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Abstract: This study describes a novel methodology for the prediction of spring hydrographs based
on regional climate model (RCM) projections, with the goal of evaluating climate-change impact on
karstic-spring discharge. A combined stochastic-analytical modeling methodology to predict spring
discharge was developed and demonstrated on the Bukovica spring catchment at the Durmitor
National Park, Montenegro. As a first step, climate model projections of the EURO-CORDEX
ensemble were selected; and then bias correction was applied based on historical climate data.
The regression function between rainfall and peak discharge was established by using historical
data. Baseflow recession was described by using a double-component exponential model, where
hydrograph decomposition and parameter fitting were performed on the Master Recession Curve.
Rainfall time series from two selected RCM scenarios were applied to predict future spring-discharge
time series. Bias correction of simulated hydrographs was performed, and bias-corrected combined
stochastic—analytical models were applied to predict spring hydrographs based on RCM-simulated
rainfall data. Both simulated climate scenarios predict increasing peak discharges and decreasing
baseflow discharges throughout the 21st century. The model results suggest that climate change is
likely to exaggerate the extremities both in terms of climate parameters and spring discharge by the
end of the century both for moderate (RCP 45) and pessimistic (RCP 85) CO, emission scenarios.
To investigate the temporal distribution of extremities throughout the simulated time periods, the
annual numbers of flood and drought days were calculated. Annual predicted flood days show
an increasing trend during the first simulation period (2021-2050) and a slightly decreasing trend
during the second simulation period (2071-2100), according to the RCP45 climate scenario. The same
parameter shows a stagnant trend for the RCP 85 climate scenario. Annual predicted drought days
show a decreasing trend both for the RCP 45 and RCP 85 climate scenarios. However, the annual
number of drought days shows a large variation over time. There is a periodicity of extremely dry
years with a frequency between 5 and 7 years. The number of drought days seems to increase over
time during these extreme years. The study confirmed that the applied methodology can successfully
be applied for spring-discharge prediction and that it offers a new prospect for its wider application
in studying karst aquifers and their behavior under different climate-change scenarios.

Keywords: spring hydrograph; stochastic model; analytical model; climate change

1. Introduction

Karst aquifers represent one of the globally most important sources for potable water
supply. According to Stevanovié [1], around 9.2% of the human population drinks karst
water. In certain countries of Southeast Europe, which are mainly occupied by carbonate
rocks, such as Slovenia or Austria, more than 50% of the total water consumption is supplied
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from karst aquifers. Montenegro has the highest utilization of karst water, with 80% of its
territory occupied by uncovered carbonate karst [2] and about 90% of the population using
karst water for drinking purposes [1]. However, even there, extended dry periods might
result in the decrease or cessation of spring discharge and thus endanger the continuity of
water supply which is based on karst water [3].

In the meanwhile, karst springs are not only important sources of water; they also
represent a significant risk to the human population. Flash floods are unforeseen surges
of spring water that often endanger the built environment and human life, and bacterial
epidemics related to the rapid transport of contaminants in karst conduits during flood
events represent significant health risks.

According to the climate projections of the Intergovernmental Panel on Climate
Change (IPCC), significant temperature rise, together with alterations in the amount and
frequency of precipitation, can be expected globally throughout the rest of the 21st cen-
tury [4-6].

Climate change (CC) results in changes in the intensity, frequency, spatial extent,
duration, and timing of extreme climate events, and it can cause unprecedented extreme
events [7]. The observations gathered since 1950 prove the change in some extremes
and that these changes result from anthropogenic influences, such as the increases in
atmospheric greenhouse-gas concentrations.

Some of the greenhouse-gas-emission scenarios initially developed by the IPCC [5]
commonly make climate projections by manipulating general circulation models/global
climate models (GCMs), as was achieved in projects such as PRUDENCE [8], ENSEM-
BLES [9], or CORDEX [10]. However, there is no single CC scenario that is appropriate
for all circumstances. The applied scenario should be chosen according to context and
local conditions, while the accuracy of models depends on the grid scale and the ability to
understand and measure climate processes [11].

Since the 1950s, a trend toward more intense and longer droughts has been experi-
enced in some regions of the world. Because of reduced precipitation and/or increased
evapotranspiration, droughts are predicted to intensify in the 21st century in many areas
according to all model predictions. It is also expected that the frequency of heavy rainfall
events will increase in the 21st century over many areas of the globe. This is especially the
case at high latitudes and tropical regions, as well as during winter in the northern mid-
latitudes. The intensity of tropical cyclones with heavy rainfalls is expected to increase with
the continued warming resulting from greenhouse gas emissions. In some regions, such as
parts of the Mediterranean Basin, despite the projected decrease in total precipitation, the
intensity of heavy rainfall will increase [12].

Changing climate variables influence the hydrological cycle by impacting the surface
runoff, evapotranspiration, and recharge of aquifer systems [13]. In the case of karst
aquifers, spring discharge strongly correlated with rainfall. For this reason, climate change
has direct impacts on water supplies based on karst springs [14].

The goal of the present paper is to outline a methodology for the prediction of spring-
discharge time series based on forecasted-rainfall time series that were derived from
regional climate model projections. For this purpose, a combined stochastic—analytical
modeling approach was developed. The study aimed at modeling the direct impacts of
climate change on spring hydrographs; it did not aim at simulating indirect impacts, such
as increased groundwater extraction, land-use change, etc. The introduced methodology
is demonstrated in the Dinaric karst, using the Bukovica spring catchment of the Drina
River Basin, Savnik municipality, Montenegro, as the example. This area is characterized
by a high karstification rate, abundance of surface karst features, and the lack of surface
hydrographic network. The Bukovica spring catchment belongs to the Durmitor national
park, comprising the Tara River canyon, the deepest canyon in Europe, which is a UNESCO
protected reserve.

The methodology presented in this article was developed during a regional study [15]
that aimed to assess the impact of CC on this important natural reservation area and karst
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aquifer, which is the main water source for entire region. As the primary goal of this
paper was to develop and demonstrate a methodology, only a limited set of climate model
scenarios were investigated.

2. Precedents

Various authors have attempted to develop a mathematical characterization of spring
hydrographs to provide spring-discharge predictions. These methods can be classified
based on the investigated hydrograph duration and the representation of the physical
processes behind the functioning of karst systems.

Time-series analyses investigate the hydrograph of a karst system during a succession
of recharge events. These methods are based on mathematical operations, and their results
cannot be directly related to physical characteristics. On the other hand, these methods
can deal with long time series and have the ability for characterizing uncertainty related
to the spatiotemporal heterogeneity of rainfall, recharge, and aquifer properties. Most
of the methods used in time-series analysis were principally developed by Jenkins and
Watts [16] and some later works. These investigations mainly focused on forecasting
and data completion. The application of time-series analyses to the description of the
functioning of karst aquifers first appeared in Mangin [17-20]. Some further applications
of these methods were presented in [21-25]. Amongst others, Fiorillo et al. [26] performed
statistical and specific correlation data analyses to establish the relationship between spring
discharge and rainfall. Fiorillo and Doglioni [27] investigated the relation between rainfall
and the discharge from two springs located at the base of different karst massifs in Southern
Italy by cross-correlation analyses, for example.

Reservoir or ‘bucket’ models can provide simple input-output relationships between
rainfall and spring discharge. Spring hydrographs are traditionally simulated by using
reservoir models. The simplest model configuration includes two reservoirs: the first
reservoir represents the low-permeability matrix discharging into the conduit system,
while the second reservoir represents the high-permeability conduit system [28]. Several
other components can be added, and reservoir configurations can be applied to better
simulate the infiltration process and to obtain a better fit to spring discharge, as described
in [29-34] and several other studies.

Analytical methods can be applied for obtaining quantitative information about the
hydraulic and geometric properties of karst aquifers. The one-dimensional analytical
solutions [35,36] and the two-dimensional analytical solutions provided by Kovacs [37,38]
showed that the recession coefficient («) is proportional to the ratio T/SL? where L is block
size [L], T is the hydraulic transmissivity [L2T1], and S is the storativity [-] of the rock
matrix. The work of these authors made the estimation of conduit spacing and rock matrix
hydraulic properties possible from hydrograph analysis.

Artificial neural networks (ANNSs) or their subgroup of deep learning (DL) approaches
offer an alternative possibility of modeling by being able to establish an input-output
relationship automatically. The advantage of the ANN is that it does not necessitate a priori
knowledge about the system it represents and is able to implement nonlinearity. A particu-
lar model called the multilayer perceptron can approximate any derivable function [39,40].
In hydrology, neural networks have been shown to be effective for the identification of
rainfall-discharge (or water level) relation prediction applications [41-44]. In examining
karst system modeling more specifically, the effectiveness of such models in simulating and
short-term forecasting karst outlet discharge has also been proven [45,46]. However, more
recent works have focused on the ability to interpret these models with actual physical
meaning [47]. In the study of Kong-A-Siou et al. [48], rainfall-water-level models were
proposed in addition to rainfall-discharge models.

As detailed above, several different methods have been developed and applied for
the prediction of spring discharge. Each has its advantages and shortcomings. The main
motivation for developing a new method was to integrate the advantage of stochastic
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methods of being able to deal with the spatial and temporal variability of rainfall with the
advantage of analytical models of providing a physics-based description of flow processes.

3. Materials and Methods
3.1. Hydrograph Features

The plots of spring discharge versus time are referred to as spring hydrographs.
Hydrographs consist of a succession of individual peaks, each of which represents the
response of the aquifer given to a recharge event (Figure 1). Each hydrograph peak consists
of a rising and a falling limb. The inflection point on the falling limb indicates the end of
direct recharge. The steep segment before the inflection point is called the flood recession,
while the flat segment after the inflection point is referred to as the baseflow recession.
Quickflow originates from direct recharge through sinkholes and vertical shafts collecting
water from sinking streams and from the epikarst. This component of hydrograph peaks is
influenced by the topography, land use, soil and epikarst characteristics, and depth of the
saturated zone. These properties might influence the proportion, temporal distribution, and
temporal delay of quickflow compared to rainfall. Baseflow originates from water released
from the low-permeability matrix blocks and is much less influenced by the temporal and
spatial variations of rainfall than quickflow. The recharge of matrix blocks takes place
through diffuse infiltration from the surface and through gradient inversion between the
blocks and neighboring conduits (bank storage) [28].

=Q{baseflow)
—Q(total)

Inflection point:
end of recharge

discharge

Baseflow

Figure 1. Characteristic features of a hydrograph peak.

3.2. Hydrograph Analysis

The first mathematical models of baseflow recession were provided by Boussinesq
and later by Maillet [35,49]:

Quy = Qoe ™ (1)

where Q; is the discharge [L3T—1] at time ¢; Qy is the initial discharge [L3T~!] at an earlier
time; and « is the recession coefficient [T~!], which is usually expressed in days. Plotted
on a semi-logarithmic graph, this function is represented as a straight line with the slope «.
This equation is usually adequate for describing karst systems at low water stages.

The earlier stages of baseflow recession usually deviate from the simple exponential
formulaof Maillet [49]. Forkasiewitz and Paloc [50] realized that the decreasing limb of
hydrograph peaks can usually be decomposed into several (usually three) exponential
segments. These authors introduced the concept of hydrograph decomposition. During
decomposition, exponential terms are fitted on the flattest section of a spring hydrograph
and are successively subtracted from the residual hydrograph (Figure 2).
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Figure 2. Hydrograph decomposition according to the concept of Forkasiewitz and Paloc [51].

Forkasiewitz and Paloc [50] assumed that different segments of a spring hydrograph
peak represent different parallel reservoirs, all contributing to the discharge of the spring.

Qu = Qe 4 Qpe2t 4 Qpe0et 2
Schoeller [51] assumed that successive exponential decreasing limbs on spring hydro-
graphs are due to changes of flow regimes (from turbulent to laminar).

Kovacs [37,38] provided an exact analytical solution to baseflow, and Kovacs and

Perrochet [52] showed that baseflow recession can be described as a sum of infinite number
of exponential components:

Q=) Qe ™! ®)
i=1

These authors demonstrated that exponential components usually do not represent

different permeability classes; instead, they are the consequence of transient phenomena
during the emptying of low permeability matrix blocks.

3.3. Analytical Solution

The analytical solutions described in [37,38,52,53] were based on a conceptual model
of karst visualized in Figure 3. This model comprises a rectangular conduit network
immersed in the low-permeability rock matrix forming matrix blocks. The conduit network
has one outlet, which is the karst spring. This simple but effective model can be described by
defining the hydraulic parameters of the low-permeability matrix, the hydraulic parameters
of the conduit system, the conduit spacing, and the spatial extent of the aquifer.
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Figure 3. Conceptual model of karst systems. T, [L2T~1] is matrix transmissivity, S, [-] is matrix
storativity, K. [L3T~1]is conduit conductance, S, [L] is conduit storativity, A [L2] is catchment area,
Ly and Ly [L] are block dimensions, x and y are distance of observation well from block center, and ap
and ag are well and spring hydrograph recession coefficients. Based on Kovacs and Perrochet [53].

An analytical solution for diffusive flux from a two-dimensional asymmetric rectangu-
lar block encircled by uniform head boundary conditions can be expressed as follows [52]:

_ B2 u(2n+l —ﬂﬂ (Zn+l)
Q(t) 64TH0 {ﬁ Z e—P*( (2n+1)? Zn 0 i +1 Zn a(2n+1)? Zn 0 W } (4)
where initial conditions comprise uniform hydraulic head distribution over the block

surface; and

T and p = ©

a =
Sz L,

where T [L2T1] is the block transmissivity, S [-] is the block storativity, Ly and L [L] are
the block size, and  [-] is the asymmetry factor. It follows from Equation (4) that

(13+ ) e—a(1+F%) 4+ (ﬁ+ 1) a(1496%) 4 (g+%)e—a(9+ﬁ2)+ (g+%)379u(1+ﬁ2)+
Qu = %HOT + fs*zs;s) ~250(1+p%) (ﬁ +2§ﬁ)e’“(9+2552)+ (%+#)fﬂ(zs+9ﬁl)+ (6)
+ ﬁ+ﬁ)e—n(1+25ﬁ2)+ (%+%)e—a(25+52)+

Kovacs and Perrochet [52] demonstrated that, although baseflow can be expressed as
the sum of an infinite number of exponential components, higher-order components vanish
at early times of the recession process, and thus baseflow recession can be sufficiently
approximated as the sum of three exponential components (Figure 4).

Kovacs et al. [54] applied the above 2D analytical solution for to derive hydraulic
and geometric parameters and investigate the hydrodynamic functioning of the Biikk
karst system located in NE Hungary. Kovacs [55] introduced a quantitative method for
the classification of strongly heterogeneous (karst and fractured) hydrogeological systems
based on the above analytical solution.
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Figure 4. Exponential components of the analytical solution of Kovacs and Perrochet (2008).

3.4. Methodology

According to Hiscock [13] and Allen [56], by coupling climate model projections with
observed historical data of a spring’s discharge, it is possible to establish a correlation or
cross-correlation between climate elements and the groundwater regime [13,56].

Reservoir models establish a direct mathematical relationship between rainfall and spring
discharge. The assumption behind this approach is that rainfall data are representative of the
entire catchment, and rainfall is homogeneous both in space and in time during the timesteps
applied in the model. Moreover, the rainfall-runoff model applied is based on uniform runoff
and uniform evapotranspiration over an entire catchment for each timestep. These are the
general limitations of applying a one-dimensional model in a distributed space.

In reality, rainfall data include the following uncertainties:

e  While rainfall is distributed in space, rainfall data are punctual or originate from
interpolation between discrete data points.

e  While rainfall is distributed in time, rainfall data are discretized in time, and each
timestep includes aggregated values of rainfall.
Weather stations are often located outside of the studied catchment.
Furthermore, the prediction of discharge is based on regional climate model outputs
with a spatial resolution of 12.5 km.

For this reason, establishing an explicit relationship between rainfall data and spring
discharge might be problematic or misleading.

Although discharge peaks show a reasonable correlation with daily rainfall data,
spring baseflow has insufficient correlation with rainfall. This is a direct consequence of the
physical functioning and the dual hydraulic behavior of karst. While the hydrograph peaks
(flood) originate from direct recharge into the saturated part of an aquifer, the baseflow
originates from the release of water infiltrated into and stored in the low-permeability
matrix blocks. The baseflow is temporally delayed compared to discharge peaks, which
result from quick aquifer reaction to rainfall. For this reason, it is not possible to describe
these two different physical processes with one regression function. While flood discharges
can be approximated through the application of regression functions between rainfall and
discharge, the description of baseflow discharge requires the application of physics-based
analytical functions.

A novel combined stochastic—analytical method is introduced in this paper for the
characterization of spring hydrographs based on measured daily rainfall data. Other
deterministic factors which also influence the hydrogeological regime of karst aquifers,
such as land cover, vegetation, soil type, unsaturated zone thickness, epikarst characteristics,
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and aquifer characteristics, are not considered separately in this methodology. Similarly,
water-budget components, such as evapotranspiration and surface runoff, are not required
to be calculated. Consequently, the introduced method provides a simpler, but more
efficient way for modeling spring discharge.

Such a combined modeling method involved the establishment of regression functions
between rainfall and peak discharge, and the simulation of peak discharge based on future
rainfall time series predicted by regional climate models.

The baseflow component of spring discharge was simulated by using two-dimensional
analytical solutions introduced by Kovacs [37,38,52]. Fitting parameters were calibrated
based on available historical rainfall and discharge data.

The prediction of future spring-discharge time series comprised the following steps
(Figure 5):

e  Selection of climate projections assumed to describe future climate conditions. Out

of several possible combinations, the selected climate model included the RCP4.5

and RCP8.5 radiative forcing scenarios. The investigated regional climate models are

provided in Table 1;

Selection of hydrograph peaks and creation of peak-discharge dataset;

Setting up regression models between rainfall and peak discharge;

Establishment of a Master Recession Curve (MRC);

Hydrograph decomposition for determining recession coefficients and the baseflow

component of spring discharge;

e  Simulation of spring discharge for the calibration period, using measured rainfall and
comparison between measured and simulated hydrographs;

e  Calibration of the combined stochastic-analytical model through the adjustment of
initial values of baseflow components;

e  Simulation of spring discharge, making use of rainfall time series from RCM projec-
tions for the calibration period;

e  Determining the bias correction model of RCM-simulated spring hydrograph by
regression analysis, using measured hydrograph;

e  Simulation of predictive hydrographs based on the calibrated combined stochastic—
analytical model and bias correction of simulated discharge time series.

e  Analysis and descriptive statistics of predictive model results.

Table 1. Investigated regional climate model projections.

GCM RCM Scenario Scenario Number
CNRM-CERFACS-CNRM-CM5 CLMcom-CCLM4-8-17 RCP45 1
CNRM-CERFACS-CNRM-CM5 CLMcom-CCLM4-8-17 RCP85 2

In our analysis, the daily bias-adjusted data, as provided by EURO-CORDEX, were
used [10,57,58]. These include a whole ensemble with different bias adjustments to quantify
ensemble averages and uncertainties. The bias-correction technique employed [59] was
originally developed by Piani et al. [60,61]. The applied method is based on the calculation
of a parametric transfer function.

The applied RCM projections with lowest bias were selected from 15 models of the
EURO-CORDEX ensemble based on the distribution-based scaling method [62]. This
method is designed to preserve the future variability of RCM data. In this study, high-
resolution reanalysis data, which were statistically downscaled to a grid spacing of 5 km
for the period 1989-2010, using the MESAN downscaling scheme, were applied [63]. A
reanalysis run is a run with a dynamical climate model that is regularly nudged toward
observations. When comparing the bias-adjusted ensemble with the gridded observations
in terms of spatially averaged monthly values, we obtain reduced ensemble average RMSEs
of 1.2 °C and 20 mm and reduced mean bias errors of 0.97 °C and 12 mm for near-surface
air temperature and precipitation, respectively. This was considered appropriate for our
purposes. To assess the effect of different scenarios, we investigated the Representative
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Concentration Pathway (RCP) scenarios [64] RCP4.5 and RCP8.5, which include additional
radiative forcing values in the year 2100 of 4.5 W/m? and 8.5 W/m? compared to pre-
industrial values. In the RCP8.5 scenario, greenhouse gas emissions rise throughout the
21st century, and a global increase of near-surface air temperatures between 2.6 °C and
4.8 °C in 2081-2100 compared to 19862005 is likely [65]. This scenario corresponds to the
current CO, emission pattern.

—
Discharge Dataset]

RCM Database

Rainfall B@

MRC analysis Bias correction

identification

} ! }

Regression Hydrograph Corrected RCM

analysis decomposition projections
" Discharge
Floodr:;sd(;r:a roe Baseflow model simulation for npéfg‘?}:;‘ s
histarical period ydrog
Bias correction of
Model calibration | rainfall-discharge
model
Calibrated Corrected
rainfall g fall-discharge —
model. model

Figure 5. Combined stochastic-analytical discharge modeling workflow.

In the RCP4.5 scenario, greenhouse gas emissions peak around 2040 and decline
afterward, and a global increase of near-surface air temperatures between 1.1 °C and 2.6 °C
in 2081-2100 compared to 1986-2005 is likely [65]. This scenario is a moderate scenario.
Still, in RCP4.5, it is more likely than not that the global near-surface temperature change
exceeds 2 °C at the end of the 21st century, relative to the 1850-1900 conditions [65].

Due to available data of Bukovica spring discharge, our analysis included one historical
period (2008-2010) and two predictive periods: 2021-2050 and 2071-2100.

Concerning the fact that discharge data were available from only a short measurement
period (three years), we decided to use all of these data for model calibration rather than
splitting the dataset and performing model validation. This might increase model uncertainty,
but the relatively low estimation error and the satisfactory fit between simulated and measured
values verify the efficiency of the proposed method. The uncertainties and level of confidence
of the method can be better evaluated if a longer historical dataset is available.

A list of the selected climate model scenarios applied for discharge modeling is
indicated in Table 1.

CNRM-CMS is an Earth system model that was designed at the French National
Centre for Meteorological Research to run climate simulations. It consists of several existing
models designed independently and coupled through the OASIS software developed at
CERFACS [66]. The CLMcom-CCLM4-8-17 RCM data of CORDEX simulations with the
CCLM4-8-17 regional climate model for Europe, high resolution (EUR-11), are provided by
CLMcom [67].

Based on the analysis of several climate model projections, the climate-modeling
study [15] concluded that, at the annual level, in the observed period, there was an increase
in precipitation in the western sections of the basin, whereas decreased precipitation was
observed in the east and southeast part.

The ensemble average predicts a decrease of precipitation during summer months of
up to 17 mm (20% of the observed value in November during the historical period). During
the winter months and in particular November, an increase of precipitation of up to 28 mm
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was predicted (15% of the observed value in November during the historical period). The
calculated climate-change signal (CCS) for precipitation shows larger spatial differences of
up to 40 mm; however, this is only for small areas within the catchment area. In general,
the pixels in the southern part of Drina River Basin, closer to the Adriatic Sea, which also
receives more precipitation in the historical period, show stronger CCSs than the pixels
farther away from the sea [15].

4. Test Site

The Bukovica catchment is located in the Durmitor area in the northern part of Mon-
tenegro. In general, the topography of Northern Montenegro was formed during the
tectonic movements and uplifting of the Dinaric mountain system, which extends along
the northwest-southeast direction, and parallel with the Adriatic coast.

The study area belongs to the Durmitor and Sinjajevina Mts. Foothills, which comprise
karstified Mesozoic rocks. After the retreat of seawater in the late Mesozoic, the carbonate
rocks were uplifted, intensively folded, and exposed to weathering, which resulted in the
high karstification degree of the rock mass.

During the Pleistocene, the area underwent intensive glaciation and structural and
morphological evolution. The intensive karstification resulted in the formation of a large
variety of karstic features. Karstic aquifers were formed within a very thick (over 3000 m)
complex of Mesozoic limestones and dolomites.

Within this karstified mountainous system stretching to 2500 m above sea level, under-
ground and surface karst forms developed, along with glacial lakes and other features. The
recharge of karst aquifers takes place in diffuse form from precipitation and in concentrated
form from sinking rivers. The average value of effective infiltration is approximately 70%,
while the depth of the water table is estimated to be more than 300 m in most of the catchment.

As a result of intensive karstification, a network of highly permeable underground
channels acts as preferential pathways for intensive groundwater circulation. The ground-
water flow directions were defined by several tracing tests, which showed an average
apparent flow velocity of 0.025 m/s [68]. The drainage of karst aquifers takes place over
several very large springs. Glava Bukovice is the main and largest spring in the Eastern
Durmitor foothill (Figure 6).

Figure 6. Regional hydrogeological map of the Drina River Basin, Montenegro. Black square indicates
Bukovica spring location. Based on Stevanovi¢ and Blagojevié [15].
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The downstream part of the Bukovica River cuts through Lower Triassic low-permeability
rocks and receives water from several tributaries. Before their confluence in Tusinja village,
the discharge was measured at the hydrological station of Timar. The inflow between the river
source and this section mostly results from underground drainage, as not many tributaries
exist in between.

Discharge data were available for the period between 21 July 2006 and 28 August
2007 and between 1 January 2008 and 31 December 2010. Because of the significant gap in
the time series, only the second, longer section could be applied for the calibration of the
regression model.

5. Simulating Discharge Peaks by Regression Analysis

Discharge peaks were simulated by using classical regression analysis.

As an initial step of the regression analysis, the cross-correlation between daily rainfall
and daily discharge was calculated. The results for the time lags between 1 and 10 days are
indicated in Figure 7.

Cross-correlation, rainfall-discharge

0.8
0.6
0.4

0.2

correlation coefficient

0 2 4 6 8 10
lag (days)

Figure 7. Cross-correlation between daily rainfall and discharge of the Bukovica River.

It can be clearly seen from Figure 7 that the highest correlation exists forzero time
lag, meaning that the system has a quick reaction to rainfall and that the time lag between
rainfall peaks and spring-discharge peaks is less than 12 h. For this reason, a regression
analysis was performed on daily raw data between rainfall and spring discharge. One of
the main advantages of the proposed methodology is that it can be applied in situations
when the lag time of the system is shorter than the temporal resolution of field observations.
In such situations, classical hydrological modeling methods would be inefficient to capture
the transfer function.

We need to acknowledge the following:

e  Spring discharge is a combination of quickflow (originating from concentrated recharge)
and baseflow (originating from diffuse recharge and water release from the rock matrix);
Quickflow is directly related to rainfall;

Baseflow is delayed by diffusive processes compared to rainfall.

For these reasons, the first step of our analysis is to find a correlation between rainfall
and spring-discharge peaks. Only these data were applied in regression analysis, as
baseflow was simulated through analytical models.

To identify discharge peaks, hydrograph segments with at least two, five, and ten days
of undisturbed rising and then undisturbed falling discharge were selected. A comparison
of these criteria indicated that data points preceded by two days of monotonously rising
discharge and followed by two days of monotonously falling discharge best coincide with
measured discharge peaks (Figure 8).
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Figure 8. Measured spring hydrograph and discharge-peak identification, Bukovica spring.
Qmax(2 days) indicates that two days’ monotonously rising and then falling discharge was used as peak
selection criterion.

As the goal was to simulate peak discharge as a first step, a simple squared-X regression
model was applied without constant. Based on the temporal distribution of discharge data,
the general form of the best regression function is as follows (Figure 9):

Qmax = 0.00284308 x p?

where Qyuay is the peak discharge (m?/s), and p is the daily precipitation (mm).

Plot of fitted model
Q0=0.00284-p(mm)?

40 T T T T T T T

Qmax

0 20 40 60 80 100 120

Figure 9. Regression model of peak discharge vs. rainfall.

The analysis of the fitted regression model has the following error statistics (Table 2):

The R-Squared statistic indicates that the model as fitted explains 66.5% of the vari-
ability of discharge peaks. The correlation coefficient equals 0.82, indicating a moderately
strong relationship between the variables. The standard error of the estimate shows the
standard deviation of the residuals to be 4.86. The mean absolute error (MAE) of 3.82 is the
average value of the residuals.
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Table 2. Error statistics of regression analysis between rainfall and peak discharge.

Statistical Measure Value
Correlation coefficient 0.82
R-squared 0.66
Standard error of the estimate 4.86
Mean absolute error 3.82
Durbin-Watson statistic 1.01
Lag 1 residual autocorrelation 0.49
Correlation coefficient 0.66

6. Simulating Baseflow by Analytical Model

As explained in the previous chapters, baseflow of karst springs originates from the
diffusive emptying of low-permeability matrix blocks [28]. As the recession process is
temporally delayed compared to the rainfall event, it cannot be mathematically described
using regression functions between rainfall and discharge.

Instead, analytical models can be applied to characterize baseflow. To obtain a simple,
but satisfactory mathematical formula describing baseflow at the Bukovica spring, the
Master Recession Curve (MRC) was created from the available discharge dataset. We
applied the Hybrid Genetic Algorithm [69] for the generation of a Master Recession Curve.
The method of genetic algorithms is considered to be a part of artificial intelligence group of
methods. Genetic algorithms are based on the principles of Darwin’s evolutionary theory
and can be described as stochastic search methods. The method is described in [69]. The
MRC of the Bukovica dataset is indicated in Figure 10.

Legend

Evolution MRC

2. Linear reservoir
1. Linear reservoir

Discharge [Qlsec|

Figure 10. Master Recession Curve of the Bukovica discharge time series, and its decomposition.

Based on curve fitting and decomposition of the MRC of the Bukovica hydrograph,
baseflow recession can be mathematically described using the following formula:

Quy = 267 + ( Qpea —2) e )

where Qe is calculated from rainfall data, using the regression function described in the
previous chapters.

The simulated hydrograph is indicated in Figure 11. The box-and-whisker plot of
measured and simulated hydrographs is indicated in Figure 12.
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Figure 11. Comparison between measured and simulated hydrographs based on measured rainfall data.
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Figure 12. Box-and-whisker plot of measured and simulated spring hydrographs.

The comparison between measured and simulated discharge data indicates a slight
deviation for mid-range discharges, but an excellent fit for peak and baseflow discharges.

According to the combined model, the complete hydrographs were estimated making
use of the regression function and the above simplified analytical solution.

A statistical comparison between measured discharge and applied models is summa-
rized in Table 3.

The flow duration curve of the model and measurements is indicated in Figure 13. A
flow duration curve illustrates the percentage of time a given streamflow was equaled or
exceeded during a period of time. In other words, a flow duration curve provides a graphical
representation of the hydraulic behavior of a catchment under various flow conditions.

The goodness of fit of the proposed model was evaluated by using the Nash-Sutcliffe
efficiency (NSE) and the Kling-Gupta efficiency (KGE).

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that determines the
relative magnitude of the residual variance compared to the measured data variance [70].
The Nash-Sutcliffe efficiency indicates how well the plot of observed versus simulated data
fits the 1:1 line.
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Table 3. Summary statistics of applied models.

Q_measured_(m3/s) Q_simulated_(m?3/s)
Count 1096 1095
Average 2.39 1.93
Standard deviation 3.27 3.11
Variance 10.72 9.65
Coeff. Of variation 137% 161%
Minimum 0.06 0.06
Maximum 36.45 37.60
Range 36.38 37.54
Stnd. Skewness 57.40 65.75
Stnd. Kurtosis 192.13 229.96
Median 1.36 1.05
Flow Duration Curves - Bukovica, 2008-2010
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Figure 13. Comparison of flow duration curves of the measured and simulated spring hydrographs.

The Kling-Gupta efficiency was developed by Gupta et al. [71] to provide a diag-
nostically interesting decomposition of the Nash-Sutcliffe efficiency (and hence MSE),
which facilitates the analysis of the relative importance of its different components (cor-
relation, bias, and variability) in the context of hydrological modeling. Kling et al. [72]
proposed a revised version of this index to ensure that the bias and variability ratios are
not cross-correlated.

According to Knobel et al. [73], the negative NSE values indicate ‘bad” model perfor-
mance, whereas positive values indicate ‘good” model performance. If the mean flow is
used as a KGE benchmark, all model simulations with —0.41 < KGE < 1 could be consid-
ered to have a reasonable performance. The calculated NSE = 0.349 and KGE = 0.613 thus
indicate a reasonable model fit.

Furthermore, the model seems to slightly underestimate the mid-range discharge; this
is a consequence of smaller peaks neglected by the model. This will be corrected by using
bias-correction techniques. In summary, the model provides a good estimate in the low and
high discharge range, which is the main focus of our study.
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7. Comparison of Measured vs. Projected Rainfall Data (2006-2010)

Generally speaking, the Drina River Basin is located in the transitional zone between
the Mediterranean and the moderate continental types of the pluviometric regime; ac-
cordingly, both types affect the precipitation regime [74]. Based on observations taken
between 1980 and 2005, there was an increase in precipitation in the western sections of
the basin, whereas decreased precipitation was observed to the east of Bijelo Polje and in
the Plav region at the annual level. Parallel with rainfall changes, a statistically significant
temperature increase was observed throughout the studied area at the annual level. It
was most pronounced in the western and northwestern areas and was considerable in the
southeastern section of the basin. The greatest increase occurred between May and August
(Figure 14).
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Figure 14. Measured rainfall and temperature change between 1980 and 2005 in the Drina River Basin.

Regional climate modeling of the study area was undertaken by Stevanovi¢ and
Blagojevi¢ [15]. The ensemble average comprising 15 combinations of GCM/RCM models
predicted a decrease of precipitation during summer months of up to 17 mm (20% of the
observed value during the historical period). During the winter months and, in particu-
lar, November, there is a predicted increase of precipitation of up to 28 mm (15% of the
observed value in November during the historical period of 1980-2005). The model runs
that capture the temperature well with RMSE values ranging from 1.1 °C to 1.2 °C also
captured the precipitation well with RMSE values of 31 mm to 34 mm. The three most
accurate models were selected and bias-adjusted for future scenario simulations by the au-
thors (GCM/CNRM-CERFACS-CNRM-CM5—RCM /CLMcom-CCLM4-8-17, GCM/MPI-
M-MPI-ESM-LR—RCM/SMHIRCA4, and GCM/ICHEC-EC-EARTH—RCM/CLMcom-
CCLM4-8-17). When comparing the bias-adjusted ensemble with the gridded observations
in terms of spatially averaged monthly values, reduced ensemble average RMSEs of 1.2 °C
and 20 mm and reduced mean bias errors of 0.97 °C and 12 mm for near-surface air temper-
ature and precipitation were obtained. Based on the analysis of ensemble averages, both
temperature and precipitation are well represented by the ensemble averaged values, with
mean absolute errors of 1.1 °C and 17 mm, respectively

As stated above, for the purpose of discharge modeling, we applied one RCM projec-
tion (CNRM-CERFACS-CNRM-CMB5) and two RPC scenarios (RCP45, RCP85) to demon-
strate our methodology. As projected, rainfall data are used for calculating future dis-
charges, so it was necessary to investigate the uncertainty of the applied climate model
predictions, as these uncertainties will be inherited in predicted discharges.

The studied historical rainfall data at the Bukovica catchment cover the period of
available spring-discharge data from 12 April 2006 to 31 December 2010.

The comparison of regional climate model projections with measured rainfall data is
indicated in Tables 4 and 5.
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Table 4. Summary of statistics for regional rainfall projections.

Count Average Standard Deviation Coeff. of Variation Minimum  Maximum Range  Stnd. Skewness

Scenario 1 1725 3.93 7.88 200% 0 87.30 87.30 66.59
Scenario 2 1725 4.56 8.51 187% 0 95.80 95.80 59.77
p_meas 1725 4.24 1191 281% 0 115.00 115.00 74.12

Table 5. Means with 95.0 percent LSD intervals, regional rainfall projections.

Count Mean Stnd. Error  Lower Limit  Upper Limit

Scel 1725 3.93 0.23 3.61 4.25
Sce2 1725 4.56 0.23 4.24 4.88
p_meas 1725 4.24 0.23 3.92 4.56

Table 5 shows the mean for each RCP scenario. It also shows the standard error of
each mean and displays an interval around each mean. The intervals currently displayed
are based on Fisher’s least significant difference (LSD) procedure. They are constructed in
such a way that if two means are the same, their intervals will overlap 95.0% of the time.

The box-and-whisker plot of measured and projected rainfall is shown in Figure 15.

Box-and-Whisker Plot

Sce1 }_.o..ao. 88 B8 ]
Sce2 }—_—- ] -] a

p_Mmeas | Eemm=Hss @ § BEE B 8@ 8 8 B 86 B 8 8 ] 8 8

1 1 1 1 1 1 1

0 20 40 60 80 100 120
response

Figure 15. Box-and-whisker plot of measured and projected rainfall (2006-2010).

e  The rainfall statistics indicate that the mean value is similar for each scenario and also
for measured data and range between 3.9 and 4.5 mm/day;

e  While the maximum values of rainfall range between 87 and 96 mm for model scenar-
ios, they are significantly higher in reality (115 mm/day).

Based on the comparison between RCM projections and measured rainfall data, it
seems that the applied climate model projections underestimate rainfall for p > 20 mm/day,
and the RCM models fail at representing high-intensity rainfall events. This needs to be
taken into account when interpreting simulated discharge.

8. Comparison of Measured vs. Projected Discharge (2006-2010)

The prediction of peak discharge at Bukovica was calculated based on the simple
squared-X model, using the regression function:

Q = 0.002843 x p?

The baseflow discharge at Bukovica was calculated by using the analytical model (7).
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The discharge time series were calculated for three periods, as discussed previously.

In each case, discharge was calculated from the two RCM scenarios listed in Table 1,
so that the statistics of the different scenarios are comparable over time. As explained in the
previous section, predicted changes in discharge pattern will reflect the behavior of down-
scaled numerical climate models. Each discharge prediction will inherit the uncertainties
and assumptions involved in the global and regional climate projections.

The predicted discharge time series of the 2006-2010 time period are shown in
Figure 16. The flow duration curves of the various scenarios are indicated in Figure 17. The
statistics of discharge predictions are indicated in Table 6. The box-and-whisker plot of
discharge data is indicated in Figure 18.

Forecasted rainfall, Bukovica, 2006-2010

Q1

Discharge (m%/s)
b

——Q2

—Q_meas

01/01/2006 01/01/2007 01/01/2008 31/12/2008 01/01/2010
Date

Figure 16. Forecasted spring hydrographs for the period 2006-2010. Discharge was calculated from
RCM projections, using the combined stochastic—analytical model. Red line indicates measurements
available for the 2008-2010 time period.
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Figure 17. Comparison of flow duration curves of the measured and predicted spring hydrographs
for the 2008-2010 period.

Table 6. Summary statistics of multiple sample comparison amongst predicted and measured spring
hydrographs.

Count Average Standard Deviation  Coeff. of Variation Minimum Maximum Range
Q_meas 1096 2.39 3.27 137% 0.06 36.45 36.38
Q1 1825 0.90 1.28 141% 0.0046 21.67 21.66
Q2 1825 1.04 145 139% 0.0051 26.09 26.09
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Figure 18. Box-and-whisker plot of measured and projected spring discharge (2006-2010).

The summary statistics in Table 6 and comparative Figures 17 and 18 indicate that
discharge predictions based on the regional climate model projections underestimate both
baseflow and peak discharges. The flow duration curve in Figure 17 also shows that
the models derived from climate projections underestimate predicted discharge for all
discharge ranges. This is in good correspondence with the results of the statistical analysis
of rainfall projections (Tables 4 and 5; Figure 15), which indicated that the applied RCM’s
underestimate daily rainfall.

9. Bias Correction of Rainfall-Discharge Models

Bias correction of RCM rainfall projections was undertaken as part of the EURO-
CORDEX climate modeling [62], and corrected rainfall datasets were utilized as input data
for our model.

The comparison between measurements and discharge models based on RCM climate
projections indicated deviations between measurements and predictions. The primary
reasons for these deviations lie within the uncertainties of climate model predictions, as
proven by the comparison between bias-corrected climate projections and rainfall measure-
ments. The secondary reason lies within the uncertainty of the rainfall-discharge model, as
indicated in Figure 13. However, based on Figure 17, it is evident that the bias originating
from the uncertainty of the bias-corrected RCM climate projection is still significantly higher
than the bias arising from the uncertainty of the rainfall-discharge model.

To achieve accurate predictive simulations, bias correction of predictive rainfall-
discharge model was undertaken by means of regression analyses between predicted
and measured spring hydrographs. A second-order polynomial regression provided the
most accurate results for both predictive data series.

For Scenario 1, the following regression function was derived:

Qmeasured = 0-0587 +2.64 x Qq — 0.037 x Q;?

For Scenario 2, the following regression function was derived:

Qpmeasured = 0.0583 +2.37 x Q, — 0.031x Q,?

The comparison between raw and bias-corrected discharge predictions is depicted
in Figure 19. The figure clearly indicates the increase in peak discharge values after bias
correction for both scenarios.



Water 2023, 15, 629

20 of 29
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Figure 19. Raw and bias-corrected predicted spring hydrographs calculated from RCM projections
for the period 2006-2010.

The flow duration curves of raw and bias-corrected discharge predictions are indicated
in Figure 20. These curves indicate that the bias-correction efficiently improves the fitting
of predicted spring hydrographs with the measured values in every discharge range.
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Figure 20. Flow duration curves for the calibration period before and after bias correction. Spring
discharges calculated from RCM projections, using the combined stochastic-analytical method.

10. Discharge Predictions

The primary goal of this study was to provide spring-discharge predictions based on
RCM projections to evaluate the climate-change impact on spring discharge. Predictive
modeling was undertaken for two 30-year periods, namely 2021-2050 and 2071-2100. We
applied the bias-corrected combined stochastic-analytical model to calculate future spring
discharge from RCM-simulated rainfall data.

10.1. Predictive Simulations for 2021-2050

The predicted spring hydrographs derived from the RCMs of Scenario 1 and Scenarios
2 RCMs are indicated in Figure 21. Summary statistics are indicated in Table 7. Flow
duration curves are indicated in Figure 22, while the box-and-whisker plots are indicated
in Figure 23.
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Figure 21. Spring hydrograph forecasts for the 2021-2050 (a) and 2071-2100 (b) periods based on
RCMs. Bias-corrected combined stochastic-analytical model was applied.

Table 7. Summary statistics of bias-corrected predicted and measured spring hydrographs for the
2021-2050 simulation period.

Q_meas. (m3/s)

Q1_biascorr. (m3/s)

Q2_biascorr. (m3/s)

Count 1096 10,957 10,957
Average 2.39 2.62 2.16
Standard deviation 3.27 3.96 2.83
Coeff. of variation 137% 151% 130%
Minimum 0.063 0.059 0.058
Maximum 36.45 47.13 35.87
Range 36.38 47.07 35.81
Stnd. skewness 57.40 213.11 162.42
Stnd. kurtosis 192.13 799.15 533.03

Flow Duration Curves - Bukovica, 2021-2050

Flow Duration Curves - Bukovica, 2071-2100
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Figure 22. Flow duration curves of spring-discharge forecasts for the 2021-2050 (a) and the 2071-2100
(b) periods based on RCMs. Bias-corrected combined stochastic—analytical model was applied.
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Figure 23. Box-and-whisker plots of predicted bias-corrected spring discharge for the 2021-2050 (a) and
2071-2100 (b) periods based on RCMs. Measured data from 2008 to 2010 are included for comparison.

The scenario models of the 2021-2050 simulation period indicate the following:

Peak discharge largely increased for Scenario 1;

Peak discharge remained quasi-stagnant for Scenario 2;
Mid-range discharge increased for Scenario 1;
Mid-range discharge decreased for Scenario 2;
Baseflow discharge decreased for both scenarios.

10.2. Predictive Simulations for 2071-2100

The predicted spring hydrographs derived from the Scenario 1 and Scenario 2 RCMs
are indicated in Figure 20. Summary statistics are indicated in Table 8. Flow duration
curves are indicated in Figure 21, while the box-and-whisker plot is indicated in Figure 22.

Table 8. Summary statistics of bias-corrected predicted and measured spring hydrographs for the
2071-2100 simulation period.

Q_meas. (m3/s) Q1_biascorr. (m3/s) Q2_biascorr. (m3/s)
Count 1096 10,957 10,957
Average 2.39 293 1.92
Standard deviation 3.27 4.02 3.24
Coeff. of variation 137% 137% 168%
Minimum 0.06 0.06 0.06
Maximum 36.45 47.06 45.33
Range 36.38 47.00 45.27
Stnd. skewness 57.40 194.24 296.69
Stnd. kurtosis 192.13 672.02 1430.04

The scenario models of the 2071-2100 simulation period indicate the following:

Peak discharges increase for both scenarios;
Mid-range discharge increases for Scenario 1;
Mid-range discharge decreases for Scenario 2;
Baseflow discharge decreases for both scenarios.

11. Discussion and Conclusions

The primary goal of this study was to provide spring-discharge predictions based
on RCM projections to evaluate the climate-change impact on spring discharge. A novel
combined stochastic-analytical modeling of discharge hydrographs was developed and
demonstrated at the Bukovica spring catchment, Montenegro.

A regression function between rainfall and peak discharge was established by using
only available systematically collected historical data between 2008 and 2010.
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Baseflow recession was described by using a double-component exponential model,
where hydrograph decomposition and parameter fitting were performed on the Master
Recession Curve.

Rainfall time series from two selected RCM scenarios were applied to predict future
discharge time series. Predictive modeling was undertaken for the periods 20062010, 2021-
2050, and 2071-2100. Bias correction of simulated hydrographs was performed by using a
polynomial regressive model. We applied the bias-corrected combined stochastic—analytical
model to calculate future spring discharge from RCM-simulated rainfall data.

The summary statistics (Table 9) and Figure 24 of Scenario 1 predictive models indicate
the following:

e  Peak discharge considerably increases during the first half of the 21st century and
remains high after that;
Average discharge increases gradually throughout the 21st century;
Baseflow discharge decreases during the first half of the 21st century and remains
stagnant after that.

Table 9. Summary statistics of Scenario 1’s bias-corrected predicted and measured spring hydro-
graphs for the 2008-2010, 2021-2050, and 2071-2100 simulation periods.

Q1 2008-2010 2021-2050 2071-2100
Count 1825 10,957 10,957
Average 2.36 2.62 2.93
Standard deviation 2.97 3.96 4.02
Coeff. of variation 126% 151% 137%
Minimum (m?3/s) 0.07 0.06 0.06
Maximum (m?/s) 39.89 47.13 47.06
Range (m?/s) 39.82 47.07 47.00
Stnd. skewness 71.82 213.11 194.24
Stnd. kurtosis 260.29 799.15 672.02
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Figure 24. Flow duration curves of spring-discharge forecasts for the 2006-2010, 2021-2100, and
2071-2100 periods based on Scenario 1’s RCM projection. A bias-corrected combined stochastic—
analytical model was applied.

The summary statistics (Table 10) and the flow duration curve (Figure 25) of Scenario
2 predictive models indicate the following:

e  Peak discharge drops during the first half of the 21th century and considerably in-
creases during the second half of the 21st century;
e  Average discharge gradually drops throughout the 21st century;
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e Baseflow discharge decreases during the first half of the 21st century and remains
stagnant after that.

Table 10. Summary statistics of Scenario 2’s bias-corrected predicted spring hydrographs for the
2008-2010, 2021-2050, and 2071-2100 simulation periods.

Q2 2008-2010 2021-2050 2071-2100
Count 1825 10,957 10,957
Average 242 2.16 1.92
Standard deviation 297 2.82 3.24
Coeff. of variation 122% 130% 168%
Minimum (m3/s) 0.07 0.06 0.06
Maximum (m3/s) 40.79 35.87 45.33
Range (m3/s) 40.72 35.81 45.27
Stnd. skewness 69.80 162.42 296.69
Stnd. kurtosis 260.59 533.03 1430.04
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Figure 25. Flow duration curves of spring-discharge forecasts for the 2006-2010, 2021-2100, and
2071-2100 periods based on Scenario 2’s RCM projection. A bias-corrected combined stochastic—
analytical model was applied.

To investigate the temporal evolution of spring discharge throughout the predicted
periods, the annual numbers of flood and drought days were calculated and visualized.
Flood condition was defined by discharge exceeding 10 m3/s, whereas drought was defined
by discharge values below 0.1 m3/s. Figure 26 indicates the annual flood and drought
days for predictive Scenario 1. Figure 27 indicates the annual flood and drought days for
predictive Scenario 2.
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Figure 26. Forecasted annual flood and drought days for predictive Scenario 1.



Water 2023, 15, 629

25 of 29

Number of annual flood/drought days Number of annual flood/drought days

.
. .
o T . . |
— ) =
: rFrey

0 =] =3 =3 3
01/01/2021 01/01/2031 01/01/2041 01/01/2071 31/12/2080 01/01/2091

annual flood days o annual drought days annual flood days e annual drought days
Linear (annual flood days) — Linear (annual drought days) Linear (annual flood days) — Linear (annual drought days)

Figure 27. Forecasted annual flood and drought days for predictive Scenario 2.

The Scenario 1 model (Figure 26) indicates that the number of annual flood days varies
between 0 and 32 according to Scenario 1 during the first simulation period (2021-2050)
and between 1 and 30 during the second simulation period. The linear regression fitted on
predictive data shows an increasing trend over time during the first simulation period and
a slightly decreasing trend during the second simulation period. The annual number of
flood days shows relatively little variation compared to the number of drought days.

With respect to baseflow, the Scenario 1 model (Figure 26) indicates that the number
of annual drought days varies between 0 and 137 according to Scenario 1 during the first
simulation period (2021-2050) and between 0 and 93 during the second simulation period.
The linear regression fitted on predictive data shows a decreasing trend over time during
both simulation periods. At the same time, the annual number of drought days shows a
large variation over time. While the average number of drought conditions is between 20
and 40 days annually, in extreme years, it exceeds 80 days. There seems to be a periodicity
of extreme years with a period between 5 and 7 years.

The Scenario 2 model (Figure 27) indicates that the number of annual flood days varies
between 0 and 17 according to Scenario 2 during the first simulation period (2021-2050)
and between 0 and 19 during the second simulation period. The linear regression fitted on
predictive data shows a close to stagnant trend over time during both simulation periods.
The annual number of flood days shows relatively little variation compared to the number
of drought days.

With respect to baseflow, the Scenario 2 model (Figure 27) indicates, that the number
of annual drought days varies between 0 and 137 according to Scenario 2 during the first
simulation period (2021-2050) and between 0 and 256 during the second simulation period.
The linear regression fitted on predictive data shows a decreasing trend over time for both
simulation periods. At the same time, the annual number of drought days shows a large
variation over time. While the average number of drought conditions is between 0 and
50 days annually, in extreme years, it exceeds 150 days. There seems to be a periodicity of
extreme years with a period between 5 and 7 years. The number of drought days seems to
increase over the simulated period during these extreme years.

By the integration of scenario model results, we can summarize the following:

e Peak discharge is predicted to increase by the end of the 21st century according to
both scenarios.

e Baseflow discharge is predicted to drop by the end of the 21st century according to
both scenarios.

e  While Scenario 1 predicts an increase in average spring discharge, Scenario 2 predicts
a decrease in average discharge.

e  The annual number of flood days shows little variation and no significant trend over
the simulation periods.

e  The annual number of drought days shows a decreasing trend over time. At the same
time, the annual number of drought days shows a large variation over time.

e  There seems to be a periodicity of extremely dry years with a periodicity between 5
and 7 years.

e  The number of drought days during extremely dry years seems to increase over the
simulated period according to Scenario 2 (no clear trend for Scenario 1).
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The different climate scenarios predict different tendencies for average spring dis-
charge. Although this can influence the water budget and water resource management, it
does not seem to influence the tendencies of extreme events. The model results confirm
the general observation that climate change is likely to exaggerate the extremities both
in terms of climate parameters and spring discharges by the end of the century both for
moderate and pessimistic CO, emission scenarios. Multi-annual variations seem to play an
important role in the length of extreme events.

The applied novel methodology is suitable for simulating the temporal distribution
and magnitude of discharge peaks and provides a physics-based description of baseflow
recession; thus, it may represent an effective tool for climate-impact studies of karst regions.

One of the main advantages of the proposed methodology is its flexibility. Every
component of it can be modified or replaced by another method and tailored to the actual
site conditions. It facilitates the application of various regression models (such as non-
linear or logistic regression, for example) and various baseflow models. The main idea
behind the introduced method is the coupling of stochastic flood discharge estimation and
physics-based baseflow estimation.

Another advantage of the proposed methodology is that it can be applied in situations
when the time lag of the investigated system response is shorter than the temporal resolution
of field data (e.g., infra-daily system response and daily data). In such situations, classical
hydrological modeling methods would be inefficient to capture the transfer function.

The presented study has the following limitations:

e  Modeling was undertaken based on the data that were available at the time that this
work commenced. Continuous discharge time series applied for model calibration
(i.e., establishment of regression functions) were available only for three years, while
model predictions had to be provided for 80 years. This resulted in the uncertainty of
model predictions.

e  Predicted discharge time series reflect the results of downscaled numerical climate
models. Discharge prediction thus inherits the uncertainties and assumptions involved
in the regional climate projections.

e  The applied method is based on regression between rainfall and discharge. The other
components of the water budget, such as runoff and evapotranspiration, are only
implicitly represented in the model, which entails the uncertainty of the results.

e  The methodology introduced in this paper proved to be efficient and is assumed to be
applicable to other sites. However, further testing is required on sites with different
karst characteristics and longer calibration and validation data series available.

e  The goal of the study was to develop and test the utilization of a combined stochastic—
analytical method, rather than investigating the climate sensitivity of a geographical
area. For this reason, only two scenarios of one regional climate model projection were
applied. Additional model projections would provide a more detailed picture of the
spring behavior of the investigated site.
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