipe system.

The main aim of this paper was to develop an accurate and efficient water hammer nu-
merical model, which is significant for the proper design and safe operation of hydropower
plants. A second-order FVM GTS fully considering the various pipe components and
devices was developed to simulate the hydraulic transients and load-rejection process of
the hydropower plant with an air cushion surge chamber, which has rarely been involved
in previous published works. Importantly, the virtual boundary strategy was proposed to
simply and effectively handle the complicated boundary problems between the pipe and
various devices. Namely, virtual boundaries were introduced at the upstream and down-
stream boundaries and at the connection between the hydraulic components (air chamber
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and unit) and the pipeline to achieve uniformity in the calculation of the control cells inside
the pipeline and at the boundaries. The results calculated by the proposed second-order
FVM GTS models were compared with the exact solution and the measured values as well
as predictions by the MOC scheme. The accuracy and efficiency of the proposed approach
were discussed. Another important purpose is that the proposed accurate model was used
to explore the possible computation error caused by the MOC scheme in a hydropower
plant with a complex pipe system.

2. Numerical Models of Hydropower Plant Hydraulic Transients
2.1. Water Hammer Control Equations

The classic water hammer equations for pipe flow are as follows [1]:

g
∂H
∂x

+ V
∂V
∂x

+
∂V
∂t

+ (J − gS0) = 0 (1)

V
∂H
∂x

+
∂H
∂t

+
a2

g
∂V
∂x

= 0 (2)

where H is the piezometric head; V is the average flow velocity; a is the water hammer wave
speed; g is the gravitational acceleration; x is the coordinate distance along the tube axis; t
is time; J is the steady-state friction coefficient of the pipe; and S0 is the slope of the pipe.

2.2. Control Equations of Air Cushion Surge Chamber

In the analysis of air chamber shown in Figure 1, the pressure at any instant was
assumed to be the same throughout the volume. The compressibility of the water in the air
chamber was considered negligible compared with air compressibility. Inertia and friction
were neglected. The air was assumed to follow the reversible polytropic relation

HaVk
a = Ha0Vk

a0 = Constant (3)

where Ha and Va are the absolute pressure head and volume of the air within the air
chamber, and their initial values are Ha0 and Va0, respectively; and k is the polytropic
exponent. The adiabatic process with k = 1.4 is often used for the fast transients whereas
the isothermal with k = 1.0 is often presented for the slower compressions; an intermediate
polytropic case with k = 1.2 is often suggested as a reasonable compromise.
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The compressibility of the water and wall within the air chamber was neglected. Ha is
the absolute head equal to the gage plus barometric pressure heads

Ha = HP − Zs + Hatm −
(

RS +
1

2gA2
S

)
|QS|QS (4)
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where HP is the piezometric head at the bottom of air chamber; Zs is the elevation of the
air–water interface in air chamber; Hatm is the absolute barometric pressure head; Qs is the
inflow rate to the air chamber; Rs is the head loss coefficient of the impedance hole of the
air chamber; As is the cross-section area of the air chamber.

The air volume was allowed to vary for inflow to and outflow from air chamber. The
integrated continuity equation dVa/dt = −Qs, can be written as

Qt = Q−QS = Q− AS
dZs

dt
(5)

where Q and Qt are the flow rates at the inlet and outlet pipe of the bottom of the
air chamber.

The piezometric head at the bottom of the air chamber, HP, is associated with the
inflow rate to the air chamber Qs, which can be expressed as

HP = C2 − C1Qs

C1 = ( 1
( 1

BP1
)+( 1

BM2
)); C2 = C1

(
(CP1

BP1
) + (CM2

BM2
)
)} (6)

where CP1, BP1, CM2, BM2 are boundary parameters that can be calculated from pressure
heads and flow rates at the upstream and downstream pipe of the air chamber, and are
discussed in the section concerning boundary treatment.

After combining Equations (3)–(6), the pressure head, flow rate, and water level at the
air chamber can be obtained.

2.3. Control Equations of Hydraulic Turbine

The unit characteristic curve of the hydraulic turbine consists of the flow characteristic
curve and the moment characteristic curve. Using modified Suter transformation [11], the
flow function and torque function of the hydraulic turbine are as follows:

WH(x, y) =
1(

Q11
Q11r

+ c
)2

+
(

N11
N11r

)2 =
h(

q + c
√

h
)2

+ n2
(7)

WB(x, y) =
M11

M11r
=

m
h

(8) x = arctan
[(

q + c
√

h
)

/n
]
, n ≥ 0;

x = arctan
[(

q + c
√

h
)

/n
]
+ π, n < 0;

(9)

where x is the relative flow angle; y is the relative guide vane opening; WH(x, y) represents
the flow functions; WB(x, y) is the torque function; Q11 is the unit flow rate; Q11r is the
unit flow rate at rated operating conditions; q = Q11/Q11r is the relative unit flow; N11 is
the unit speed; N11r is the unit speed at rated operating conditions; n = N11/N11r is the
relative unit speed;H is the water head pressure; Hr is the head pressure at rated operating
conditions; h = H/Hr is the relative head; M11 is the unit torque; M11r is the unit torque at
rated operating conditions; m = M11/M11r is the relative unit moment; and the subscripts
11 and 11r indicate the unit value and the rated value, respectively.

When load rejection occurs, the unit speed equation is as follows:

n = n0 +
∆t
Ta

(1.5m0 −m00) (10)

where Ta is the unit inertia time constant; Ta =
GD2 N2

r
365Pr

; GD2 is the unit rotational moment
of inertia; Pr is rated power output; Nr is the rated speed; and the subscripts “0” and
“00” indicate the first one time step and the first two time steps of the calculation time
step, respectively.
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The head balance equation [11,12] is given by

h = [CP1 − CM2 − (BP1 + BM2)Qrq + C3|q|q]/Hr (11)

where coefficient C3 = Q2
r

(
1

2gA2
1
− 1

2gA2
2

)
; A1 is the inlet cross-sectional area of the worm

shell; and A2 is the outlet cross-sectional area of the tailpipe. Combining Equations (7), (8),
(10) and (11), the head, flow rate, speed, and torque of the unit can be calculated.

3. Numerical Solution by Using the Second-Order Finite Volume Method

The matrix form of the water hammer equations (Equations (1) and (2)) can be ex-
pressed as follows:

∂U
∂t

+ A
∂U
∂x

= S (12)

where U = (H
V), A =

(
V a2/g
g V

)
, S = ( 0

gS0−J).

For the pipe water hammer problem, the Mach number is small, so the effect of the
convective term can be neglected. The classical water hammer equation can be obtained by
solving Equation (3) with the Riemann problem solution method.

∂U
∂t

+
∂F
∂x

= S (13)

where F =
−
AU,

−
A =

(
0 a2/g
g 0

)
.

The finite volume method was used to discretize the computational domain in the
x-axis and t-axis, as shown in Figure 2, to form multiple computational control volumes
with the fixed-grid length ∆x and then compute the control volumes.
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Figure 2. Grid system in the FVM Godunov scheme.

For the ith control volume, the integration of Equation (13) between control interfaces
i − 1/2 and i + 1/2 yields

Un+1
i = Un

i −
∆t
∆x
(
fn

i+1/2 − fn
i−1/2

)
+

∆t
∆x

∫ i+1/2

i−1/2
sdx (14)

where Ui is the average value of u within [i − 1/2, i + 1/2]; the superscripts n and n + 1
indicate the t and t + ∆t time levels, respectively; and fi+1/2 and fi−1/2 are the mass and
momentum fluxes at the control interfaces i − 1/2 and i + 1/2, which are determined by
solving a local Riemann problem at each cell interface [2,3].
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3.1. Computation of Flux Term

In the Godunov approach, the numerical flux is determined by solving a local Riemann

problem at each cell interface [4]. Applying Rankine–Hugoniot conditions ∆f =
−
A∆u =

−
λi∆u

where the eigenvalues
−
λ1 = −a and

−
λ2 = a, the fluxes at i + 1/2 for all internal nodes and

for t∈[tn, tn+1] can be calculated by

fi+1/2 =
−
Ai+1/2ui+1/2 =

1
2

−
Ai+1/2

{(
1 a/g

g/a 1

)
Un

L −
(
−1 a/g
g/a −1

)
Un

R

}
(15)

in which
−
Ai+1/2 = A; Un

L= average value of u to the left of interface i + 1/2 at time n; and
Un

R = average value of u to the right of interface i + 1/2 at time n.
The estimation approach of Un

L and Un
R determines the accuracy order of the numerical

scheme. In the first-order accuracy, Un
L = Un

i and Un
R = Un

i+1. Herein, the MUSCL–Hancock
method is used to achieve second-order accuracy in space and time, while the MINMOD
limiter is suggested to avoid the spurious oscillations. The details of the MUSCL-Hancock
method and the MINMOD limiter can also be found in a reference book (Toro 2009) [12].

The MUSCL–Hancock approach achieves a second-order extension of the Godunov
scheme if the intercell flux fi+1/2 is computed according to the following steps [6]:

Step (1): Data Reconstruction. The data cell average values Un
i are locally replaced by

piece-wise linear functions in each cell [xi−1/2, xi+1/2], and Un
i at the extreme points are,

UL
i = Un

i −
∆x
2

∆i, UR
i = Un

i +
∆x
2

∆i (16)

where ∆i is a suitably chosen slope vector. The MINMOD limiter was used here to increase
the order of accuracy of a scheme while avoiding spurious oscillations. Namely,

∆i = MINMOD
(
σn

i , σn
i−1
)
=


σn

i , i f ,
∣∣σn

i

∣∣ < ∣∣σn
i−1

∣∣, and, σn
i σn

i−1 > 0
σn

i−1, i f ,
∣∣σn

i

∣∣ > ∣∣σn
i−1

∣∣, and, σn
i σn

i−1 > 0
0, i f , σn

i σn
i−1 < 0

(17)

where σn
i =

(
Un

i+1 −Un
i
)
/∆x and σn

i−1 =
(
Un

i −Un
i−1
)
/∆x.

Step (2): Evolution. For each cell [xi−1/2, xi+1/2], the boundary extrapolated values UL
i ,

UR
i in Equation (16) are evolved by a time 0.5∆t according to

−
U

L
i = UL

i + 1
2

∆t
∆x
[
f
(
UL

i
)
− f
(
UR

i
)]

,
−
U

R
i = UR

i + 1
2

∆t
∆x
[
f
(
UL

i
)
− f
(
UR

i
)] (18)

Step (3): The Riemann Problem. To compute intercell flux fi+1/2, the conventional
Riemann problem with data can be calculated by

Un
L ≡

−
U

R
i , Un

R ≡
−
U

L
i+1 (19)

Insert Equation (19) into Equation (15) and a second-order scheme for flux terms at
i + 1/2 for all internal cell and for t = [tn, tn+1] is obtained.

3.2. Incorporation of Source Term

When considering the pipe friction resistance, the second-order Runge–Kutta solution
is used to obtain the second-order calculation accuracy explicit results, and the calculation
process is as follows.

First step:
−
U

n+1
i = Un

i −
∆t
∆x

(
fn

i+(1/2) − fn
i−(1/2)

)
(20)
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Second step:

U
n+1
i =

−
U

n+1
i +

∆t
2

S
(−

U
n+1
i

)
(21)

Last step:

Un+1
i =

−
U

n+1
i + ∆tS

(
U

n+1
i

)
(22)

The time step should satisfy the CFL convergence condition [1,11], i.e.,

Cr =
a∆t
∆x
≤ 1 (23)

N =
L

∆x
(24)

where Cr is the Courant number; N is the number of pipe grids; and L is the pipe length.
For the water hammer problem, the Courant number actually refers to the relative

relationship between the time step ∆t and the space step ∆x [1,12]. When Cr is greater than
1, the calculation result is unstable; when Cr is less than 1, and the closer to 0, the more
serious the numerical dissipation is, and the accuracy of the calculation result is worse.
Therefore, the range of the Courant number is Cr less than or equal to 1, and preferably
equal to 1 or close to 1.

3.3. Virtual-Boundary Strategy

Boundary conditions including the interior device boundary in the hydraulic system of
the hydropower station contain the upstream head-constant reservoir, air chamber, turbine,
and the downstream reservoir. As discussed above, in the second-order Godunov scheme,
the head and flow rate of the ith control volume at time t + ∆t are calculated by combining
the parameters of the upstream two ((i − 2)th, (i − 1)th) and the downstream two ((i + 1)th,
(i + 2)th) control volumes at time t. Therefore, numerically, boundary conditions are
expected to provide numerical fluxes f1/2, fN+1/2, which are required in order to update
the extreme cells I1 and IN to the next time level n + 1.

In this paper, as shown in Figure 3, virtual control volumes I−1 and I0 adjacent to I1 and
virtual control volumes IN+1 and IN+2 adjacent to IN were proposed to realize second-order
Godunov scheme at the upstream and downstream control volumes of the computational
domain, respectively. The corresponding fluxes f1/2 and fN+1/2 were computed in the same
method as the interior control volumes.
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The head and flow rate in the virtual control volumes were assumed to be identical
with those at boundaries, namely

Un+1
−1 = Un+1

0 = U1/2 =

(
H1/2
V1/2

)
(25)

Un+1
N+1 = Un+1

N+2 = UN+1/2 =

(
HN+1/2
VN+1/2

)
(26)
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In the Godunov scheme, the Rankine–Hugoniot condition across each wave of speed
−
λi gives the following relations,

a
g
(Vi+1/2 −VR)− (Hi+1/2 − HR) = 0 (27)

a
g
(Vi+1/2 −VL) + (Hi+1/2 − HL) = 0 (28)

At the upstream reservoir boundary, from the Riemann invariance equation (Equation (27)),
it follows that

H1/2 −
a
g

V1/2 = Hn
1 −

a
g

Vn
1 (29)

At the downstream reservoir boundary, from the Riemann invariance equation (Equation (28)),
it follows that:

Hn
N +

a
g

Vn
N = HN+1/2 +

a
g

VN+1/2 (30)

where Vn
1 and Hn

1 are the velocity and pressure head of the first control volume adjacent to
the upstream reservoir; Vn

N and Hn
N are the velocity and pressure head of the last control

volume adjacent to the downstream reservoir; and H1/2 and HN+1/2 are the head pressures
of the upstream and downstream reservoirs, respectively.

For the upstream and downstream boundaries of the hydraulic turbine, from the tur-
bine control equations, only the physical variable values of the virtual control volumes at the
worm housing and at the tail pipe are required to derive the physical variable values at the
turbine. Therefore, combining the Riemann invariance equations (Equations (27) and (28)),
it is obtained

CP1 = Hn
N +

a
g

Vn
N (31)

BP1 =
a

gA1
(32)

CM2 = Hn
1 +

a
g

Vn
1 (33)

BM2 =
a

gA2
(34)

where Vn
N and Hn

N are the flow rate and head of the last control volume of the upstream
pipe at the snail shell; and Vn

1 and Hn
1 are the flow rate and head of the first control

volume of the downstream pipe at the right end of the tail pipe, respectively. The obtained
Equations (31) to (34) are brought into Equation (11) to solve the head balance equation
under virtual boundary conditions.

Similarly, for the upstream and downstream boundaries of air chamber, from the con-
trol equations of the air chamber, combining the Riemann invariance equations
(Equations (27) and (28)), Equations (31)–(34) can be obtained and brought into Equation (6)
to solve the head balance equation under virtual boundary conditions.

4. Numerical Solution by Using Method of Characteristics

The momentum and continuity Equations (1) and (2) are transformed into four ordi-
nary differential equations by the MOC [1].

C+ :

{
g
a

dH
dt + dV

dt + f V|V|
2D = 0

dx
dt = +a

(35)

C− :

{
− g

a
dH
dt + dV

dt + f V|V|
2D = 0

dx
dt = −a

(36)

where f is the Darcy–Weisbach friction factor; D is pipe diameter.
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As shown in Figure 4, integration of C+ along characteristic lines from interior (fixed
grid) point A to point P, and integration of C− along characteristic lines from interior (fixed
grid) point B to point P, can be written as

C+ : Hn+1
i = CP − BPQn+1

i (37)

C− : Hn+1
i = CM + BMQn+1

i (38)

in which Q is the flow rate; and the coefficients CP, BP, CM, and BM are known constants
when the equations are applied.
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When the Courant number Cr ≤ 1 (Cr = a∆t
∆x ), the space–line interpolation fixed-grid

MOC scheme can give the values of the coefficients CP, BP, CM, and BM along the C+ and
C− characteristic lines as follows:

CP = HPR + B·QPR (39)

BP = B + R·Cr·|QPR| (40)

CM = HPS − B·QPS (41)

BM = B + R·Cr·|QPS| (42)

in which, B is a function of the physical properties of the fluid and the pipeline, often called
the pipeline characteristic impedance, and B = a/gA, A is the cross-section area; R is the
pipeline resistance coefficient R = f ∆x/(2gDA2); as shown in Figure 4, QPR and HPR are the
flow rate and pressure head at R node; QPS and HPS are the flow rate and pressure head at
S node; their values can be calculated by interpolation,

QPR = Qn
i − Cr·

(
Qn

i −Qn
i−1
)

(43)

QPS = Qn
i − Cr·

(
Qn

i −Qn
i+1
)

(44)

HPR = Hn
i − Cr·

(
Hn

i − Hn
i−1
)

(45)

HPS = Hn
i − Cr·

(
Hn

i − Hn
i+1
)

(46)

Combining Equations (39) and (40), Hn+1
i and Qn+1

i at the interior node can be ob-
tained. Similarly, the pressure head and flow rate of the boundary nodes adjacent to the
hydropower unit can be calculated by combining Equation (39), the control equations of
the hydraulic turbine, and Equation (40).
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5. Results and Discussion

The main purposes of this section are (1) to investigate the accuracy, stability, and
efficiency of second-order FVM GTS and MOC in a simple reservoir–pipe–valve system;
(2) to validate the proposed second-order FVM model by comparing the calculated and
measured data of load rejection in a hydropower plant with a complicated pipe system;
(3) to explore the possible computation error caused by the MOC scheme in a complex pipe
system of the hydropower plant; and (4) to study the effect of air chamber parameters on
the error of MOC scheme simulating the hydraulic events in the hydropower plant.

5.1. Water Hammer Problem in a Simple Reservoir–Pipe–Valve System

The classical “reservoir–pipe–valve” system is used to verify the accuracy of the
proposed. The upstream is a reservoir, and the downstream is a valve connected by a single
pipe. The pipe is 800 m long, which is divided into 16 control volumes. The water hammer
wave velocity is 1000 m/s, and the upstream reservoir head is 20 m. The initial velocity
of the pipe is 0.15 m/s. The water hammer problem is caused by the instantaneous valve
closure. It is assumed that the pipe wall is smooth, which means any dissipation is caused
by the numerical calculation.

Figures 5 and 6 show the water hammer solutions for the simple system using MOC
and second-order FVM, respectively, to investigate the effect of different Courant numbers
Cr (1.0, 0.7, 0.5, 0.3, 0.1) on the calculation results of the two solution schemes. The accuracy
and efficiency of FVM and MOC water hammer calculations were analyzed.
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The results in Figures 5 and 6 indicate that when Cr = 1.0, the results of both FVM
and MOC calculations were identical with the exact solution (i.e., the analytical solution
is obtained by the analytical method when the Courant number was equal to 1). When
Cr < 1.0, both computational results had numerical dissipation. For the same Cr, the
numerical dissipation of MOC was more severe, e.g., for Cr = 0.1, the initial energy (peak
pressure) of MOC was dissipated by 26% in 15 s, while the FVM in the second-order
Godunov scheme was only dissipated by 1.06%.

Figure 7 shows that when Cr < 1.0, the second-order FVM was more stable and less
dissipative than the MOC scheme for the same number of control volumes (NS = 32). At
Cr = 0.3, in order to reach the same numerical accuracy, MOC needed NS = 256, while only
NS = 32 was used in the second-order FVM scheme. Table 1 displays that the for the same
computation accuracy, the computation time in the MOC scheme (0.19 s with NS = 256)
was about 5 times that in the second-order FVM scheme (0.037 s, NS = 32). Therefore, when
Cr < 1.0, the second-order FVM scheme is more efficient than the MOC scheme for the same
computation accuracy.
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Table 1. Computation time of MOC and second-order FVM with different numbers of grids.

Number of Grids MOC Calculation Time/s FVM Calculation Time/s

32 0.012 0.037
128 0.069 0.555
256 0.19 1.849

Overall, for water hammers in a simple pipe, the second-order FVM model is accurate,
efficient, and stable even for Courant numbers less than one. For the given Courant number
and the same accuracy, the proposed model is far more efficient than the MOC model.

5.2. Hydraulic Transients in Actual Hydropower Plant
5.2.1. Project Overview

One real hydropower station has two turbine units through branch pipes, one air
chamber, and pressurized pipes between the upstream and downstream reservoirs. The
layout of the water transmission system is shown in Figure 8. The pipe parameters are
shown in Table 2, while the parameters of the turbine units are shown in Table 3.
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Table 2. Parameters of the water pipe system in the numerical simulations.

Pipe Number Pipe Length/m Wave Speed/(m·s−1) Roughness

L1 15.39 976.4 0.014
L2 169.26 976.4 0.014
L3 20.77 976.4 0.014
L4 56.4 976.4 0.015
L5 26.6 976.4 0.014
L6 100.33 1202.3 0.013
L7 5.4 1210.8 0.013
L8 14 1045.1 0.014
L9 70.94 1045.1 0.014

L10 25.52 1152.75 0.014
L11 13.6 1152.75 0.014

Table 3. Unit parameters of the water turbine in the numerical simulations.

Unit Parameters Numerical Value

Single machine capacity (MW) 150
Rated head (m) 105.8

Rated flow rate (m3·s−1) 148.8
Rated speed (r·min−1) 200

Power Rating (kW) 139,000
Rotational inertia (t·m2) 10,920

In this section, two field experiment cases on load rejection are introduced to investi-
gate the accuracy of the numerical models.

Field Experiment Case A of Load Rejection: The water levels of upstream and down-
stream reservoirs are 412.4 m and 290.97 m, respectively. The guide vane closing law adopts
“two stages”: initial guide vane opening 73.8%, first closing time 3.62 s, second closing time
32.53 s (closing to 10% of no load), inflection point guide vane opening 60%, guide vane
inactivity time 0.27, and total closing time 43.04 s. The turbine operating parameters are
based on the rated parameters of the unit.

Field Experiment Case B of Load Rejection: The water levels of upstream and down-
stream reservoirs are 406.08 m and 290.6 m, respectively. The law of guide vane closing
adopts “two-stage”: initial guide vane opening 74.3%, the first stage closing time is 5.64 s,
the second stage closing time is 30.53 s, and the inflection point guide vane opening is
61.13%. The total closing time is 36.17 s. The rated parameters of the turbine are used for
the operating parameters.

5.2.2. Comparison to Field Experimental Data

When MOC is used to model the complicated pipe system, there are often two treat-
ment methods, including (1) MOC (Scheme 1) being used to adjust the wave speed so that
Cr = 1, and (2) MOC (Scheme 2) being used to keep the wave speed invariant and increase
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the number of pipe grids so that Cr is as close to 1 as possible. According to the above
two schemes, the adjusted wave speed a, number of grids N, and Courant number Cr are
shown in Table 4.

Table 4. Wave speed, grid number, and Courant number in pipe sections in the MOC simulations.

Pipe Number MOC (Scheme 1) MOC (Scheme 2)
a/(m·s−1) N Cr a/(m·s−1) N Cr

L1 961.875 4 1.000 976.400 31 0.983
L2 984.070 43 1.000 976.400 346 0.998
L3 1038.500 5 1.000 976.400 42 0.987
L4 1007.143 14 1.000 976.400 115 0.995
L5 950.000 7 1.000 976.400 54 0.991
L6 1194.405 21 1.000 1202.300 166 0.995
L7 1350.000 1 1.000 1210.800 8 0.897
L8 1166.667 3 1.000 1045.100 26 0.970
L9 1043.235 17 1.000 1045.100 133 0.980

L10 1063.333 6 1.000 1152.750 44 0.994
L11 1133.333 3 1.000 1152.750 23 0.975

As discussed in Section 5.1, it is clear that the second-order FVM still maintains
high computational accuracy even when Cr is less than 1. Therefore, for complex pipe
components and devices of the hydropower plant, the characteristics of each pipe section
(pipe length, wave speed, etc.) keep invariance in the second-order FVM simulation, and
only the Courant number and the number of pipe section grids need to be adjusted. The
number of pipe section grids is determined as follows.

In the calculation of the second-order FVM, to ensure the stability of the calculation,
the pipe grid must satisfy the Courant condition, taking the ith pipe as an example, i.e.,

Cri =
ai∆t
∆xi
≤ 1 (47)

where in order to ensure the synchronization of the calculation at all pipe sections, the
calculation time step ∆t for each pipe section is the same; ∆xi is the grid length of the
ith pipe section, m; ai is the wave speed of the ith pipe section, m·s−1; Cri is the Courant
number of the ith pipe section.

In the FVM calculation, the grid number Ni is calculated by the following equation.

Ni =
Li

∆xi
(48)

where Ni is the grid number of the ith pipe; Li is the length of the ith pipe, m.
Substitute Equation (36) into Equation (35) to obtain the following equation

Ni = Cri

Li
ai∆t

(49)

From Equation (37), it can be seen that in order to ensure that Ni is an integer, it is
necessary to adjust the Courant number Cr of the ith pipe, and the principle of adjustment
is as follows: the range of the Courant number is less than or equal to 1, and preferably
equal to 1 or close to 1. Using the abovementioned method, the wave speed a, grid number
N, and Cr of each segment in the second-order FVM calculation can be obtained, as shown
in Table 5.
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Table 5. Wave speed, grid number, and Courant number in pipe sections in the FVM simulations.

Pipe Number FVM
a/(m·s−1) N Cr

L1 976.400 3 0.761
L2 976.400 43 0.992
L3 976.400 5 0.940
L4 976.400 14 0.969
L5 976.400 6 0.881
L6 1202.300 20 0.959
L7 1210.800 1 0.897
L8 1045.100 3 0.896
L9 1045.100 16 0.943
L10 1152.750 5 0.903
L11 1152.750 2 0.678

The maximum rotational speed during load rejection is an important index of hydraulic
transient control. For the two field experiment cases on load rejection, the simulation results
of MOC (Scheme 1), MOC (Scheme 2), and second-order FVM are given to compare the
experimental rotational speed in Table 6 and Figures 9a and 10a, and the corresponding
transient pressures at the worm gear are displayed in Figures 9b and 10b.

Table 6. Maximum rotational speed during 100% load rejection in two field experiment cases and the
calculation results of MOC and FVM.

Experiment Case Experimental Rotational Speed
(r·min−1)

FVM
(r·min−1)

MOC (Scheme 1)
(r·min−1)

MOC (Scheme 2)
(r·min−1)

A 283.84 282.416 281.455 280.946
B 279.2 279.076 278.081 277.672
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Figures 9a and 10a show that the MOC (Scheme 1), MOC (Scheme 2), and FVM
simulation results of unit rotation speed during 100% load rejection basically matched
with the experimental results. However, the second-order FVM model better reproduced
the experimental data, and the simulation results were more accurate than those of MOC.
The reason for the larger calculation error caused by MOC is that MOC adjusts the water
hammer wave speed or reduces the Courant number. Compared with MOC (Scheme 2),
the simulation results of MOC (Scheme 1) were slightly better. The reason for this result
is that the Courant number Cr in MOC (Scheme 2) in each pipe section was less than
one, which led to more serious dissipation of the MOC (Scheme 2) than that of the MOC
(Scheme 1) with slight wave speed adjustment. However, FVM does not need to adjust
the wave velocity of the pipe, and only needs to reduce the Cr condition appropriately.
Compared with MOC, FVM not only simplified the simulation process, but also had better
calculation accuracy.

As shown in Figures 9b and 10b, for the simulation of the pressure at the worm gear,
the FVM simulation results were more stable with less fluctuation than those of both MOC
(Scheme 1) and MOC (Scheme 2).
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5.2.3. Effect of Air Chamber Parameters on the Error of MOC Scheme

The abovementioned results demonstrated that the second-order FVM method pro-
posed in this paper could perfectly reproduce the exact solution and the field experimental
data in the simple pipe system and the real complex pipe system. In this section, the
second-order Godunov FVM simulation results are taken as the benchmark to study the
effect of air chamber parameters on the error of MOC (Scheme 1).

A. The effect of static water depth in design condition

Here, the air chamber control constant method CT0 is used, keeping P0·V0 constant.
When the cross-section area of air chamber remains unchanged, the P0·l0 value can be
treated constant, in which l0 is the air length of air chamber. So, the static water depth Ls0
under design condition can be derived from the total height of the air chamber and air
length. In this paper, five static water depths Ls0 were selected to study their effects on 100%
load rejection hydraulic transients of the power station. The MOC and FVM simulation
results are shown in Table 7 and Figure 11.

Table 7. Comparison of the maximum rotational speeds calculated by FVM and MOC with differently
designed air chamber water depths.

Design Water Depth(m) Maximum Rotational Speed (FVM) Maximum Rotational Speed (MOC)
(r·min−1) (r·min−1)

4.8 278.068 277.068
5.4 278.55 277.555
6 279.076 278.081

6.6 279.626 278.629
7.2 280.154 279.148
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As shown in Table 7 and Figure 11, with the increase of Ls0, the maximum rotational
speed gradually increased. The error of MOC calculation had a trend of decreasing and
then increasing, with a slight change between 0.35% and 0.36%.

B. The effect of air cushion height

Under the given values of the design air pressure and design water depth, as the roof
elevation of the air chamber increased, the air cushion height (air length) l0 increased. Five
air cushion height (air length) l0 were selected to study their effects on 100% load rejection
hydraulic transients of the power station. The MOC and FVM simulation results are shown
in Table 8 and Figure 12.
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Table 8. Comparison of the maximum rotational speeds calculated by FVM and MOC with different
air cushion heights.

Air Cushion Height (m) Maximum Rotational Speed (FVM) Maximum Rotational Speed (MOC)
(r·min−1) (r·min−1)

4 279.076 278.081
5 278.202 277.203
6 277.459 276.451
7 279.626 275.836
8 276.363 275.336
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As shown in Table 8 and Figure 12, with the increase of air cushion height (air length)
l0, the maximum rotational speed gradually decreased. The error of MOC calculation
had a trend of decreasing, with change between 0.355% and 0.375%. It indicates that the
simulation effect of MOC became worse with the increase of air cushion height. For high
head hydropower plants, when the air cushion height is large, it is advisable to use FVM
for simulation in order to ensure the calculation accuracy.

C. Effect of polytropic exponent k

The thermodynamic process of the closed air chamber was between isothermal and
isentropic, and polytropic exponent k ranged from 1.0 to 1.4, which is the range commonly
recognized and adopted at present [1]. Five polytropic exponents k were selected to study
their effects on 100% load rejection hydraulic transients of the power station. The MOC
and FVM simulation results are shown in Table 9 and Figure 13.

Table 9. Comparison of the maximum rotational speeds calculated by FVM and MOC with different
polytropic exponents.

Polytropic Exponent Maximum Rotational Speed (FVM) Maximum Rotational Speed (MOC)
(r·min−1) (r·min−1)

1 279.077 278.082
1.1 279.077 278.081
1.2 279.076 278.084
1.3 279.076 278.082
1.4 276.076 278.081
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As shown in Table 9 and Figure 13, with the increase of polytropic exponent k, the
maximum rotational speed gradually increased. The error of MOC calculation had a trend
of increasing, with slight change between 0.022% and 0.029%.

6. Conclusions

In this paper, the second-order FVM Godunov scheme model was developed to simu-
late hydraulic transients and load rejection in a hydropower plant with an air chamber. The
virtual boundary strategy was proposed to simply and effectively handle the complicated
boundary problems. The results of the proposed model were compared with MOC results,
the exact solution, and the measured data. The main conclusions are as follows.

(1) The second-order FVM Godunov scheme model can more accurately, stably, and
efficiently simulate the water hammer problem in pipe systems. When the Courant number
was Cr = 1, both calculated results of FVM and MOC were consistent with the exact
solution. When the Courant number was Cr < 1, both computational results had numerical
dissipation. As the Courant number gradually decreased, the second-order FVM simulation
results were more stable. For the given Courant number, the numerical dissipation of MOC
was more serious. The second-order FVM is more efficient for the same accuracy.

(2) For the load-rejection process of hydropower units containing an air chamber,
the results calculated by the proposed FVM model were basically consistent with the
measured rotational speed variation, which verifies that the second-order FVM model
can be accurate for the simulation analysis of load-rejection process of hydropower units
containing complex pipe systems.

(3) For complex pipe systems, the second-order FVM model better reproduced the
experimental data, and the simulation results were more accurate than those of MOC.
The reason for the larger calculation error caused by MOC is that MOC adjusts the water
hammer wave speed or reduces the Courant number. The second-order FVM does not
need to adjust the wave velocity of the pipe, and only needs to reduce the Cr condition
appropriately. Compared with MOC, FVM not only simplifies the simulation process, but
also has better calculation accuracy.

(4) The error of MOC calculation is associated with the air chamber parameters. For
the current case of hydropower plant, with the increase of static water depth in the design
condition, the error of MOC calculation had a trend of decreasing and then increasing,
with a slight change between 0.35% and 0.36%. With the increase of air cushion height (air
length), the error of MOC calculation had a trend of decreasing, with a change between
0.355% and 0.375%. With the increase of polytropic exponent k, the error of MOC calculation
had a trend of increasing, with a slight change between 0.022% and 0.029%.
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Overall, the second-order FVM model was robust in simulating the water hammer
problems in a simple or complex pipe system. Considering the higher accuracy, stability,
and efficiency, the high-order FVM is feasible and suggested for water hammer simulation
in real hydraulic systems with more complicated pipe components and devices.
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