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Abstract: In the coming years, climate change is predicted to impact irrigation water demand
considerably, particularly in semi-arid regions. The aim of this research is to investigate the expected
adverse impacts of climate change on water irrigation management in Saudi Arabia. We focus on the
influence of climate change on irrigation water requirements in the Al Quassim (97,408 ha) region.
Different climate models were used for the intermediate emission SSP2-4.5 and the high emission
SSP5-8.5 Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios. The FAO-CROPWAT 8.0
model was used to calculate reference evapotranspiration (ETo) using weather data from 13 stations
from 1991 to 2020 and for both the SSP2-4.5 and SSP5-8.5 scenarios for the 2040s, 2060s, 2080s, and
2100s. The findings indicated that, for the 2100s, the SSP2-4.5 and SSP5-8.5 scenarios forecast annual
average ETo increases of 0.35 mm/d (6%) and 0.7 mm/d (12.0%), respectively. Net irrigation water
requirement (NIWR) and growth of irrigation water requirement (GIWR) for the main crops in the
Al Quassim region were assessed for the current, SSP2-4.5, and SSP5-8.5 scenarios. For SSP5-8.5,
the GIWR for the 2040s, 2060s, 2080s, and 2100s are expected to increase by 2.7, 6.5, 8.5, and 12.4%,
respectively, compared to the current scenario (1584.7 million m3). As a result, there will be higher
deficits in 2100 under SSP5-8.5 for major crops, with deficits of 15.1%, 10.7%, 8.3%, 13.9%, and 10.7%
in the crop areas of wheat, clover, maize, other vegetables, and dates, respectively. Optimal irrigation
planning, crop pattern selection, and modern irrigation technologies, combined with the proposed
NIWR values, can support water resources management. The findings can assist managers and
policymakers in better identifying adaptation strategies for areas with similar climates.

Keywords: irrigation water demand; climate change; reference evapotranspiration; FAO-CROPWAT
8.0 model; CMIP6

1. Introduction

Climate change is one of the most challenging environmental concerns for develop-
ment because of its impact on water security, especially in arid and semi-arid regions.
Increased evapotranspiration from agriculture is anticipated in the coming years due to
the expected changes in temperature, precipitation intensity, annual amount, temporal
distribution, atmospheric water vapor, and soil water content. This will significantly impact
irrigation water requirements, especially in semi-arid areas [1]. Understanding how climate
change affects crop water requirements (CWR) is crucial for addressing future food security
and water resource sustainability challenges [2–4].
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General Circulation Model (GCM) simulations as part of Coupled Model Intercom-
parison Project (CMIP) are essential for providing quantitative climate projections for the
twenty-first century [5]. The fourth Intergovernmental Panel on Climate Change (IPCC)
assessment report was created using the CMIP phase 3 (CMIP3) GCM simulations [6]. The
fifth assessment report (AR5) of the IPCC was created using the CMIP5 [7]. In terms of
physical processes and network precision, the CMIP5 models were improved over the
CMIP3 models [8]. When the CMIP3 and CMIP5 models were compared, CMIP5 GCMs
performed better at mimicking the observed climate in many locations and the large-scale
air circulations that control regional climates [9]. Climate scenarios are provided for four
representative concentration pathways (RCPs), namely RCP 2.6, RCP 4.5, RCP 6, and RCP
8.5, up to 2100 [7]. Researchers [9–12] have used RCP scenarios to simulate how climate
change affected water resources globally over the last decade, showing a significant impact.

Phase 6 of the CMIP has recently published a fresh coordinated set of climate experi-
ments [13]. The CMIP6 GCMs differ from past generations in a number of ways, including
improved cloud microphysics, higher geographic resolutions, and improved earth system
processes and components, such as ice sheets and biogeochemical cycles [14]. The scenarios
for the future are the key distinctions between CMIP5 and CMIP6. Four GHG concentra-
tion paths have accessible CMIP5 forecasts based on radiative forcing values for the year
2100 [15].

Gusain et al. [16] investigated the effectiveness of CMIP6 and CMIP5 models in
simulating summer rainfall in India and found inconsistent added value. They assert that
the additional value in CMIP6 models’ simulations of precipitation is inconsistent across
the climate models employed in the current analysis. The scientific community can still use
it as a model for future research on assessing the effects of climate change. According to
Nie et al. [17], CMIP6 models provide more precise estimates of the amplitude of global
temperature extremes than CMIP5. The greater ability of the CMIP6 models to simulate
decreasing precipitation and droughts in Southwestern South America was demonstrated
by Rivera and Arnould [18].

In their analysis of the CMIP6 global climate models (GCMs), Mohammad et al. [19]
found that the Australian Community Climate and Earth-System Simulator (ACCESS-CM2)
and the Atmosphere and Ocean Research Institute (Tokyo University), National Institute
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology,
Japan (MIROC5) models performed best at simulating Bangladesh’s annual and seasonal
rainfall and temperature. Additionally, they discovered that the modeling of rainfall and
temperature across Bangladesh by the CMIP6 multi-model ensemble (MME) demonstrated
a significant improvement over the CMIP5 MME. As a function of climatic variables such as
temperature and precipitation under various RCPs scenarios, several researchers evaluated
the changes in ETo and CWR [20,21].

Expected increases in temperature and precipitation extremes were used to analyze
changes in (ETo) and regional agricultural water demand in China’s Hetao Irrigation
District; an increase of 4% to 7% in future ETo levels was shown [22]. The effects of climate
change on crop water requirements in Saudi Arabia’s Al-Jouf (desert area) in 2050 were
examined by [4]. They estimated that the demand for agricultural water would rise by
2.9% for every 1 ◦C rise in temperature. Tarawneh and Chowdhury [23] looked into
how Saudi Arabia’s water supplies might be affected by trends of climate change. They
assessed three emission scenarios (RCP8.5, RCP6, and RCP 2.6) for the assessment periods
of 2025–2044, 2045–2064, and 2065–2084, respectively, and compared the average values
to the outputs of the NCAR Community Climate System Model for the reference period
(1986–2005). They concluded that from 1986 to 2005, the temperature in all regions rose
for all emission scenarios. The temperature rises between 2025 and 2044, between 2045
and 2064, and between 2065 and 2084 with RCP8.5 are predicted to be in the ranges of
0.8–1.6 ◦C, 0.9–2.7 ◦C, and 0.7–4.1 ◦C.

Different climate models were utilized by Moghazy and Kaluarachchi [24] for RCP
4.5 and RCP 8.5 for years 2060 and 2100 in the Siwa region located in the Western Desert
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of Egypt for a project in which 30,000 acres will be reclaimed to increase agricultural
production. The increase in agricultural water requirements is predicted to be between
6 and 8.1% for RCP 4.5 and between 9.7 and 18.2% for RCP 8.5. Maximum reductions
in strategic crop yield under RCP 4.5 range from 2.9% to 12.8% in 2060, but maximum
reductions under RCP 8.5 range from 10.4% to 27.45 in 2100. Using the RCP 2.6, RCP 4.5,
RCP 6, and RCP 8.5 for the years 2011–2040, 2041–2070, and 2071–2100, Abdrabbo et al. [25]
examined ETo in Egypt, which, compared to the current ETo, is expected to increase by
roughly 5% to 20.1% in the Delta region and 4.7% to 19.65 in central Egypt. The increase in
ETo in the south of Egypt might be from 11% to 26.8%.

The Penman–Monteith method [26] is recommended as an internationally standard
approach for quantifying reference crop evapotranspiration, ETo. Therefore, many studies
have used the Penman–Monteith–FAO ETo approach [27]. On the other hand, other
approaches to calculating ETo were used [13,28,29] depending on the information at hand,
including methods based on mass transfer, radiation, and temperature. The Penman–
Monteith equation served as the foundation for Smith’s [30] creation of the CROPWAT 8.0
modeling program, which is widely used in the global water management sector.

The FAO Land and Water Division created AquaCrop [31], a crop growth model, to
address food security and evaluate how the environment and management affect crop
productivity. AquaCrop models how herbaceous crops respond in terms of yield to water
and is especially well adapted to situations where water is a major production-limiting
factor. Accuracy, simplicity, and robustness are all balanced by AquaCrop. It simply utilizes
a small number of explicit parameters and generally sensible input variables that can be
determined using straightforward methods, ensuring its broad application.

The objectives of this study are to use multiple prediction climate models to investigate
the expected negative impacts of climate change over Saudi Arabia, as well as their impact
on irrigation water management in the Al Quassim region, which is one of Saudi Arabia’s
most important agricultural areas. The ETo and net irrigation water requirement (NIWR)
for the most important cultivated crops were calculated using the FAO CROPWAT 8.0
model [30]. The study of demand changes can benefit both irrigation planning and future
modeling of groundwater aquifer.

To accomplish this goal, (i) the meteorological data of 13 climatic stations located in
Saudi Arabia are collected from 1991 to 2020; (ii) the future climate model data from the
CMIP6 database under SSP2-4.5 and SSP5-8.5 for 2040, 2060, 2080, and 2100 are collected;
(iii) the Penman–Monteith method for estimating ETo was used as implemented in the
FAO-CROPWAT 8.0 model [30]; (iv) using GIS (a geographic information system), Tmax
(maximum temperatures), Tmin (minimum temperatures), rainfall, and ETo, maps for
Saudi Arabia were produced for the current climate and for the SSP2-4.5 and SSP5-8.5; (v)
the net irrigation water requirements (NIWR) for the major crops in Al Quassim region
were estimated for the current, SSP2-4.5 and SSP5-8.5 emission scenarios; (vi) the deficits in
the crop areas of the main crops in Al Quassim region were estimated for the SSP2-4.5 and
SSP5-8.5 emission scenarios.

2. Materials and Methods
2.1. Description of the Study Area

Saudi Arabia is located within the boundaries of latitudes 16◦30′ N and 32◦30′ N and
longitudes 33◦45′ E and 55◦40′ E (Figure 1a). Because of its arid climate, Saudi Arabia has
hot, dry summers and cool, slightly humid winters [23]. In the summer and winter, the
maximum monthly average temperature ranges between 30 and 44 ◦C and between 15 and
28 ◦C, respectively. Because the majority of the country experiences a range of climatic
conditions between summer and winter, climatic elements differ from region to region
and even within the same region. In July, temperatures in Al Riyadh, Hafr Al-Baten, Al
Quassim, Al Hassa, and other central and eastern cities regularly reach 45 ◦C, while the
highlands remain cooler, with maximum temperatures not exceeding 30 ◦C (e.g., Asser and
Al-Baha). Most of the country has very low relative humidity, especially in the summer.
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Figure 1. (a) Provinces of Saudi Arabia, (b) meteorological stations in Saudi Arabia, (c) the Al Quassim
region, and (d) main aquifers in Saudi Arabia [Ministry of Environment, Water and Agriculture, 2018.
National Water Strategy 2030].

The average annual rainfall is below 150 mm, with the exception of the southwest,
where it ranges between 400 and 600 mm [32] and potential evaporation is extremely high.
Surface water (rainfall), groundwater (renewable and non-renewable), desalination water,
and treated wastewater are the four categories of water resources in the country [33].

The Arabian Shelf is home to significant groundwater resources in both non-renewable
aquifers and renewable alluvial aquifers [34,35]. Figure 2d shows the aquifers of Neogene,
Dammam, Umm er Radhuma, Riyadh and Wasia, Tabuk, Wajid, and Aseer [36]. Al-
Sheikh [37] estimated that the non-renewable aquifers have 259.1, 415.6, and 760.6 km3 of
confirmed, probable, and potential groundwater reserves, respectively.
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The Al Qassim region, as one of Saudi Arabia’s most important agricultural areas
(97,408 ha), is situated between 24◦70′ N and 27◦20′ N and between 41◦25′ E and 44◦50′ E
(Figure 1c). Groundwater from the Saq Aquifer [38] is the main source of water for the Al
Qassim region.

2.2. Meteorological Data

The CMIP6 database is used to obtain the climate model data. (https://pcmdi.llnl.gov/
CMIP6/ (accessed on 4 January 2022)). This study used four CMIP6 models, as presented
in Table 1: the CSIRO and ARCCSS model (ACCESS-CM2); 2: the Beijing Climate Center
model (BCC–CSM2–MR); 3: the Centre National de Recherches Meteorologiques model
(CNRM–CM6–1); and 4: the Meteorological Research Institute model (MRI-ESM2-0). The
horizontal resolutions of the CMIP6 models vary; the CMIP6 data sets are regridded from
their original spatial resolutions to a grid resolution, as mentioned in Table 1. Standard
bilinear interpolation is used to regrid temperature data, while a first-order conservative
method is used to regrid precipitation data [39].

https://pcmdi.llnl.gov/CMIP6/
https://pcmdi.llnl.gov/CMIP6/
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Table 1. Characteristics of the four CMIP6 climate models utilized in the study.

Model
No.

Multi-Model
Ensemble Country Model

Center Responsible INSTITUTION Resolution
(Lon × Lat)

Ensemble
Member Key Reference

M1 ACCESS-CM2 Australia CSIRO-
ARCCSS

CSIRO (Commonwealth
Scientific and Industrial
Research Organization,

Australia), and ARCCSS
(Australian Research Council

Centre of Excellence for Climate
System Science)

1.9◦ × 1.3◦ r1i1p1f1 [40]

M2 BCC–CSM2–MR China BCC Beijing Climate Center 1.1◦ × 1.1◦ r1i1p1f1 [41]

M3 CNRM–CM6–1 France CNRM Centre National de Recherches
Meteorologiques 1.4◦ × 1.4◦ r1i1p1f2 [42]

M4 MRI-ESM2-0 Japan MRI Meteorological Research
Institute 1.1◦ × 1.1◦ r1i1p1f1 [43]

Future estimated ETo values should be based on climate projections for two future
Shared Socioeconomic Pathways (SSPs): SSP2-4.5 (Medium-low emissions) and SSP5-8.5
(High emissions), up to 2100. The selection of these models, however, was based on
the availability of the meteorological data: maximum temperature (Tmax), minimum
temperature (Tmin), and rainfall were used for future climate projections under SSP2-4.5
and SSP5-8.5 for the years 2040, 2060, 2080, and 2100.

FAO-CROPWAT 8.0 used as input meteorological data wind speed (km/h), Tmax and
Tmin) (◦C), rainfall (mm), mean relative humidity, and sunshine hours (h) for 13 climatic
stations located in Saudi Arabia (Figure 1b). The selected stations have climate data
from 1991 to 2020. The locations and heights of the 13 climatic stations and the average
meteorological parameters and calculated ETo for the 13 stations from 1991 to 2020 are
shown in Table 2. The meteorological parameters from 1991 to 2020 are utilized as a
reference base (current case) of this study.

Table 2. Coordinates, altitude and average climatic parameters for the 13 stations between 1991 and
2020 in Saudi Arabia.

Station Name Altitude
(m)

Latitude
(No)

Longitude
(Eo)

Min.
Temp.
(◦C)

Max.
Temp.
(◦C)

Relative
Humidity

(%)

Wind
Speed

(km/day)
Sunshine
(Hours)

Solar
Radiation
(MJ/m2/day)

Rainfall
(mm)

ETo
(mm/day)

Al Jawf 689 29.78 40.1 15.8 28.3 29 324 8.4 19 58 6.93
Baha (Bisha) 1163 19.98 42.61 16.9 32.1 29 209 7.7 19.3 124 5.96

Eastern
Region

(Dhahran)
17 26.26 50.15 20.3 32.2 50 79 7.3 18 79 4.16

Al Quassim 650 26.3 43.76 16.5 31.4 30 238 8.1 19.1 183 6.57
Gizan 3 16.9 42.58 26.1 34.5 65 317 7.7 19.6 104 5.45

Northern
Borders

Region (Rafha)
447 29.63 43.48 15.8 30.7 33 284 8.4 19 69 6.62

Ha’il 1013 27.43 41.68 13.7 28.3 33 248 8.4 19.4 171 6.32
Al Madinah

(Yenbo) 6 24.15 38.06 20.1 32.4 59 432 8.4 19.8 97 6.8
Najran 1210 17.61 44.43 16.2 32.1 25 220 7.7 19.6 136 6.2

Ar Riyadh 612 24.71 46.71 18.6 32.7 30 42 7.9 19.1 101.3 3.66
Asir (Abha) 2093 18.23 42.65 11.9 24.7 56 320 7.3 18.9 272 5.38

Tabuk 776 28.36 36.63 13.6 28.9 32 230 7.8 18.4 58 5.92
Makkah (Taif) 1454 21.48 40.55 15.7 29.1 31 61 8.6 20.4 119 4.26

A geographic information system (ArcGIS) (https://www.esri.com/en-us/arcgis/
products/arcgis-pro/resources (accessed on 13 April 2022)) as an efficient mapping tool
was used to generate spatially distributed maps of meteorological data and ETo for Saudi
Arabia. All the meteorological data and ETo results have been interpolated using Inverse
Weighted Distance in GIS.

https://www.esri.com/en-us/arcgis/products/arcgis-pro/resources
https://www.esri.com/en-us/arcgis/products/arcgis-pro/resources
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2.3. Soil and Crop Data

The Al Quassim region’s crop water requirements (CWR) were investigated using
soil and crop data from different crops (wheat, sorghum, maize, barley, tomato, potato,
other vegetables, clover, dates, citrus, and grapes) [44,45]. Crop and soil data, first and
last planting dates, first and last harvesting dates, irrigation practices used, length of
plant growing season, and rooting depth were collected using field observations and
conversations with farmers [44,45]. In the Al Quassim region, medium soil is the most
common (sandy loam). Table 3 shows the soil parameters of the Al Quassim region, as well
as crop planting and harvesting dates.

Table 3. Soil parameters and crop planting and harvesting dates for the Al Quassim region.

Al Quassim Region

No. Soil Parameter Value

Medium soil (sandy loam)

1 Total available soil moisture
(Field capacity-Wilting point) 200 mm m−1

2 Maximum infiltration rate 40 mm day−1

3 Maximum rooting depth 250 cm
4 Initial soil moisture depletion 0%
5 Initial available soil moisture 190 mm m−1

Crop data (planting, harvest dates, and cultivated area)

Crop Planting date Harvest date
Cultivated area (ha)

Wheat 15-Jan. 24-May 22,792
Maize 1-Apr. 3-Aug. 5983
Barley 1-Nov. 28-Feb. 55
Tomato 1-Apr. 23-Aug. 920
Potato 15-Jan. 24-May 3826
Other

1-Mar. 3-Jun. 6671vegetables
Clover 1-Dec. 30-Nov. 14,786
Dates 1-Apr. 3-Aug. 39,303
Citrus 1-Mar. 28-Feb. 2014
Grapes 1-Apr. 31-Mar. 1058

Total 97,408

2.4. CROPWAT 8 Model

CROPWAT 8.0 is developed by the FAO that can estimate ETo, CWR, net and growth
irrigation water requirement (NIWR, and GIWR), and irrigation schedule using rainfall,
soil, crop, and climatic data.

The FAO Penman–Monteith equation for computing ETo [26] is:

ETo =
0.408∆(Rn − G) + γ u2

900
T+273 (es − ea)

∆ + γ(1 + 0.34 u2)
(1)

where ETo: reference evapotranspiration (mm day−1); Rn: net Radiation (MJ m−2 day−1);
G: soil heat flux density (MJ m−2 day−1); T: mean daily air temperature at 2 m height (◦C);
u2: wind speed at 2 m height (m s−1); es: saturation vapor pressure (kPa); ea: actual vapor
pressure (kPa); es − ea: saturation vapor pressure deficit (kPa); ∆: slope of vapor pressure
curve (kPa ◦C−1); γ: psychrometric constant (kPa ◦C−1).

ETo is the main parameter used to calculate crop evapotranspiration (ETc), equation 2.
ETc was computed as the product of ETo and the crop coefficient (Kc). The ETc value was
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calculated using ETo from Equation (1), and crop coefficient (Kc) values have been obtained
from FAO irrigation and drainage paper [26]:

ETc = Kc × ETo (2)

The NIWR and GIWR were computed by the following two equations:

NIWR = ETc− Re f f (3)

GIWR =
NIWR

η
(4)

where η is irrigation efficiency, which varies depending on the irrigation method, and Re f f
is effective rainfall (mm), which can be determined by the dependable rainfall (FAO/AGLW
formula) [26]:

Re f f = 0.6P− 10for Pmonth ≤ 70 mm (5)

where Pmonth is rainfall intensity (mm/month).

3. Results
3.1. Temperature Distribution and Change

Figure 2a,b depicts the spatially distributed mean Tmin and Tmax for Saudi Arabia
from 1991 to 2020. Tmin ranges from 14.8 to 21.6 ◦C, with a spatial average of 18.3 ◦C.
Tmax ranges between 28.7 and 33.0 ◦C, with a spatial average of 31.2 ◦C. Figure 2c,d will
be discussed in Sections 3.2 and 3.3, respectively.

The projected climate scenarios for 13 locations in Saudi Arabia using the four CMIP6
climate models were generated using the SSP2-4.5 and SSP5-8.5 for four periods: 2040, 2060,
2080, and 2100 (Table 4).

Table 4. Minimum and maximum temperatures (◦C) and rainfall (mm) (average, range, difference,
and change) using the four CMIP6 climate models for the four periods (2040, 2060, 2080, and 2100)
under SSP2-4.5 and SSP5-8.5 and current conditions (2020).

Tmin (◦C)

Current (2020) 2040 2060 2080 2100

SSP2-4.5

Average 18.3 20.0 20.7 21.3 21.8
Range 14.8–21.6 14.7- 27.7 15.2–28.3 16.0 -28.7 16.3–29.0

∆ T - 1.8 2.4 3.0 3.5
Change (%) - 10 13 17 19

SSP5-8.5

Average 18.3 20.3 21.5 22.9 24.4
Range 14.8–21.6 14.8–27.8 15.9–28.6 17.3–29.7 19.0–30.8

∆ T - 2.1 3.3 4.6 6.2
Change (%) - 11 18 25 34

Tmax (◦C)

SSP2-4.5

Average 31.2 31.4 31.8 32.3 32.8
Range 28.7–33.0 28.3–33.7 29.1–34.5 29.5–35.1 30.3–35.4

∆ T - 0.2 0.7 1.2 1.6
Change (%) - 1 2 4 5

SSP5-8.5

Average 31.2 31.4 32.6 33.9 35.2
Range 28.7–33.0 28.4–34.6 29.7–35.7 31.2–37.0 32.6–38.4

∆ T - 0.3 1.4 2.7 4.1
Change (%) - 1 5 9 13

Rainfall (mm)

SSP2-4.5

Average 93.2 108.1 102.6 104.1 118.7
Range 29.2–205.3 47.8–176.5 40.8–168.7 43.0 -172.3 48.6–200.8

∆ Rainfall - 14.9 9.4 10.9 25.5
Change (%) - 16 10 12 27

SSP5-8.5

Average 93.2 108.7 106.9 106.7 122.8
Range 29.2–205.3 51.0–167.2 51.1–177.4 43.4–181.6 51.7–205.1

∆ Rainfall - 15.5 13.7 13.5 29.6
Change (%) - 17 15 15 32
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Minimum temperatures are 18.3, 20, 20.7, 21.3, and 21.8 (◦C) in the current case (2020)
and SSP2-4.5 in 2040, 2060, 2080, and 2100, respectively. This represents an increase of 1.8,
2.4, 3, and 3.5% over the current situation. Maximum temperatures for 2020 are 31.2, 31.4,
31.8, 32.3, and 32.8 (◦C) with SSP2-4.5 for 2040, 2060, 2080, and 2100, respectively. This
represents increases of 1, 2, 4, and 5%.

Minimum temperatures are 18.3, 20.3, 21.5, 22.9, and 24.4 ◦C for 2020 and SSP5-8.5 in
2040, 2060, 2080, and 2100, respectively. This indicates an increase of 11, 18, 25, and 34%
compared to the current. Maximum temperatures are 31.2, 31.4, 32.6, 33.9, and 35.2 ◦C for
2020 and SSP5-8.5 in 2040, 2060, 2080, and 2100, respectively. This indicates an increase of 1,
5, 9, and 13% compared to the current case.

Figures 3 and 4 show the spatial distribution of the projected mean monthly Tmin and
Tmax for the 2040, 2060, 2080, and 2100 under the SSP2-4.5 and SSP5-8.5 scenarios based on
the four CMIP6 climate models. In both scenarios, Tmin and Tmax showed an increasing
trend.
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Figure 4. Annual-averaged Tmax (◦C) under SSP2-4.5 on the left for (a) 2040, (c) 2060, (e) 2080, and
(g) 2100 and SSP2-8.5 on the right for (b) 2040, (d) 2060, (f) 2080, and (h) 2100.

Under the SSP2-4.5 and SSP5-8.5 scenarios, Tmin will rise 10% and 11% in the 2040s,
respectively, with Tmax rising 1.0% in both. Tmin will increase by 19% and 34% in the
2100s, respectively, under the SSP2-4.5 and SSP5-8.5 scenarios, and Tmax will increase
by 5% and 13%, respectively, in comparison to the current scenario (2020) (Table 4). As a
result, Tmax will rise by 0.18% (0.05 ◦C) per year from 2020 to 2100 under SSP5-85 (Table 4).
The highest maximum temperature is expected to be observed in the Al Quassim region
and extend to the eastern border under all SSP2-4.5 and SSP5-8.5 scenarios, as revealed in
Figures 3 and 4.
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3.2. Rainfall Distribution and Change

Figure 2c shows the spatially distributed precipitation for 1991–2020, where the spatial
average is 93.2 mm. The rainfall ranges from 29.2 to 205.3 mm, with the highest values in
the western- southern regions (Figure 2c). The projected mean annual rainfall distribution
maps for Saudi Arabia under the SSP2-4.5 and SSP5-8.5 scenarios for the 2040s, the 2060s,
the 2080s, and 2100s based on the four CMIP6 climate models are displayed in Figure 5.
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Figure 5. Annual-averaged rainfall (mm) SSP2-4.5 on the left for (a) 2040, (c) 2060, (e) 2080, and
(g) 2100 and SSP2-8.5 on the right for (b) 2040, (d) 2060, (f) 2080, and (h) 2100.3.3. Reference
Evapotranspiration Distribution and Change.

Under the SSP2-4.5 and SSP5-8.5 scenarios, annual average rainfall will increase by
14.9 mm and 15.5 mm, respectively, indicating an increasing ratio of 16% and 17% in the
2040s. For the 2100s, the annual average rainfall will increase by 25.5 mm and 29.6 mm,
respectively, indicating an increasing ratio of 27% and 32%, respectively, compared to the
current scenario (Table 4). As a result, the average rainfall will increase by 0.4 mm per year
from 2020 to 2100 under SSP5-8.5 scenario (Table 4).

Figure 2d shows the distribution map for the estimated ETo in mm/day calculated
by the CROPWAT 8 model. The ETo ranges from 3.7 to 6.9 mm/day with an average
of 5.71 mm/day. For both the SSP2-4.5 and SSP5-8.5 scenarios, the simulated climatic
parameters were incorporated into the CROPWAT model, and future ETo values were
computed. Figure 6 demonstrates Saudi Arabia’s average daily ETo (mm/day) distribution
maps using average data from the four CMIP6 climate models, with current conditions
(2020) for the 13 stations. For both SSPs scenarios, the ETo measurements revealed an
increasing tendency in the future.

Annual ETo increases by 2%, 4%, 5%, and 6% under the SSP2-4.5 scenario in 2040,
2060, 2080, and 2100, respectively. In comparison to the current 2020s scenario, the increase
under SSP5-8.5 will be 3%, 6%, 9%, and 12%, respectively (Table 5). As a result, under
SSP5-8.5, annual ETo will increase by 0.15 mm per year from 2020 to 2100 (Table 5).

Table 5. Daily ETo (average, range, difference, and change) for 2040, 2060, 2080, and 2100 under
SSP2-4.5 and SSP5-8.5 using data from the four CMIP6 climate models, with current condition (2020)
for the 13 stations.

ETo (mm/day)

Current (2020) 2040 2060 2080 2100

SSP2-4.5

Average 5.71 5.8 5.9 6.0 6.1
Range 3.7–6.9 3.6–7.0 3.7–7.2 3.7–7.2 3.7–7.4

∆ T - 0.1 0.2 0.28 0.35
Change (%) - 2 4 5 6

SSP5-8.5

Average 5.71 5.9 6.0 6.2 6.4
Range 3.7–6.9 3.6–7.5 3.7–7.7 3.8–8.0 3.9–8.2

∆ T - 0.2 0.3 0.5 0.7
Change (%) - 3 6 9 12
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and (g) 2100 and SSP2-8.5 on the right for (b) 2040, (d) 2060, (f) 2080, and (h) 2100, using average data
from the four CMIP6 climate models.

Figure 7 shows ETo (mm) variation currently and for the SSP2-4.5 and SSP5-8.5 models
for 2040, 2060, 2080, and 2100 for the 13 stations. The expected Tmax and Tmin values
have increased, resulting in an upward trend in future ETo values as calculated by the
CROPWAT model. This rising tendency in future ETo will result in higher crop irrigation
water requirements in the future. As indicated in Figure 7, the regions with the highest ETo
values will be Al Quassim, Al Jawf, Ha’il, Al Madinah, Northern region, Najran, Baha, and
Tabuk, based on the findings of all SSP scenarios.
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3.3. Irrigation Water Demand in Al Quassim Region
3.3.1. Simulation of Tmin, Tmax, and Rainfall

Figures 8 and 9 illustrate a box plot of the annual-averaged Tmin and Tmax under
various emission scenarios projected using the four climate models (see Table 1). The results
demonstrate how Tmax varies over time under SSP2-4.5, with the median being highest at
32 ◦C in 2060 and rising to 33.2 ◦C in 2100. This is consistent with SSP2-4.5 expectations,
which state that greenhouse gas emissions must be under control by the year 2100. The
projected mean monthly Tmin and Tmax for the 2020s, 2040s, 2060s, 2080s, and 2100s under
the RCP5-8.5 scenario using the four climate models are shown in Figure A1 (Appendix A).
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Figure 8. Box Plot of annual Tmax for four climate models under (a) SSP2-4.5 and (b) SSP5-8.5.

Figure 10 shows the variations in Tmax values between four climate scenarios for
SSP2-4.5 and SSP5-8.5. For SSP2-4.5, the first climate model M1 (Table 1) predicts that Tmax
will be lower in the years 2040s, 2060s, and 2080s compared to the current values while
increasing by 0.33 ◦C in the 2100s. On the other hand, for the years 2040s, 2060s, 2080s,
and 2100s, M2 and M3 have an increasing trend relative to the current Tmax. With the
exception of the M1 2040s, M3 2040s, and M1 2060s, the Tmax values for the four models
for SSP5-8.5 show an upward trend compared to the Tmax current value. The comparison
of the four climate models (Figure 10) revealed that M1 and M3 have negative Tmax change
values when compared to the other models, implying that Tmax in M1 and M3 are highly
uncertain in 2040. It could be due to differences in CMIP6 climate model implementation
policies and assumptions. It could also be due to the resolution (grid size), with M1 having
a resolution of 1.9◦ × 1.3◦ and M3 having 1.4◦ × 1.4◦. M2 and M4 have resolutions of
1.1◦ × 1.1◦ (see Table 1). Table 6 represents the computed average values for the Tmax of
the four climate models.
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Figure 9. Box Plot of annual Tmin for four climate models under (a) SSP2-4.5 and (b) SSP5-8.5.
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Figure 10. ∆T values for Tmax using four climate models under (a) SSP2-4.5 and (b) SSP5-8.5.
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Table 6. Minimum and maximum temperatures (◦C) and rainfall (mm) (average, range, difference,
and change) for the 2040s, 2060s, 2080s, and 2100s under SSP2-4.5 and SSP5-8.5 using data from the
four CMIP6 climate models and current conditions (2020) for the Al Quassim region.

Min. Temp. (◦C)

Current (2020) 2040 2060 2080 2100

SSP2-4.5

Average 16. 5 17.5 18.2 18.9 19.3

Range 6.5 (Jan.)–24.5
(Jul.)

5.9 (Jan.)–27.8
(Jul.)

6.5 (Jan.)–28.6
(Jul.)

6.8 (Jan.)–29.3
(Jul.)

7.6 (Jan.)–29.7
(Jun.)

∆ T - 1.0 1.7 2.3 2.8
Change (%) - 6.0 10.3 14.2 17.1

SSP5-8.5

Average 16.5 17.5 18.9 20.5 22.2

Range 6.5 (Jan.)–24.5
(Jul.)

5.8 (Jan.)–27.8
(Jul.)

6.7 (Jan.)–29.3
(Jul.)

8.3 (Jan.)–31.2
(Jul.)

9.5 (Jan.)–33.1
(Jul.)

∆ T - 1.0 2.4 3.9 5.7
Change (%) - 5.9 14.4 23.9 34.3

Max. Temp. (◦C)

SSP2-4.5

Average 31.4 31.6 32.0 32.7 33.2

Range 18.4 (Jan.)–41.4
(Jul.)

17.9 (Jan.)–43.0
(Jun.)

18.7
(Jan.)–44.2(Jul.)

19.0 (Jan.)–45.1
(Jul.)

22.1 (Jan.)–45.8
(Jul.)

∆ T - 0.2 0.6 1.4 1.8
Change (%) - 1 2.0 4.4 5.8

SSP5-8.5

Average 31.4 31.7 32.7 34.7 35.8

Range 18.4 (Jan.)–41.4
(Jul.)

18.0 (Jan.)–43.3
(Jul.)

18.9 (Jan.)–44.9
(Jul.)

20.6 (Jan.)–47.4
(Jul.)

21.4 (Jan.)–48.7
(Jul.)

∆ T - 0.3 1.3 3.3 4.4
Change (%) - 1 4.1 10.5 14.1

Rainfall (mm/day)

SSP2-4.5

Average 5.8 7.8 7.6 7.0 7.5

Range 0.44 (Jul.)–19.5
(Apr.)

0.3 (Jul.)–18.9
(Oct.)

0.3 (Jul.)–18.6
(Nov.)

0.2 (Jul.)–15.4
(Oct.)

0.5 (Aug.)–15.6
(Nov.)

∆ Rainfall - 2.0 1.8 1.2 1.7
Change (%) - 35.4 31.2 21.1 29.5

SSP5-8.5

Average 5.8 7.7 7.6 7.6 9.1

Range 0.44 (Jul.)–19.5
(Apr.)

0.4 (Jul.)–20.4
(Nov.)

0.4 (Jul.)–21.6
(Nov.)

0.3 (Jul.)–18.6
(Nov.)

0.4 (Jul.)–22.9
(Sep.)

∆ Rainfall - 1.93 1.83 1.9 3.3
Change (%) - 33.1 31.7 32.2 58.0

ETo (mm/day)

SSP2-4.5

Average 6.3 6.3 6.5 6.5 6.6

Range 2.8 (Jan.)–9.6
(Jul.)

2.8 (Jan.)–9.9
(Jul.)

2.9 (Jan.)–10.1
(Jul.)

2.9 (Jan.)–10.2
(Jul.)

3.0 (Jan.)–10.3
(Jul.)

∆ Rainfall - 0.02 0.12 0.22 0.28
Change (%) - 0.2 1.9 3.5 4.5

SSP5-8.5

Average 6.3 6.4 6.5 6.8 7.0

Range 2.8 (Jan.)–9.6
(Jul.)

2.8 (Jan.)–9.9
(Jul.)

2.9 (Jan.)–10.2
(Jul.)

3.1 (Jan.)–10.5
(Jul.)

3.2 (Jan.)–10.8
(Jul.)

∆ Rainfall - 0.03 0.21 0.43 0.64
Change (%) - 0.4 3.3 6.7 10.2

Figure 11 shows the difference for the rainfall values compared to the current rainfall
(∆P) using the four climate models under SSP2-4.5 and SSP5-8.5. For SSP2-4.5 (∆P) values
for the four climate models have an increasing trend except for the M1 2080s and 2100s and
the M2 2080s. SSP5-8.5 (∆P) values for the four models have an increasing trend except for
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the M1 2040s, 2060s, and 2080s and for the M2 2040s and 2080s; the average rainfall for the
four models were computed in Table 6.
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Figure 11. ∆ Rainfall values for the four climate models under (a) SSP2-4.5 and (b) SSP5-8.5.

The Tmin and Tmax indicated an increasing trend for both scenarios. The results show
a current mean Tmin range of 6.5 ◦C (in January) to 24.4 ◦C (in August) with an average of
16.5 ◦C and show a Tmax range of 18.4 ◦C (in January) to 41.4 ◦C (in July) with an average
of 31.4 ◦C.

In 2040s, the average Tmin will rise by 1 ◦C under the SP2-4.5 and SSP5-8.5 scenarios,
and Tmax will rise by 0.2 ◦C and 0.3 ◦C, indicating an increasing ratio of Tmin of 6.0% and
5.9% and indicating a Tmax of 1% for both scenarios. For the 2060s under the SSP2-4.5
and SSP5-8.5 scenarios, Tmin will increase by 1.7 ◦C and 2.4 ◦C, respectively, and Tmax
will increase by 0.6 ◦C and 1.3 ◦C, indicating an increasing ratio for Tmin of 10% and 14%
and for Tmax of 2% and 4%, respectively. For the 2080s under the SSP2-4.5 and SSP5-8.5
scenarios, Tmin will increase by 2.3 ◦C and 3.9 ◦C, and Tmax will increase by 1.4 ◦C and
3.3 ◦C, indicating an increasing ratio for Tmin of 14% and 24% and for Tmax of 4% and 11%,
respectively. For the 2100s under the SSP2-4.5 and SSP5-8.5 scenarios, Tmin will increase
by 2.8 ◦C and 5.7 ◦C, respectively, and Tmax will increase by 1.8 ◦C and 4.4 ◦C, indicating
an increasing ratio for Tmin of 17% and 34% and for Tmax of 6% and 14%, respectively
(Table 6).

The current rainfall ranged between 0.44 mm (in July) and 19.53 mm (in April) with an
average value of 5.8 mm. Under SSP2-4.5 and SSP5-8.5 scenarios, the average rainfall will
increase by 35.4% and 33.1%, respectively, in the 2040s. Average rainfall increases by 29.5%
and 58% in the 2100s under the SSP2-4.5 and SSP5-8.5 scenarios, respectively, compared to
the 2020s (Table 6).

Under the SSP2-4.5 scenario for 2020, 2040, 2060, 2080, and 2100, the average ETo
will increase by 0.2%, 1.9%, 3.5%, and 4.5%, respectively, compared to the current case
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(2020), while for SSP5-8.5, the average ETo will increase by 0.4%, 3.3%, 6.7%, and 10.2%,
respectively (Table 6).

3.3.2. Crop Water Requirement for Al Quassim Region

The CROPWAT 8.0 model was used to predict crop water requirements (CWR) or
ETc computed from Equation (2), NIWR computed from Equation (3), and growth GIWR
computed from Equation (3). These were calculated for the five major key crops (wheat,
maize, vegetables, clover, and dates). Simulations were performed for the current scenario
(2020), as well as the SSP2-4.5 and SSP5-8.5 scenarios for the four CMIP6 climate models
(Table 1) for the years 2040, 2060, 2080, and 2100. ETc is determined by the crop coefficient
during various stages of crop growth (Kc). For future CWR estimation in Al Quassim
region, the crop data were added to the CROPWAT model.

Table 7 summarizes the statistical analysis for the predicted NIWR values for Al
Quassim region. Therefore, the current scenario indicates an NIWR of 1327.7 MCM. On the
other hand, for the SSP2-4.5 emission scenario for the 2040s for the four models M1, M2,
M3, and M4 NIWR would be 1294.7, 1384.5, 1332.7, and 1406.8 MCM, respectively, with
an average ± standard deviation value of 1345.7±43.8 MCM. Consequently, the NIWR
increasing (+) or decreasing (−) ratios are −2.5%, 4.3%, 0.4%, and 6.0%, respectively. The
computed NIWR change for the years 2060, 2080, and 2100 indicate an increase of 4%, 6.4%,
and 7.8%, respectively.

Table 7. Predicted net irrigation water requirements (NIWR) values in million m3 (MCM) and
changes (%) compared to current obtained from four climate models for 2040, 2060, 2080, and 2100
under SSP2-4.5 and SSP5-8.5 emission scenarios and current condition (2020) for Al Quassim region.

SSP2-4.5

Year Current M1 M2 M3 M4 Average Standard
Deviation Maximum Minimum

2040
NIWR
(MCM) 1327.7 1294.7 1384.5 1332.7 1406.8 1354.7 43.8 1425.9 1294.7

NIWR % −2.5 4.3 0.4 6.0 2.0 3.3 6.0 −2.5

2060
NIWR
(MCM) 1327.7 1327.6 1402.5 1366.0 1425.9 1380.5 37.3 1425.9 1327.6

NIWR % −0.01 5.6 2.9 7.4 4.0 2.8 7.4 −0.01

2080
NIWR
(MCM) 1327.7 1368.5 1421.8 1427.1 1434.5 1431.1 37.3 1473.5 1371.2

NIWR % 3.1 7.1 7.5 8.0 6.4 2.0 8.0 3.1

2100
NIWR
(MCM) 1327.7 1371.2 1436.0 1473.5 1443.6 1431.1 37.3 1473.5 1371.2

NIWR % 3.3 8.2 11.0 8.7 7.8 2.8 11.0 3.3

SSP5-8.5

Year Current M1 M2 M3 M4 Average Standard
Deviation Maximum Minimum

2040
NIWR
(MCM) 1327.7 1302.7 1387.4 1332.7 1405.8 1357.2 41.4 1405.8 1302.7

NIWR % −1.9 4.5 0.4 5.9 2.2 3.1 5.9 −1.9

2060
NIWR
(MCM) 1327.7 1346.1 1436.4 1366.0 1448.7 1399.3 44.1 1448.7 1346.1

NIWR % 1.4 8.2 2.9 9.1 5.4 3.3 9.1 1.4

2080
NIWR
(MCM) 1327.7 1390.6 1462.5 1427.1 1405.8 1421.5 27.0 1462.5 1390.6

NIWR % 4.7 10.1 7.5 5.9 7.1 2.0 10.1 4.7

2100
NIWR
(MCM) 1327.7 1439.0 1499.4 1473.5 1447.9 1465.0 23.6 1499.4 1439.0

NIWR % 8.4 12.9 11.0 9.1 10.3 1.8 12.9 8.4

In addition, RCP 8.5 scenario for the year 2040 for the four models M1, M2, M3, and
M4 indicate NIWR values of 13,024.7, 1387.4, 1332.7, and 1406.8 MCM, respectively, with
an average ± standard deviation value of 1357.2±41.4 MCM and a range between 1302.7
to 1408.8 MCM. Consequently, the NIWR increasing (+) or decreasing (−) ratios are −1.9%,
4.5%, 0.4%, and 5.9%, respectively. The computed NIWR average ± standard deviation
change for the years 2060, 2080, and 2100 indicate an increase of (5.4 ± 3.3), (7.1 ± 2.0), and
(10.3 ± 1.8)%, respectively.
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The M1 SSP2-4.5 and SSP5-8.5 negative values of NIWR in 2040 (−2.5% and −1.9%)
indicate that the projected data from M1 are contrary to expectations, as indicated by other
models that show an increase in greenhouse emissions. M1’s projected climate data in the
2040s seem to be uncertain.

The CROPWAT 8 output for the current scenario indicated that dates has the maximum
ETc (2175 mm) and that wheat has the lowest ETc (621 mm). On the other hand, clover,
maize, and other vegetables had ETc values of 1815, 975.6, and 650.2 mm, respectively. As a
result, the maximum NIWR for dates was 835.3 MCM, while the lowest NIWR was 40.9
MCM for other vegetables. Wheat, clover, and maize had NIWR values of 132.9, 261, and
57.6 MCM, respectively.

This demonstrates that because wheat and other vegetables are cultivated during the
winter season when temperatures are at their lowest, their resulting ETo values are lowest.

As a result, the total NIWR for all crops was 1327.7 MCM (Table 8). Based on an
irrigation efficiency of 75%, the current GIWR is 1584.7. The NIWR and GIWR for the year
2040 for SSP2-4.5 are 1354.5 and 1617.7 MCM, respectively, which is a 2.5% increase over the
current scenario (Table 8). Furthermore, the predicted NIWRs for the SSP2-4.5 for the 2040s,
2060s, 2080s, and 2100s are 1354.7, 1380.5, 1413.0, and 1431.1 MCM, respectively, with an
increase of 2.5, 4.8, 7.8, and 9.4% compared to the current scenario 2020s. The predicted
NIWRs for the SSP5-8.5 for the 2040s, 2060s, 2080s, and 2100s are 1357.2, 1399.3, 1421.5,
and 1465.0 MCM, respectively, with an increase of 2.7, 6.5, 8.5, and 12.4% compared to the
current scenario 2020s. Figure 12 depicts the NIWR variability.

Table 8. Averaged net irrigation water requirements (NIWR) and growth irrigation water require-
ments (GIWR) in million m3 (MCM) for four climate models under SSP2-4.5 and SSP5-8.5 for 2040,
2060, 2080, and 2100, with current condition (2020) for Al Quassim region.

Year

Current (2020) 2040 2060 2080 2100

SSP2-4.5
NIWR (MCM) 1327.7 1354.7 1380.5 1413.0 1431.1

GIWR (MCM) * 1584.7 1617.7 1648.6 1687.6 1708.9
GIWR Change (%) - 2.5 4.8 7.8 9.4

SSP5-8.5
NIWR (MCM) 1327.7 1357.2 1399.3 1421.5 1465.0

GIWR (MCM) * 1584.7 1620.6 1670.6 1697.5 1749.2
GIWR Change (%) - 2.7 6.5 8.5 12.4

Notes: NIWR, net irrigation water requirement; MCM, million m3; and GIWR, growth irrigation water require-
ments. * Sprinkler irrigation system for wheat, clover, other vegetables, maize, tomato, and potato (Irrigation
efficiency 75%) and drip irrigation system for dates and citrus (Irrigation efficiency 90%) [46].

Water 2023, 15, x FOR PEER REVIEW 22 of 27 
 

 

 

Figure 12. NIWR (net irrigation water requirement) variability in Al Quassim region for five crops 

and four climate models (indicated by error bar) for 2040, 2060, 2080, and 2100 under (a) SSP2-4.5 

and (b) SSP5-8.5. 

4. Discussion 

According to the findings above, climate change will have a massive effect on Saudi 

Arabia’s agricultural irrigation water requirements in the future. The Al Quassim region 

is considered as a case study for the impact of climate change on agricultural irrigation 

water demands in Saudi Arabia. According to the findings, both temperature and rainfall 

will increase for the 13 climate stations under both SSPs scenarios, with average data of 

the four CMIP6 climate models, with the SSP5-8.5 scenario showing the greatest increase.  

Comparing the results of the temperature and rainfall changes of this study with the 

literature, there is a good match with Almazroui et al. [39] as they studied the climate 

change impacts on the Arabian Peninsula using 31 CMIP6 models. They came to the con-

clusion that the variations were found by investigating the 31 CMIP6 models for the 2030–

2059 and 2070–2099 future periods, with comparison to the base case 1981–2010, under 

three future SSPs. They discovered that under SPP2-4.5 and SSP5-8.5 scenarios, the tem-

perature is anticipated to rise by 1.74 and 2.17 °C in 2060, respectively, while in 2100 the 

temperature is expected to rise by 2.87 and 5.28 °C, respectively, compared to the base 

case. On the other hand, Almazroui et al. [39] concluded that under all SSPs scenarios the 

annual mean rainfall averaged over Saudi Arabia has an increase of 3.76–31.83% by the 

end of the 2100s. As a result, the current study’s results agree with those predicted by 

Almazroui et al. [39]. 

The two SSPs scenarios resulted in an increase in ETo. Chowdhury et al. [4] examined 

the effects of climate change on CWRs from 2011 to 2050 in the Al-Jouf region. They ob-

served that a 1 °C rise in temperature could increase the overall CWR by 2.9% in this re-

gion. The increase in CWR has been calculated to be 1.5 MCM/year since 2011, which is 

equal to a CWR producing roughly 600 tons of wheat per year on a linear trend. The CWR 

increased mostly as a result of rising temperatures, with changes in rainfall having little 

impact.  

Tarawneh and Chowdhury [23] investigated forecasted temperature and rainfall 

trends in various Saudi Arabian areas. According to all emission scenarios, temperatures 

increased in all locations from 1986 to 2005. RCP8.5 predicts temperature rises of 0.8–1.6 

°C, 0.9–2.7 °C, and 0.7–4.1 °C for the years 2025–2044, 2045–2064, and 2065–2084, respec-

tively. On the other hand, rainfall patterns varied depending on the emission scenarios 

and time periods studied. The RCP6 showed a decrease in rainfall from the reference pe-

riod in most regions, while the RCP8.5 and RCP2.6 showed a variety of patterns. Long-

term water resource management plans may become more difficult to develop as temper-

atures rise and rainfall patterns become more erratic. However, the current study’s 

  
(a) (b) 

 

0

200

400

600

800

1000

Wheat Clover Maize Other

vegetables

Dates

N
IW

R
 (

m
il

li
o

n
 m

3 )

Crop

0

200

400

600

800

1000

Wheat Clover Maize Other

vegetables

Dates

Crop

2040 2060 2080 2100

Figure 12. NIWR (net irrigation water requirement) variability in Al Quassim region for five crops
and four climate models (indicated by error bar) for 2040, 2060, 2080, and 2100 under (a) SSP2-4.5
and (b) SSP5-8.5.
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4. Discussion

According to the findings above, climate change will have a massive effect on Saudi
Arabia’s agricultural irrigation water requirements in the future. The Al Quassim region is
considered as a case study for the impact of climate change on agricultural irrigation water
demands in Saudi Arabia. According to the findings, both temperature and rainfall will
increase for the 13 climate stations under both SSPs scenarios, with average data of the four
CMIP6 climate models, with the SSP5-8.5 scenario showing the greatest increase.

Comparing the results of the temperature and rainfall changes of this study with the
literature, there is a good match with Almazroui et al. [39] as they studied the climate
change impacts on the Arabian Peninsula using 31 CMIP6 models. They came to the
conclusion that the variations were found by investigating the 31 CMIP6 models for the
2030–2059 and 2070–2099 future periods, with comparison to the base case 1981–2010,
under three future SSPs. They discovered that under SPP2-4.5 and SSP5-8.5 scenarios, the
temperature is anticipated to rise by 1.74 and 2.17 ◦C in 2060, respectively, while in 2100
the temperature is expected to rise by 2.87 and 5.28 ◦C, respectively, compared to the base
case. On the other hand, Almazroui et al. [39] concluded that under all SSPs scenarios
the annual mean rainfall averaged over Saudi Arabia has an increase of 3.76–31.83% by
the end of the 2100s. As a result, the current study’s results agree with those predicted by
Almazroui et al. [39].

The two SSPs scenarios resulted in an increase in ETo. Chowdhury et al. [4] examined
the effects of climate change on CWRs from 2011 to 2050 in the Al-Jouf region. They
observed that a 1 ◦C rise in temperature could increase the overall CWR by 2.9% in this
region. The increase in CWR has been calculated to be 1.5 MCM/year since 2011, which is
equal to a CWR producing roughly 600 tons of wheat per year on a linear trend. The CWR
increased mostly as a result of rising temperatures, with changes in rainfall having little
impact.

Tarawneh and Chowdhury [23] investigated forecasted temperature and rainfall trends
in various Saudi Arabian areas. According to all emission scenarios, temperatures increased
in all locations from 1986 to 2005. RCP8.5 predicts temperature rises of 0.8–1.6 ◦C, 0.9–2.7
◦C, and 0.7–4.1 ◦C for the years 2025–2044, 2045–2064, and 2065–2084, respectively. On the
other hand, rainfall patterns varied depending on the emission scenarios and time periods
studied. The RCP6 showed a decrease in rainfall from the reference period in most regions,
while the RCP8.5 and RCP2.6 showed a variety of patterns. Long-term water resource
management plans may become more difficult to develop as temperatures rise and rainfall
patterns become more erratic. However, the current study’s findings are consistent with
those predicted in the RCP8.5 scenario by Tarawneh and Chowdhury [23].

The impacts of future temperature variations in the Al Quassim region were inves-
tigated in this study. Under SSP2-4.5, the results suggest that the planned development
of Al Quassim is viable until 2100 with the available land and groundwater resources.
Adjustments in land distribution are required in the more severe SSP5-8.5 emission scenario
to supply the requisite crop acreage for population and livestock agricultural needs through
2100. These findings are based on assumptions including current population and animal
water needs, current crop demand, and a population growth rate of 2.5%. Furthermore,
more water may be needed in the future to compensate for potential groundwater shortages
and soil salinity.

Unless more water sources would become available to mitigate the effects of climatic
changes in the study area, the parts of cropped areas affected by water deficits will be 6.1%
for wheat, 2.9% for clover, 1.4% for maize, 5.3% for other vegetables, and 2.5% for dates
in 2040 under SSP5-4.5, as shown in Figure 13. There are higher deficits in 2100 under
SSP5-8.5, with values of 15.1%, 10.7%, 8.3%, 13.9%, and 10.7%, respectively. These findings
indicate that, while climate models have inherent uncertainty in their forecasts, climate
change has a clear impact on agricultural productivity in the Al Quassim region. As a
result, climate change has a significant impact on agricultural planning and management.
To improve management of the available water resources, increased irrigation efficiency
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with intelligent irrigation technologies [47,48], strategic crop planting, or crop patterns that
use the less irrigation water can all assist in mitigating the future impact of climate change
on water irrigation requirements in the Al Quassim region.
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Figure 13. Deficit in crop areas (%) in Al Quassim region for 2040, 2060, 2080, and 2100: (a) SSP2-4.5
and (b) SSP5-8.5.

5. Conclusions

Climate change represents one of the most challenging environmental issues con-
fronting development, especially in arid and semi-arid regions.. Different meteorological
data were downloaded from the CMIP6 database under four climate models with two
emission scenarios: SSP2-4.5 and SSP5-8.5. This study analyzed annual-averaged Tmax,
Tmin, rainfall, and ETo distribution maps in Saudi Arabia for the 2020s using weather data
from 13 stations (Al Jawf, Baha, Eastern Province, Al Quassim, Gizan, Northern Frontier,
Ha’il, Al Madinah, Najran, Ar Riyadh, Asir, Tabuk, and Makkah). Moreover, SSP2-4.5
and SSP5-8.5 scenarios in the 2040s, 2060s, 2080s, and 2100s utilizing the future climatic
parameters predicted using four CMIP6 climate models as input data for the CROPWAT
8.0 model to compute ETo and effective rainfall were involved.

The comparison of the four climate models revealed that M1 predicted climate data
with values in 2040 were lower than the current case under both SSP2-4.5 and SSP5-8.5
scenarios.

The findings revealed that the expected temperature values had an increasing tendency
in the future. As a result, the rising trend of ETo will result in increased crop irrigation water
requirements. All SSPs scenarios showed that Al Quassim, Al Jawf, Ha’il, Al Madinah,
Northern region, Najran, Baha, and Tabuk have the highest ETo values in Saudi Arabia.

The anticipated future irrigation demands for the Al Quassim region under a changing
climate scenario reveal net irrigation water demands greater than the SSP2-4.5 scenario by
2040, 2060, 2080, and 2100.

The greater demand estimated for the Al Quassim region under the SSP5-8.5 scenario
were due to the SSP5-8.5 scenario’s showed higher temperature values compared to the
SSP2-4.5 scenario. Moreover, the average crop irrigation demands for wheat, maize, various
vegetables, clover, and dates were lower in the SSP2-4.5 scenario than in the SSP5-8.5
scenario.

As a conclusion, more water will be needed to address any expected increase in ETo
to maintain the increased irrigation water requirements in the future. This study could
be useful to help planners and policymakers to identify adaptation strategies for similar
climatic regions in order to mitigate the effects of climate change. These monitoring and
management strategies could help in the long run to reduce and minimize the expected
adverse effects of climate change in the study area. These include the use of more advanced
irrigation techniques, the reduction of exploitation/controlled pumping, and the construc-
tion of multifunctional dams and trenches along with artificial recharging through surface
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water from pond, trench, and wells help to prevent or at least minimize upcoming and
lateral migration of saline groundwater.
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